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Mathematical analysis of whispering gallery modes in graded index optical
micro-disk resonators

Stéphane Balac,1, a) Monique Dauge,1 Yannick Dumeige,2 Patrice Féron,2 and Zöıs Moitier1
1)UNIV. RENNES, CNRS, IRMAR - UMR 6625, F-35000 Rennes, France
2)UNIV. RENNES, CNRS, FOTON-UMR 6082, Enssat, F-22305 Lannion, France

We study from a theoretical point of view whispering gallery modes (WGM) in graded index micro-disk
resonators where the refractive optical index varies with the radial position. Using a quantum mechanical
analogy, we highlight three different behaviors for the WGM depending on the sign of a key parameter
expressed as the ratio of the refractive index value to its derivative at the cavity boundary. This results in
three asymptotic expansions of the resonances for large polar mode index providing first-approximations of
WGM in a simple and quick way.

I. INTRODUCTION

Optical microresonators are key devices for many ap-
plications in photonics and they have been widely studied
in the past two decades [8; 17]. Optical dielectric res-
onators supporting Whispering Gallery Modes (WGM)
have gained much interest thanks to their capability
to strongly confine the light in very compact volumes
with exceptional properties like a very narrow spectral
linewidth and high quality factor. WGM resonators are
usually formed of dielectric materials with a constant re-
fractive index. This results in a complex spectral pattern
with unequal mode spacing and a high spectral density
that may potentially limit their performance or the range
of their applications. Optical micro-resonators with spa-
tially varying refractive index offer new opportunities to
improve or enlarge the field of applications of optical
micro-resonators. This kind of optical micro-cavities falls
under the category of Graded index (GRIN) structures
that are widely used in various fields in optics [7].

WGM in optical micro-resonators are specific reso-
nances of electromagnetic waves inside a convex micro-
metric dielectric cavity with smooth surface. They cor-
respond to light-waves circling around the cavity, almost
perfectly guided round by optical total internal reflection,
that meet a resonance condition (after one round-trip
they return to the same point with the same phase and
hence interfere constructively with themselves, forming
standing waves). Use of graded index cavity can result
in a shift of the spatial location of WGM away from the
exterior surface of the resonator towards the interior of
the resonator. This can reduce the overall optical loss
at the exterior surface caused by adverse effects of sur-
face contamination and roughness. It may also produce
optical spectra of WGM that are different from the one
produced by WGM resonators with constant refractive
indices, e.g equally spaced resonances.

Among the graded index structures, a modified form of
“Maxwell’s fish eye” has been studied in [6; 14]. The au-
thors investigated by numerical simulation the features of
WGM in a graded index microdisk (with radius R) where
refractive index varies according to the radial position r
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as

n(r) =
n0

1 + r2

R2

.

In [16] the authors consider a micro-cavity made by a
quadratic-index glass doped with dye molecules and the
refractive index is written as n(r) = n0 − 1

2n2r
2, where

n2 > 0.
In this paper, we investigate WGM in a graded index

microdisk where the refractive index n varies with the
radial position r in a general way and we highlight three
different behaviors for the WGM depending on the fea-
tures of the refractive index at the cavity boundary. We
denote by Ω the bi-dimensional dielectric micro-disk cav-
ity and by R its radius. As well known [8] for such a bi-
dimensional resonance problem, the mode corresponding
to a resonance is either a transverse electric (TE) field or
a transverse magnetic (TM) one and the resonance prob-
lem takes two different forms according to whether one is
interested in the TE or TM modes, see Appendix A for
details. Moreover, it is well known that the resonance
wave-numbers k are complex numbers with a negative
imaginary part under the e−iωt convention for harmonic
time dependence of the electromagnetic field.

We denote by L2
loc(R2) the Lebesgue set of locally

square integrable functions in R2 and by H2(Ω) (resp.
H2

loc({Ω) the Sobolev space of square integrable (resp.

locally square integrable) functions in Ω (resp. {Ω) with
all derivatives up to order 2 in L2(Ω) (resp. L2

loc({Ω)).
We introduce the space of functions

D(R2) = {u ∈ L2
loc(R2) | u|Ω ∈ H2(Ω), u|{Ω ∈ H2

loc({Ω)}.

For a varying refractive index n, the resonance problems
for TE and TM modes in the cavity Ω can be gathered
into a unique form by introducing a mode selection in-
dex p such that p = 1 for TM modes and p = −1 for
TE modes, see Appendix A for details. This resonance
problem reads: find (k, u) ∈ C×D(R2) such that u 6= 0,
=(k) < 0 and

−div (np−1∇u)− k2np+1 u = 0 in Ω and {Ω (1a)

[u] = 0 across Γ (1b)[
np−1 ∂u

∂ν

]
= 0 across Γ (1c)
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where Γ denotes the boundary of Ω, ν the outward unit
normal to Γ and the brackets indicate the jump across Γ
of the quantity inside the brackets. Note that throughout
the paper, in the exterior domain the refractive index n
is assumed to be 1. The out-going wave condition at in-
finity uses polar coordinates (r, θ) centered at the center
of the disk Ω and reads: ∀r > R ∀θ ∈ [0, 2π] there exists
(cm)m∈Z such that in the polar coordinates system (r, θ)

u(r, θ) =
∑
m∈Z

cmH(1)
m (kr) eimθ (1d)

where H
(1)
m denotes Hankel’s function of the first kind and

order m and (cm)m∈Z belongs to the space of complex
valued square-summable sequences `2(C). For a short
and very understandable introduction to mathematical
aspects of resonance problems, we refer to [18].

For TE modes, in the cylindrical basis, the unknown u
is the component Hz of the magnetic field and the other
two non-zero components of the electromagnetic field are
given by

Er(r, θ) =
i

ωε0n2

1

r
∂θHz(r, θ),

Eθ(r, θ) = − i

ωε0n2
∂rHz(r, θ).

For TM modes, in the cylindrical basis, the unknown u
is the component Ez of the magnetic field and the other
two non-zero components of the electromagnetic field are
given by

Hr(r, θ) =
1

iωµ0

1

r
∂θEz(r, θ),

Hθ(r, θ) = − 1

iωµ0
∂rEz(r, θ).

The wave-numbers k are complex with negative imagi-
nary parts due to the leakage. The quantity 2π/<(k)
gives the resonance wavelength. whereas the imaginary
part of k corresponds to the photon lifetime τ in the cav-
ity through the relation τ = − 1

2c=(k) . Moreover, the ra-

diative quality factor of the mode is defined as Q = <(k)
2=(k) .

Note that the above problem setting is actually applica-
ble to any shape for the 2D cavity and for any position
dependent refractive index n in the cavity.

The paper is organized as follows. In Section II, we
show from the system of equations (1a)-(1d) how some
of the features of resonances in a micro-disk cavity with a
radially varying refractive index can be obtained by using
some semi-classical analysis techniques for Schrödinger
operators. This study results in asymptotic expansions
for large polar mode index m providing first order ap-
proximations for resonances and modes. Note that some
of our results for TM modes were obtained in [9] in the
case of a graded index micro-sphere. However, in [9] pre-
liminary assumptions introduced in the model limit the
scope to only one of the three cases addressed in Sec-
tion II and the method lacks of generality. Moreover,

although presented in [9], the analogy with the station-
ary Schrödinger equation was not exploited to derive the
asymptotic expansion. Finally, in Section III, we assess
the accuracy of our asymptotic formulas for WGM res-
onances in a micro-disk by comparison with values ob-
tained when solving problem (1) by a numerical method.

II. RESONANCES IN A DISK CAVITY WITH A
RADIALLY VARYING REFRACTIVE INDEX

A. Schrödinger analogy

When considering a disk-shaped cavity with a radi-
ally varying refractive index n, the Fourier approach can
be used to solve the resonance problem (1). The eigen-
function u for a solution (k, u) to problem (1) is expanded
in polar coordinates as

u(r, θ) =
∑
m∈Z

um(r) eimθ (2)

and solutions to problem (1) are obtained from the so-
lutions of the following family of 1D problems: Find
(k, um) ∈ C × D(R+, rdr) such that =(k) < 0, u 6= 0
and

u′′m(r) +
(

1
r + (p− 1)n

′(r)
n(r)

)
u′m(r) (3a)

+
(
k2n2 − m2

r2

)
um(r) = 0 in ]0, R[ and ]R,+∞[

[um(R)] = 0 (3b)[
np−1(R)u′m(R)

]
= 0 (3c)

um(r) ∝ H(1)
m (kr) as r → +∞ (3d)

where D(R+, rdr) = {u ∈ L2
loc(R+, rdr) | u|]0,R] ∈

H2(]0, R[, rdr), u|[R,+∞[ ∈ H2
loc(]R,+∞[, rdr)} (the no-

tation rdr refers to the measure on the Lebesgue space).
Actually, the formulation of problem (3) holds for m 6= 0,
whereas for m = 0 the additional Neumann boundary
condition u′m(0) = 0 must be added to have a well-
posed problem. A solution (km, um) to problem (3) is
referred to as a mode of the micro-disk cavity with polar
mode index m. For a given mode index m, problem (3)
has a sequence of solutions, indexed by a second index
j ∈ N, termed the radial mode index. Moreover, one
can see from problem (3) that in a GRIN micro-disk res-
onator the resonances have multiplicity 2 since the two
indexes ±m provide the same resonance wave-number k,
the modes being expressed as a linear combination of
um(r) eimθ and its complex conjugate um(r) e−imθ.

A qualitative study of the resonances solutions to
problem (3) can be achieved by using semi-classical
analysis techniques for the solution of some stationary
Schrödinger equations. To this end, we set h = 1/m and
γ = n2

0k
2/m2 where

n0 = lim
r↗R

n(r)
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is the value of the refractive index at the inner bound-
ary of the cavity (n0 > 1). With these notations, equa-
tion (3a) can be reformulated as the following radial
Schrödinger equation

− h2Lum + V um = γum (4)

where L denotes the elliptic linear differential operator

L =
n2

0

n2(r)

(
∂2
rr +

1

r
∂r + (p− 1)

n′(r)

n(r)
∂r

)
(5)

=
n2

0

rnp+1(r)
∂r
(
rnp−1(r)∂r

)
and the potential energy function V is defined by

V (r) =
n2

0

r2n(r)2
. (6)

The linear operator L is self-adjoint on the space L2
ρ(R+)

of square integrable functions for the measure ρ =
np+1(r)r dr. Moreover, since limr↗R V (r) = 1

R2 and

limr↘R V (r) =
n2
0

R2 > 1
R2 , we have a potential barrier

at r = R.
As we are interested in WGM, the angular mode in-

dex m is large and among the solutions (km, um) to
problem (3) for such a m, we are interested in solu-
tions such that the mode um is “concentrated” inside
the cavity, in a vicinity of the disk boundary. As a con-
sequence, the parameter h is a small positive parameter
and our study falls under the semi-classical regime for
the Schrödinger equation. In this framework, we are in-
terested in solutions to the Schrödinger equation that
concentrate around the local minimum in (0, R] of the
potential V the closest to R. Thus, we must consider the
sign of V ′(R) = − 2

R2 κ where

κ =
1

R
+
n1

n0
with n1 = lim

r↗R
n′(r). (7)

We have identified three typical behaviors depending on
the sign of κ.

a) Half-triangular potential well. If κ > 0 then V
is decreasing in a left neighborhood of R and has a local
minimum at R. The special case of a disk cavity with
constant index enters this heading. The quantum mech-
anism analogy is similar to the one given in Appendix B
for a disk cavity with constant index.

b) Half-quadratic potential well. If κ = 0, under the
additional condition µ > 0, where

µ =
2

R2
− n2

n0
with n2 = lim

r↗R
n′′(r), (8)

the potential V has a local minimum at R. The modified
form of Maxwell’s fish eye GRIN structure investigated
in [6] enters this heading.

c) Internal quadratic potential well. If κ < 0, since
limr↘0 V (r) = +∞, the effective potential V has at least

one local minimum R0 in (0, R). Under the additional

condition µ = 2
R2

0
− n′′(R0)

n(R0) > 0, the potential is quadratic

in a neighborhood of the minimum. The advantage of
cavities with such refractive index is that the modes are
located slightly inside the cavity and therefore the res-
onances are less sensitive to edge defects of the cavity.

Note that this list is not exhaustive, but the other
cases impose strong conditions on the refractive index
function n which would be questionable in terms of tech-
nological design. Note also that the potential V may
have several local minima in ]0, R], around which reso-
nant modes may locate themselves, but they are of less
practical interest.

B. Principles of construction of asymptotic formulas for
resonances

In order to find approximate solutions to system (3),
we consider the Schrödinger equation (4) and perform
a Taylor expansion of its coefficients at the point where
the potential V has its minimum. In cases a) and b)
this point is r = R, and in case c) it is r = R0. Let
us explain the principles in cases a) and b) before giving
more details in the corresponding sections. We perform
the change of variables r 7→ ξ = r

R−1 sending R to 0 and
write equation (4) with this coordinate: For L we obtain

n2
0

R2n2(R+Rξ)

(
∂2
ξξ + + R

R+Rξ∂ξ + (p− 1)Rn
′(R+Rξ)

n(R+Rξ) ∂ξ

)
and for the potential V ,

n2
0

(R+Rξ)2n(R+Rξ)2 . Concerning

the operator L it suffices to consider the Taylor expansion
around ξ = 0 of its coefficients at the order 0, i.e. to take
their values at ξ = 0. We find

L '


1
R2

(
∂2
ξξ + ∂ξ + (p− 1)Rn1

n0
∂ξ
)

ξ < 0

n2
0

R2

(
∂2
ξξ + ∂ξ

)
ξ > 0

For the potential V , a Taylor expansion at the order 2 in
ξ = 0 will be sufficient in any case. We find, using the
quantities κ and µ introduced in (7) and (8)

V '


1
R2 − 2

R κ ξ + (3κ2 − 2κ+ µ)ξ2 ξ < 0

n2
0

R2 ξ > 0

As for the “eigenvalue” γ in (4), we look for a quantity
close to the bottom of the potential well at ξ = 0, i.e.

γ =
1

R2

(
1 + γ̃

)
with lim

h→0
γ̃ = 0.

With these approximations, the equation (4) outside the
cavity, i.e. for positive ξ becomes

−h2n2
0

(
∂2
ξξ + ∂ξ

)
ϕ+ (n2

0 − 1)ϕ = γ̃ϕ

and, at the limit h = 0, we find
n2
0−1
R2 ϕ = 0, i.e. ϕ = 0

for ξ > 0. Hence the jump condition (3b) across r = R
(ξ = 0) imply that the approximate solution inside the
cavity shoould satisfy the Dirichlet condition ϕ(0) = 0.
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C. Asymptotics of resonances in the half-triangular
potential well case

Let us consider first the case of a half-triangular po-
tential well. In this case κ is positive and we can neglegt
the term of order 2 in the Taylor expansion of V . Our
approximate equation inside the cavity (ξ < 0) can be
written as

− h2
(
∂2
ξξ + ∂ξ + (p− 1)Rn1

n0
∂ξ
)
ϕ− 2Rκ ξ = γ̃ϕ (9)

with the Dirichlet condition ϕ(0) = 0. In order to ho-
mogenize the principal terms −h2∂2

ξξ and −κ ξ, we in-

troduce the scaled variable σ defined by [3] σ = h−
2
3 ξ

and the new unknown v(σ) = ϕ(σh
2
3 ). The approximate

Schrödinger equation (9) for ϕ gives rise to the following
ODE for v (posed on (−∞, 0) with v(0) = 0):

− h 2
3

(
v′′(σ) + 2Rκσv(σ)

)
+ h

4
3

(
1 + (p− 1)Rn1

n0

)
v′(σ) = γ̃v(σ). (10)

By considering a formal series expansion for v in the form

v(σ) = v0(σ) + h
1
3 v1(σ) + h

2
3 v2(σ) + · · ·

and γ̃ = γ2h
2
3 +γ3h+γ4h

4
3 +· · · for the eigenvalue, and by

plugging these expressions into (10) and equating terms
with the same order in h, one obtains that v0 satisfies

−v′′0 (σ)− 2κ̆σv0(σ) = γ2v0(σ), with κ̆ = Rκ .

By making the substitution X = (2κ̆)
1
3σ + (2κ̆)−

2
3 γ2,

it is found that V (X) ≡ v0(σ) solves the reverse Airy
equation −V ′′ + XV = 0 and we deduce that v0(σ) =

A
(
(2κ̆)

1
3σ+ (2κ̆)−

2
3 γ2

)
where A denotes the mirror sym-

metric Airy function A : X ∈ R 7→ Ai(−X). The Dirich-
let condition v0(0) = 0 implies that there exists an integer
j ≥ 0 such that

(2κ̆)−
2
3 γ2 = aj

where (aj)j≥0 denotes the increasing sequence of the ze-

ros of A. Hence v0(σ) = A
(
aj + (2κ̆)

1
3σ
)
.

Finally, for the half-triangular potential well, the res-
onance corresponding to the polar mode index m and
radial mode index j ≥ 0 is found to have an asymptotic
expansion in the form

km,j =
m

Rn0

(
1 + 1

2 (2κ̆)
2
3 ajm

− 2
3 +O(m−1)

)
(11)

and the corresponding mode inside the cavity (i.e. for
r < R) satisfies

um,j(r) = A
(
aj + (2κ̆)

1
3m−

2
3 r−R

R

)
+O(m−

1
3 ).

These formulas for the resonance km,j and the mode um,j
are coherent with the first term of the known asymptotic
expansion in a disk cavity with constant index [2]. It can

be noted that the approximation obtained for the reso-
nances and modes do not distinguish between TE and
TM modes. The asymptotic developments have to be
continued at a higher order to distinguish one from an-
other. It can also be noted that one would obtained the
same 2-term asymptotic expansion (11) for the Dirichlet
problem in a disk. The distinction between the Dirichlet
problem in a disk and the transmission problem (3) for
a disk arises with the next terms in the asymptotic ex-
pansion. It is indeed possible, taking into account higher
order Taylor expansions of V and of the coefficients of L,
and including the jump relation (3c) on first derivatives
at r = R, to pursue the construction of approximate reso-
nance pairs (k, um) up to an arbitrary precision, see [13],
but this goes far beyond the scope of this paper. In
particular, in [13] it is obtained the following 4-term ex-
pansion:

km,j =
m

Rn0

(
1 + 1

2 (2κ̆)
2
3 ajm

− 2
3 − κ̆np0 1√

n2
0−1

m−1

+ 1
15 (2κ̆)

4
3 a2
j

(
17
8 −

3
κ̆ + µ̆

κ̆2

)
m−

4
3 +O(m−

5
3 )
)

where µ̆ = R2µ. One can see that the third term dif-
fers whether the resonance corresponds to a TE mode
(p = −1) or to a TM mode (p = 1). This third term in
the expansion also differs from the one obtained for the
Dirichlet problem in a disk.

D. Asymptotics of resonances in the half-quadratic
potential well case

Let us now consider the half-quadratic potential well.
In this case κ is zero and our approximate equation inside
the cavity (ξ < 0) can be written as

− h2
(
∂2
ξξ + ∂ξ + (p− 1)Rn1

n0
∂ξ
)
ϕ+ µ ξ2 = γ̃ϕ (12)

with the Dirichlet condition ϕ(0) = 0. Now we have
to homogenize the principal terms −h2∂2

ξξ and µξ2. We

introduce the scaled variable [3] σ = h−
1
2 ξ and the new

unknown v(σ) = ϕ(σh
1
2 ). The approximate Schrödinger

equation (12) for ϕ gives rise to the following ODE for v
(posed on (−∞, 0) with v(0) = 0):

h
(
− v′′(σ) + µσ2v(σ)

)
+ h

3
2

(
1 + (p− 1)Rn1

n0

)
v′(σ) = γ̃v(σ). (13)

The adapted formal series expansions for v and γ̃ involve
now powers of h

1
2 : v(σ) = v0(σ) + h

1
2 v1(σ) + · · · and

γ̃ = γ2h + γ3h
3
2 + · · · . By plugging these expressions

into (13) and equating terms with the same order in h,
one obtains that v0 satisfies

−v′′0 (σ) + µ̆σ2v0(σ) = γ2v0(σ)

where µ̆ = R2µ. By making the substitution X = µ̆
1
4σ,

it is found that V (X) ≡ v0(σ) solves the harmonic os-

cillator equation −V ′′ + X2V = µ̆−
1
2 γ2V on (−∞, 0)
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with Dirichlet condition V (0) = 0. Its eigenfunctions are
known as Hermite functions ψ`(X) [1, Chp.22] with odd
index because of the Dirichlet condition. The associate
eigenvalue is 2` + 1. Hence v0(σ) = ψ2j+1(µ̆

1
4σ) where

j ≥ 0. Finally, for the half-quadratic potential well, the
resonance corresponding to the polar mode index m and
radial mode index j is found to satisfy

km,j =
m

Rn0

(
1 + 4j+3

2 µ̆
1
2 m−1 +O(m−

3
2 )
)

(14)

and the mode inside the cavity (i.e. for r < R) satisfies

um,j(r) = ψ2j+1(µ̆
1
4m

1
2 r−R

R ) +O(m−
1
2 ).

E. Asymptotics of resonances in the internal quadratic
potential well case

For the internal quadratic potential well, the reason-
ing is similar to the case of the half-quadratic potential
well with R replaced by R0 where R0 denotes the local
minimum of V inside the cavity the closest to R. The
only difference comes from the lack of boundary condi-
tion. The resonance corresponding to the polar mode
index m and radial mode index j is found to satisfy

km,j =
m

R0n(R0)

(
1 + 2j+1

2 µ̆
1
2 m−1 +O(m−2)

)
(15)

where µ̆ = R2
0µ = (2 − R2

0
n2

n0
), and the corresponding

mode inside the cavity (i.e. for r < R) satisfies

um,j(r) = ψj(µ̆
1
4m

1
2 r−R0

R0
) +O(m−

1
2 ).

III. NUMERICAL INVESTIGATIONS

We have written a program under Matlab to com-
pute WGM in graded index optical micro-disks with ra-
dial varying refractive optical index. The program can be
obtained from the authors. The program solves the ra-
dial problem (3) using the Finite Difference Method [12]
where the first and second order derivatives are ap-
proached by the following second-order of accuracy cen-
tral difference schemes (for a small step-size δr > 0)

u′(r) ≈ u(r + δr)− u(r − δr)
2δr

u′′(r) ≈ u(r + δr)− 2u(r) + u(r − δr)
δ2
r

The unbounded exterior domain is truncated at a fi-
nite distance of the dielectric cavity boundary by using
the Perfectly Matched Layer method (PML). Namely,
we use the PML investigated in [11]. The Finite Dif-
ference scheme we have implemented under Matlab is
second order accurate. Note that we have chosen the Fi-
nite Difference Method for its simplicity for such a one-
dimensional problem but we could have also used the
Finite Element Method [10] as in [13].

1 1.365519863852797 + i 8.899057980609237 10−9 1.87 10−16

2 1.256150131337898 + i 3.228526827244588 10−6 7.81 10−15

3 1.176783344038231 + i 1.472899763865047 10−4 1.37 10−14

4 1.114014527345193 + i 1.567378520103474 10−3 2.20 10−14

5 1.060466939160361 + i 5.308036592118068 10−3 2.44 10−14

TABLE I. First five exact resonance wavelengths λ in µm for
TE modes with polar mode index m = 60 for a micro-disk
with constant refractive index n0 = 1.45 and radius R =
10µm. The third column provides the absolute value of the
modal function at resonance |fm(2πR/λ)|.

A. Half-triangular potential well

First, to validate both our asymptotic formula (11) and
our Matlab program, we consider the case of a disk with
a constant refractive index n0 = 1.45. The disk radius is
R = 10µm. In the particular case of a constant refrac-
tive index, one can solve problem (3) analytically. The
resonances k are found to be the zeros of the following
non-linear equation referred to as the modal equation [13]

fm(z) =
H

(1)
m−1(z)

H
(1)
m (z)

− np0
Jm−1(n0z)

Jm(n0z)
− m

z

(
1− np−1

0

)
= 0

where p = 1 for TM modes and p = −1 for TE modes
and z = kR = 2πR

λ . Jm refers to Bessel’s function of the
first kind. Moreover, the mode um for a given resonance
k is found to be

um(r) =


Jm(n0kr)

Jm(n0kR)
if r ≤ R

H
(1)
m (kr)

H
(1)
m (kR)

if r > R

We provide in Table I the first five resonance wave-
lengths λ = 2π/k in µm for TE modes with polar mode
index m = 60 computed by solving the modal equation
fm(z) = 0. The third column provides the residual, i.e.
the absolute value of the modal function at resonance
|fm(2πR/λ)| as an indicator of the accuracy of the zero
finding method. We also provide in Table II the first five
resonance wavelengths λ computed by our Finite Differ-
ence program with a step-size of 10−3 µm. The third col-
umn indicates the relative error on the resonances com-
pared to the “exact” ones provided in Table I. We observe
that four to five digits are correct. Finally, we provide
in Table III the first five resonance wavelengths λ com-
puted by the asymptotic formula (11). The third column
indicates the relative error on the resonances compared
to the “exact” ones provided in Table I. We can observe
that the asymptotic formula (11) provides approximate
values of the resonances with an error around 1% for that
value of m.

We have depicted in Fig. 1 the variations in the ra-
dial direction of the modulus of the mode um for the
first resonance provided in Table II (top) and the 2D
representation of the real part of um(r) eimθ (bottom).
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1 1.365519834571472 + i 8.620120805955066 10−9 2.14 10−8

2 1.256150084591846 + i 3.115865384096499 10−6 9.71 10−8

3 1.176786476706345 + i 1.480719183809064 10−4 2.74 10−6

4 1.113987662838273 + i 1.566746482111717 10−3 2.41 10−5

5 1.060561414039830 + i 5.279762347031864 10−3 9.29 10−5

TABLE II. First five resonance wavelengths λ in µm for TE
modes obtained by our Finite Difference program. The third
column indicates the relative error on the resonances com-
pared to the “exact” ones provided in Table I.

1 1.35443586176449 8.12 10−3

2 1.25314192940970 2.40 10−3

3 1.18084072060718 3.45 10−3

4 1.12354875931961 8.67 10−3

5 1.07583364457203 1.53 10−2

TABLE III. First five resonance wavelengths λ in µm for TE
modes obtained by the asymptotic formula (11). The third
column indicates the relative error on the resonances com-
pared to the “exact” ones provided in Table I.

Computations were achieved using our Finite Difference
program under Matlab. One can see on the top figure
that the PML, located between r = 12 and r = 15µm
absorbs the mode as expected.

B. Half-quadratic potential well

We now consider the case of a micro-disk with ra-
dius R = 10µm and refractive index varying accord-
ing to the radial position r as n(r) = 2n0

1+r2/R2 where

n0 = n(R) = 1.45. This refractive index profile cor-
responds to the modified form of “Maxwell’s fish eye”
GRIN studied in [6]. We have n1 = n′(R) = −n0/R so
that κ = 0 and this refractive index profile corresponds
to the half-quadratic potential well.

We provide in Table IV the first five resonance wave-
lengths λ in µm for TE modes with polar mode index
m = 60 obtained by the asymptotic formula (11) (second
column) and computed by our Finite Difference program
(third column) with a step-size of 10−3 µm. It can be
noticed that compared to a dielectric cavity with con-
stant refractive index, the resonances are more regularly
spaced. This feature of resonances can be easily inferred
from the asymptotic formula (14) for the half-quadratic
potential well and it is not true for refractive index profile
corresponding to half-triangular potential well, see (11).

We have depicted in Fig. 2 the variations in the radial
direction of the modulus of the mode um for the first
resonance provided in Table IV (top) and the 2D repre-
sentation of the real part of um(r) eimθ (bottom).
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FIG. 1. Variation in the radial direction of the modulus of the
mode um for the first resonance provided in Table II (top, blue
line), potential V (top, red line) and 2D representation of the
real part of um(r) eimθ (bottom). The black circle indicates
the disk boundary. The PML area is not represented.

1 1.4814014 1.4834423 + i 3.4093579 10−13

2 1.4347431 1.4379203 + i 2.7195200 10−12

3 1.3909342 1.3949026 + i 4.2106368 10−10

4 1.3497213 1.3543145 + i 4.7185218 10−09

5 1.3108804 1.3160060 + i 4.2639670 10−08

TABLE IV. First five resonance wavelengths λ in µm for TE
modes for the half-quadratic potential well example. Values
in the second column are obtained by the asymptotic for-
mula (11) whereas values in the third column are obtained by
our Finite Difference program.

C. Quadratic potential well

Finally, we consider the case of a micro-disk with ra-
dius R = 10µm and refractive index varying accord-
ing to the radial position r as n(r) = n0 + 1

2n2(R2 − r2)

where n0 = n(R) = 1.45 and n2 = 0.031µm−2. This
refractive index profile is similar to the quadratic-index
glass doped with dye molecules studied in [16]. We have
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FIG. 2. Variation in the radial direction of the modulus of the
mode um for the first resonance provided in Table IV (top,
blue line), potential V (top, red line) and 2D representation
of the real part of um(r) eimθ (bottom). The black circle in-
dicates the disk boundary. The PML area is not represented.

κ = 1
R (1 − n2R

2

n0
) < 0. This refractive index profile

falls into the quadratic potential well case. The poten-
tial V has a unique minimum inside [0, R] located at

R0 =
√

2n0+n2R2

3n2
.

We provide in Table V the first five resonance wave-
lengths λ in µm for TE modes with polar mode index
m = 60 obtained by the asymptotic formula (15) (second
column) and computed by our Finite Difference program
(third column) with a step-size of 10−3 µm.

We have depicted in Fig. 3 the variations in the radial
direction of the modulus of the mode um for the first
resonance provided in Table V (top) and the 2D repre-
sentation of the real part of um(r) eimθ (bottom). This
illustrates the possibility with certain profiles of graded
index to shift of the spatial location of WGM away from
the exterior surface of the resonator towards the interior
of the resonator reducing the overall optical losses.

1 1.6583228 1.6586734 + i 6.2523027 10−15

2 1.6124380 1.6125508 + i 5.8994609 10−14

3 1.5690241 1.5684167 + i 2.6968034 10−13

4 1.5278866 1.5257651 + i 7.0206468 10−13

5 1.4888512 1.4843304 + i 5.2191255 10−13

TABLE V. First five resonance wavelengths λ in µm for TE
modes for the quadratic potential well example. Values in the
second column are obtained by the asymptotic formula (15)
whereas values in the third column are obtained by our Finite
Difference program.
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FIG. 3. Variation in the radial direction of the modulus of the
mode um for the first resonance provided in Table V (top, blue
line), potential V (top, red line) and 2D representation of the
real part of um(r) eimθ(bottom). The black circle indicates
the disk boundary. The PML area is not represented.

IV. CONCLUSION

We have investigated WGM in a graded index micro-
disk where the refractive index n varies with the radial
position r and we have highlighted three different behav-
iors for the WGM depending on the sign of a key param-
eter found to be κ = 1

R + n1

n0
where n0 and n1 are respec-

tively the values of the refractive index and its deriva-
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tive at the cavity boundary. Moreover, we have obtained
asymptotic expansions of the resonances for large polar
mode index m aimed at providing first-approximation of
WGM in a graded index micro-disk in a simple and quick
way. From a numerical point of view, these asymptotic
expansions can be used to localize a given resonance de-
fined by its mode indexes (m, j) in the spectrum. A nu-
merical computation can then be launched to compute
with accuracy the resonance in the vicinity of this first-
approximation using a numerical method such as the Fi-
nite Difference scheme presented in the paper.

Developing the approach whose first step is presented
here, it is actually possible to obtain more terms in the
asymptotic expansion of the resonances, but formal cal-
culus becomes necessary to make formulas explicit and
usable, see [13]. Besides, the mathematical approach
presented here can be extended to dielectric micro-disk
with a refractive index varying in the two directions but
at the cost of new mathematical developments using a
phase-amplitude ansatz, see [13].

Appendix A: TE and TM modes in a graded index optical
micro-disk

For a WGM, the electric field E and magnetic field H
have a sinusoidal variation in time represented in phasor
notation as

E(x, t) = <
(
E(x) e−iωt

)
H(x, t) = <

(
H(x) e−iωt

)
where ω denotes the optical wave frequency. This fre-
quency is not imposed by sources but it is one of the un-
known of the resonance problem with E and H. In the
sequel we denote by Ω the domain occupied by the dielec-
tric cavity which size typically varies from one to hundred
micrometers and by Ωe the exterior domain. The electric
field E and magnetic field H are complex valued solutions
to the harmonic Maxwell’s equations in R3:

curl E− iωµ0 H = 0 (A1a)

div H = 0 (A1b)

div (εr E) = 0 (A1c)

curl H + iωε0 εr E = 0 (A1d)

where µ0 and ε0 denote respectively the magnetic per-
meability and the dielectric permittivity of vacuum and
εr denotes the relative dielectric permittivity of the di-
electric material in the cavity. Equations (A1) can be
handled in R3 when E and H refer to Schwartz’s dis-
tributions or as regular functions in Ω and Ωe with the
following conditions at the interface between the two do-
mains: [

H · ν
]

= 0
[
εrE · ν

]
= 0 (A2a)[

H ∧ ν
]

= 0
[
E ∧ ν

]
= 0 (A2b)

where ν denotes the unit outward normal to the bound-
ary of Ω, and the brackets refer to the jump across the

interface of the quantity inside the brackets. We also
need to specify some condition at infinity for H and E.

By taking the curl of equation (A1a) and combining it
with equation (A1d) we obtain

curl curl E(x)− k2 n2(x)E(x) = 0

where k2 = ω2µ0ε0 and n is the refractive index function
defined by εr(x) = n2(x). From (A1c) and the vector
identity div (εr E) = εr div E + E · ∇εr we deduce that

div E = −∇n
2

n2
·E.

Then, using the vector identity curl curl E = −∆E +
∇div E, where ∆ refers to the vector Laplace operator,
we finally obtain the following propagation equation

∆E +∇
(

E · ∇n
2

n2

)
+ k2 n2 E = 0. (A3)

Similarly, by taking the curl of equation (A1d) and by
using the vector identity

curl (εrE) = εr curl E +∇εr ∧E

and equation (A1a), we obtain that

− curl curl H +
∇n2

n2
∧ curl H + k2 n2 H = 0.

Since H is divergence free, the propagation equation for
H also reads

∆H +
∇n2

n2
∧ curl H + k2 n2 H = 0. (A4)

As the dielectric micro-cavity is a disk with a radial vary-
ing refractive index n, it is quite natural to exploit this
feature by introducing the cylindrical coordinates basis
(r, θ, z). In the cylindrical vector basis (er, eθ, ez), we
have

∇n2

n2
=

2

n
∂rn(r) er = ∂r

(
ln(n2)

)
er.

Considering the expression of the vector Laplace operator
in cylindrical coordinates, component-wise the propaga-
tion equation (A3) for E reads

∆Er −
2

r2
∂θEθ −

1

r2
Er + ∂rEr ∂r

(
ln(n2)

)
+Er∂

2
r ln(n2) + k2n2Er = 0 (A5a)

∆Eθ +
2

r2
∂θEr −

1

r2
Eθ +

1

r
∂θEr∂r

(
ln(n2)

)
+k2n2Eθ = 0 (A5b)

∆Ez + ∂zEr∂r
(

ln(n2)
)

+ k2n2Ez = 0 (A5c)

where ∆ refers to the scalar Laplace operator.
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Similarly, component-wise the propagation equa-
tion (A4) for H reads

∆Hr −
2

r2
∂θHθ −

1

r2
Hr + k2n2Hr = 0 (A6a)

∆Hθ +
2

r2
∂θHr −

1

r2
Hθ −

1

r
∂r
(

ln(n2)
)
∂r(rHθ)

+
1

r
∂r
(

ln(n2)
)
∂θHr

)
+ k2n2Hθ = 0 (A6b)

∆Hz + ∂r
(

ln(n2)
)(
∂zHr − ∂rHz

)
+k2n2Hz = 0 (A6c)

The main assumption in the model is that the electro-
magnetic field does not depend on the height variable z
and the 3D geometrical problem setting can be reduced to
a 2D one. This assumption and the resulting 2D problem
can be seen as an approximation of the 3D one resulting
from the use of the Effective Index Method [4].

Under the assumption that the magnetic field doesn’t
depend on the height variable z, the magnetic field
component satisfies the following equation deduced
from (A6c)

∆Hz − ∂r
(

ln(n2)
)
∂rHz + k2n2Hz = 0

and this equation can be recast into

div

(
1

n2
∇Hz

)
+ k2Hz = 0.

Once Hz is known, the components Er and Eθ of the elec-
tric field can be deduced from Maxwell’s equation (A1d).
Namely,

Er(r, θ) =
i

ωε

1

r
∂θHz(r, θ), (A7a)

Eθ(r, θ) = − i

ωε
∂rHz(r, θ). (A7b)

Moreover, we deduce from the boundary condi-
tions (A2b) combined with (A7b) that Hz satisfies the
following interface conditions across the cavity boundary

[Hz] = 0,

[
1

n2

∂Hz

∂ν

]
= 0.

Similarly, (A5c) can be recast into

∆Ez + k2n2Ez = 0.

and, under the assumption that the electromagnetic field
doesn’t depend on the height variable z, the components
Hr and Hθ of the magnetic field can be deduced from
Maxwell’s equation (A1a) as

Hr(r, θ) =
1

iωµ0

1

r
∂θEz(r, θ) (A8a)

Hθ(r, θ, z) = − 1

iωµ0
∂rEz(r, θ). (A8b)

FIG. 4. Typical behavior of the potential function Veff for
disk cavity with constant index. The hatched area is the
“classically forbidden” region.

Moreover, we deduce from the boundary condi-
tions (A2b) combined with (A8b) that Ez satisfies the
following interface conditions across the cavity boundary

[Ez] = 0,

[
∂Ez
∂ν

]
= 0.

As well known, Maxwell’s equation in polar coordinates
split into two independent subsystems of equations. The
first one involves the electromagnetic field components
Hz, Er and Eθ and it is referred as the TE modes subsys-
tem. The second one involves the electromagnetic field
components Ez, Hr and Hθ and it is referred as the TM
modes subsystem.

Appendix B: Quantum mechanical analogy for a micro-disk
cavity with constant index

We present in this appendix the quantum mechanical
analogy for resonances in a disk cavity with constant in-
dex, see also [5; 15]. For a disk cavity with constant index
n0, the Schrödinger equation (4) is to be considered with
the linear differential operator

L =

(
∂2
rr +

1

r
∂r

)
(B1)

and it can be recast in the form of

− Lum(r) + Veff(r)um(r) = E um(r) (B2)

where the effective potential Veff is

Veff(r) = k2(1− n2(r)) +
m2

r2

and the energy E is defined as k2, where k is assumed to
be a positive real number for the purpose of the analogy.
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The effective potential is the sum of the dielectric poten-
tial k2(1− n2(r)) and the repulsive centrifugal potential
m2/r2. It has the form of a half-triangular potential well
as shown in Fig. 4.

By comparison to quantum mechanics, a noteworthy
difference is that the effective potential function depends
on the energy E = k2, whereas in quantum mechanics
the potential is usually a fixed function, independent of
the energy. As a consequence, the depth of the well gets
deeper when k raised whereas in quantum mechanics the
depth of the well remains fixed as the energy of the par-
ticle changes.

By using the substitution ζ = ln(kr), equation (B2)
reads

u′′m(ζ) + q2
m(ζ)um(ζ) = 0 (B3)

where q2
m(r) = r2(E − Veff(r)) can be interpreted as an

effective wave-number. The effective wave number q2
m

has two zeros, the classical turning points, r1 ∈]0, R] and
r2 ∈ [R,+∞[. They are found to be r1 = m/(kn0) and
r2 = m/k. They define two regions: the classically for-
bidden one [0, r1[∪]R, r2[ where q2

m < 0 and the classically
allowed one [r1, R] ∪ [r2,+∞[ where q2

m > 0.

In the quantum mechanical analogy a particle can tun-
nel through the classically forbidden region ]R, r2[ into
the classically allowed one. For certain values of the en-
ergy (corresponding to the resonances) the particle be-
comes temporally trapped in the well, oscillating back
and forth before finally tunneling back through the clas-
sically forbidden region to the outside region. Note that
the solutions to the Schrödinger equation (B2) are found
to be a linear combination of Bessel’s functions in the
form um(r) = C1Jm(nkr) + C2Ym(nkr) (where n = n0

if r < R and n = 1 if r > R) . It follows from the
properties of Bessel’s functions [1] that when nkr > m,
i.e. when q2

m > 0, the “classically allowed” solutions ex-
hibit an oscillatory behavior whereas when nkr < m, i.e.
when q2

m < 0, the “classically forbidden” solutions show
an exponential decaying behavior. Therefore, “classically
allowed” solutions exist whenever k2 exceeds the effective
potential Veff . This justifies the interpretation of Veff as
defining a well that separates the propagating solutions
inside and outside by a tunnel barrier.

As the energy E = k2 is reduced in value, the bot-
tom of the potential well will be reached and for some
value kmin of k the energy E will coincide with the bot-
tom Veff(R−) = limr↗R Veff(r) of the potential well. It is
found that kmin = m/(n0R). There is no solution below
the bottom of the well. On the contrary, as k is raised
in value, the energy E = k2 will eventually coincide with
the top Veff(R+) = limr↘R Veff(r) of the well for some

value kmax of k found to be kmax = m/R. Solutions
above the top of the well are generally not considered
to be resonances. Thus, we have obtained that the real
approximate values of the resonances are asymptotically
located in the range between m

n0R
and m

R . Note that the
tunnel barrier gets higher with increasing angular mo-
mentum m, which is a first indication that the whispering
gallery modes propagating close to the dielectric interface
have especially long lifetimes. If the refractive index n0

is changed, the barrier top Veff(R+) remains the same,
but the well bottom Veff(R−) grows deeper, so that the
lowest allowed k will give rise to a higher quality factor.
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