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Estimating the reliability of georeferenced lane markings for map-aided
localization

Anthony Welte1, Philippe Xu1, Philippe Bonnifait1, Clement Zinoune2

Abstract— Maps can greatly improve vehicle localization
using perception sensors that detect features georeferenced in
the map. This relies on two assumptions. Firstly, the detected
features and the elements of the map have to be correctly
associated. Secondly, the features of the map have to be
accurately referenced. In this paper, solutions regarding these
issues are presented. The case study of localization using a
camera detecting road markings is considered. A Kalman
smoothing process is used to obtain the best possible estimate of
the trajectory that enables to evaluate the reliability of markings
stored in the map. A likelihood maximization technique is used
to best associate the observed markings to those referenced
in the map. By using these two methods, map errors are
detected after a first passage in an area and can be mitigated
in later passes. Experimental results are reported to evaluate
the performance of this approach. It is shown that mapping
errors can be correctly handled.

I. INTRODUCTION

Map-aided localization has been a topic of research in
the robotics community for years. Maps can provide valu-
able information concerning the location of features within
the environment [13], [1]. They are particularly relevant
in autonomous driving applications since high accuracy is
required for such systems. The use of HD maps, maps con-
taining the accurate location of features of the environment,
has shown promising results in localization applications [10],
[3], [8].

By using perception sensors, features of the map can be
detected and used to localize the vehicle. One type of feature
particularly interesting for autonomous driving is lane mark-
ings. Most roads have lane markings or at least road edges.
Several works using LiDAR sensors have demonstrated the
interest of detecting such features for localization [4], [3].
More classically, cameras can be used for the same purpose.
A significant body of research using camera images exists
on the subject [10], [12], [8], [5].

In parallel, sensors such as smart cameras are more and
more present on commercial vehicles. These cameras can
provide measurements of lane markings for current driving
assistance systems such as lane departure warning, or lane
keeping in simple road conditions. Using such black-box
sensors for localization purposes can be challenging [11].
Indeed the information provided by such cameras is heavily
filtered which result in temporally correlated noises.

The methods mentioned above all suffer from two prob-
lems. The association of observations to map features can
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be difficult when the localization is not accurate. Moreover,
ambiguities can occur in the association process especially
when detailed maps are used. Another issue is that the map
has to be accurate. Even though roads do not change much
from one day to the next, they can change when markings are
repainted or when road work is done [7], [6]. For that reason,
autonomous systems require ways to detect changes in the
environment that lead part of the map to become unreliable.
Statistical tests have also been used to detect errors in the
map [15]. Other works consider the map as imprecise and
aim to improve it [2].

In this paper, a method to localize a vehicle using map
markings detected by a smart camera is presented. Our
main contribution relies on the way to detect and account
for map errors using Kalman smoothing and a likelihood
maximization based marking association. The map marking
locations are modeled using Gaussian distributions and like-
lihood maximization is used to best match the observations
to the map. The map markings can then be associated with
each observation and used in a Kalman filter to estimate the
current vehicle state.

In section II, the camera observations and the structure of
the map is first introduced. Then in section III, our method
to use lane markings for localization is presented. Section IV
details how the reliability of the markings is computed and
taken into account. Finally, section V shows results obtained
using an experimental vehicle on public roads.

II. LANE MARKING OBSERVATIONS AND HD MAP

A. Lane marking observations

The camera considered in this paper provides up to four
lane marking detections at a time. At every measurement
epoch k, it provides for each detected marking j, a measure-
ment of the distance Cj

k from the observed marking to the
vehicle longitudinal axis as shown in Figure 1.

The lane markings can be considered locally as straight
lines. Therefore for each detection, a new lateral constraint
can be applied on the state. This constraint is implemented
through a Kalman filter estimating the two-dimensional pose
xk =

[
xk yk ψk

]T
(East, North, Heading) of the

vehicle. For each observation, a simple observation model
can be conceived using the following observation matrix:

Hk =
[

sin (ψk) − cos (ψk) 0
]

. (1)

The innovation of the filter ỹk is then the difference
between the observation Cj

k and the expected observation
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Fig. 1. Schema of the vehicle and the camera measurements. The camera
observes both markings and road edges.

Dm (xk) (lateral distance between the state and the associ-
ated marking m),

ỹk = Cj
k −Dm (xk) . (2)

The camera tracks and filters the detections internally
which results in measurement errors that are correlated from
one epoch to the next. To avoid fusing observations with
correlated noise, the fusion using the camera measurements
is performed at a lower frequency than the observations
are received (in our experiments a camera update is only
performed every 0.5 second even though the camera provides
observations at 36 Hz). The frequency has been chosen to en-
sure that the measurements are not correlated while enabling
frequent enough updates to avoid drift. The measurements
are saved in a buffer and will be used as a batch to perform
the association and the fusion. This is detailed in section III.

B. HD map

To be able to use the marking observations, the locations
of the markings need to be known. For that purpose, a map
that accurately references the location of markings in the
experimentation area is used. The markings are defined as
a series of points forming a polyline. The map also stores
road edges and curbs. This makes associating observations
with the map marking harder since these elements are usually
close to each other and can be misclassified by the camera.

III. LOCALIZATION USING LANE MARKINGS

A. Observations and map association

Associating an observed marking with a map marking is
often done using the smallest distance between observation
and map [10], [11]. This method is very reliant on the
accuracy of the state estimate. This increasingly becomes an
issue as maps become more detailed, increasing the number
of potential matches and therefore the matching ambiguities.

For that reason, the association is performed in two steps.
The first step is to find the transformation to apply to the
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Fig. 2. Cross-section representing the steps used to associate observations
with markings. The top row illustrates the map and the true vehicle position.
The middle row shows the measurement position relative to the state.
The last row shows the result after likelihood maximization where the
associations (dashed lines) are selected.

observations so that they best overlap the map. Then, the
observations can be associated with a marking by finding
the closest marking after the transformation. This process is
illustrated in Figure 2.

1) Lane markings observations: As mentioned previ-
ously, the marking observations are saved in a buffer and
used as a batch. Therefore, at epoch k, when the camera
observations are used in the filter, a set of observations{
Cj

i

}
j∈tracks,i∈Jk−S,kK

is available, where tracks is the list

of tracks observed since the last camera update and S is the
size of the buffer.

The first step is to convert these measurements to points
using the estimated state of the vehicle. For each measure-
ment, the two-dimensional points they correspond to are
computed in the global frame using the following equation:X

j
i = x̂i + lc · cos

(
ψ̂i

)
− Cj

i · sin
(
ψ̂i

)
Y j
i = ŷi + lc · sin

(
ψ̂i

)
+ Cj

i · cos
(
ψ̂i

) , (3)

where lc is the distance between the vehicle frame and the
camera frame, and x̂i, ŷi, ψ̂i are respectively the estimated
east and north coordinates and heading at the time i of the
observations.

We therefore have a list of points{[
Xj

i Y j
i

]T}
j∈tracks,i∈Jk−S,kK

corresponding to detections

of multiple lane markings. These points are relative to the
global reference frame. To simplify the rest of the
computation, both the map and the observed points
are moved into the vehicle frame which is positioned
and oriented based on the predicted state x̂k|k−1 (state
at which the estimation using the lanes observation is
performed). In the rest of this section, the observations in
this local frame are referenced using lower-case letters,{[
xji yji

]T}
j∈tracks,i∈Jk−S,kK

.

2) Transformation definition: To correctly associate the
observations to the map markings, an adjustment step is
first performed to best overlap the measurements and the
map. Since a two-dimensional case is considered, to find
the overlap three components have to be estimated: a two-
dimensional translation and a rotation. However, since lane
markings can only be properly detected in relatively straight



lines, the longitudinal translation is hard to estimate. Hence,
it is assumed that it is null. Also, in this work, the estimation
of the vehicle heading is assumed to be fairly good since the
evolution model used is well calibrated [14]. Therefore, the
rotational component will not be estimated. Finally, only the
lateral shift to apply has to be found. Since the local frame
of the vehicle is used, it is the shift along the y axis that
needs to be estimated.

3) Map modeling: To find the transformation ∆ that
makes the observed points and the map best overlap, the
value ∆ that maximizes the likelihood of obtaining the set
of points

{[
xji yji + ∆

]T}
j∈tracks,i∈Jk−S,kK

with the set of

lane markings {m}m∈map is searched for.
The likelihood of measuring a point at the coordinates[
xji yji

]T
given a map (loaded around the vehicle to limit

its size) composed of M markings is

f

([
xji
yji

]
| map

)
=

f

([
xji
yji

]
| map,

[
xji
yji

]
↔ m1

)
f

([
xji
yji

]
↔ m1

)
+ . . .+

f

([
xji
yji

]
| map,

[
xji
yji

]
↔ mM

)
f

([
xji
yji

]
↔ mM

)
+ C, (4)

where
[
xji yji

]T ↔ m means that the observation[
xji yji

]T
corresponds to the marking m, and C is a

constant used to account for the case where the observation
does not correspond to any known marking.

Since no prior information is available as to which
marking a particular observation is associated with,
f
([

xji yji
]T ↔ m

)
is considered identical for each ob-

servation and marking and equal to 1/M+1 (C is also taken
equal to 1/M+1).

In the rest of this paper

f

([
xji

yji + ∆

]
| map,

[
xji

yji + ∆

]
↔ m

)
is written

as Li,j,m (∆) to lighten equations. Li,j,m is modeled as a
Gaussian distribution centered on the marking and spreading
along the y axis. Hence, for a marking m the likelihood of
measuring the point

[
xji yji + ∆

]T
associated with the

marking m is

Li,j,m (∆) =
1√

2πσ2
exp

−
(
yji + ∆− myji

)2

2σ2

 , (5)

where myji is the projection along the y axis of the obser-
vation

[
xji yji

]T
on the marking m (this is illustrated in

Figure 3), and σ2 is the variance representing the combined
uncertainty of the marking (σ2

m), the measurement (σ2
i,j), and

estimated state (σ2
lat), see equation (6).

σ2 = σ2
m + σ2

i,j + σ2
lat . (6)
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Fig. 3. Representation of the observation buffer and its projection on the
lane marking m. In orange is displayed the observed track j, in black the
map marking and projections of the observations.

The map variance σ2
m corresponds to the uncertainty of

the marking considered (equal to 0 since all markings are
initially assumed as correct), σ2

i,j stands for the uncertainty
of the measurement and σ2

lat is the lateral uncertainty of the
state estimate.

The likelihood of having a lane marking detection at
the point

[
xji yji

]T
with a map having multiple lane

markings is

Li,j (∆) =
1

M + 1

( ∑
m∈map

Li,j,m (∆) + 1

)
. (7)

Therefore, the likelihood of detecting the list of points{[
xji

yji + ∆

]}
j∈tracks,i∈Jk−S,kK

with the lane markings

contained in map is

L (∆) =
∏

j∈tracks,
i∈Jk−S,kK

Li,j (∆) (8)

=
∏

j∈tracks,
i∈Jk−S,kK

(
1

M + 1

( ∑
m∈map

Li,j,m (∆) + 1

))
.

(9)

The best transformation corresponds to the value ∆ that
maximizes the log-likelihood, thus

∆̂ = arg max
∆

(log (L (∆))) (10)

= arg max
∆

 ∑
j∈tracks,
i∈Jk−S,kK

log (Li,j (∆))

 . (11)

4) Likelihood maximization: To solve this problem a
gradient descent technique is used. The maximum of the
function

∑
j∈tracks,
i∈Jk−S,kK

log (Li,j (∆)) is found by iteratively

following the direction of its gradient. This method converges
after a few iterations, and so more advanced resolution tech-
niques are unnecessary. The transformation ∆ is initialized
at 0. At each iteration, ∆ is increased by

γ · d (logL)

d∆
(∆) = γ ×

∑
j∈tracks,
i∈Jk−S,kK

∑
m∈map

dLi,j,m

d∆ (∆)∑
m∈map Li,j,m (∆) + 1
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where γ is chosen empirically. This iterative process stops
when the update from an iteration to the next is smaller than
a given threshold η or when the process reaches a given
maximum number of iterations.

5) Association: Once ∆̂ has been found, each track can
be associated with a marking. To do so, for each track, the
likelihood that it matched a marking m is computed as

Lj,m =
∏

i∈Jk−S,kK

Li,j,m

(
∆̂
)

. (12)

The track j is associated to the marking for which this
likelihood is maximum. Therefore, the track j is associated
to the marking

m = arg max
m

Lj,m (13)

= arg max
m

∏
i∈Jk−S,kK

Li,j,m

(
∆̂
)

. (14)

6) Outliers rejection: The associations found previously
are not directly used to update the state. Several outlier
rejection steps are performed. Indeed, missing markings in
the map, missing observations or wrong observations can
create scenarios where the associations found previously are
not accurate.

In particular, in situations where the road only has a central
marking but the map has only the road edges referenced,
the camera will be able to detect the unreferenced marking.
Because the type of marking detected is not reliable enough,
the referenced road edges have to be considered as potential
association candidates. The likelihood maximization will
converge to overlap the detected central marking with the
mapped road edges (see Figure 4a). This can be easily solved
by discarding every association where ∆ is too high. In
the current implementation of the method, the threshold to
discard the markings is taken as a constant (the threshold
used in our experimentation is given in Table I):

|∆| > δ . (15)

Also, the previous method will result in every track being
associated with a marking regardless of their distance to one
another after the gradient descent. Since multiple markings
can be observed at once, the likelihood maximization can
accurately converge even if one marking has no correct

association. The method will converge so that most tracks
overlap a marking but it can happen that some observations
do not overlap any map markings either because the marking
is missing in the map or the camera detections are erroneous
(see Figure 4b). To account for this, a second threshold
is used to remove individual tracks if their residual rj
(compensated for ∆) is too high:

|rj (∆)| > ε (16)∣∣∣∣∣∣ 1S
∑

i∈Jk−S,kK

(
yji + ∆− myji

)∣∣∣∣∣∣ > ε (17)

7) Filtering: Now that the association between track and
map marking has been done and outliers have been rejected,
we can use these measurements in a Kalman filtering scheme
as explained in subsection II-A (a more detailed description
of the filtering scheme can be found in [14]). Here, the
measurements are the values yji of each track and the mea-
surements a priori are their projections myji . The innovation
used in the filter for a track j can therefore be computed as

ỹj
k =

1

S

∑
i∈Jk−S,kK

(
yji −

myji

)
. (18)

The measurement uncertainty of the camera has been
estimated by computing the observed marking position using
the ground truth and associating it to the closest map
marking (in the limit of 0.5 meter). Through this analysis we
concluded that the measurement uncertainty of the camera
can be modeled by a zero-mean Gaussian distribution with

variance σ2
i,j =

(
0.1 · yji

)2

(in m2). The noise model used
in the filter also needs to account for the mapping uncertainty.
The total variance considered in the estimator is therefore,

σ2 = σ2
m + σ2

i,j . (19)

IV. MAP RELIABILITY ESTIMATION

Even though HD maps are supposed to contain data with
centimeter level accuracy, that can only be guaranteed the day
of the mapping. Indeed, lane markings can be redrawn and
road work can temporarily affect the lane boundaries [7], [6].
This may lead to a slight shift of the markings location. This
result with observation residuals that are not sufficiently high
to be detected as outliers and lead to a bias in the filtering.

For that reason, it is essential to have a way to detect
changes in the map and be able to account for them. This
section describes our approach to solve this issue.

In order to evaluate the lane markings reliability, the
observation residuals are used. This approach is only viable
if the state of the vehicle is estimated accurately, so that the
residuals are mainly affected by bad mapping or observa-
tions. To do so a Kalman smoothing approach is used.

A. Smoothing

First, the state of the vehicle has to be accurately esti-
mated. To achieve this, a Kalman smoothing technique [9] is



used. During the Kalman filtering process the filtered states{
x̂k|k

}
k∈J0,NK and covariance matrices

{
Pk|k

}
k∈J0,NK, as

well as the predicted states
{
x̂k|k−1

}
k∈J1,NK and covariance

matrices
{
Pk|k−1

}
k∈J1,NK are recorded to be used for the

smoothing (the observed tracks and their associated map
markings are also recorded to compute the residuals). The
smoothed states

{
x̂k|N

}
k∈J0,NK can then be computed from

epoch N − 1 to 0 as such,

x̂k|N = x̂k|k + Jk

(
x̂k+1|N − x̂k+1|k

)
, (20)

P k|N = P k|k + Jk

(
P k+1|N − P k+1|k

)
JT

k , (21)

where
Jk = P k|kF

T
k+1P

−1
k+1|k. (22)

and F k is the evolution matrix of the system.
Using the smoothed states

{
x̂k|N

}
k∈J0,NK the lane obser-

vation points
{[

xji yji
]}

j∈tracks,i∈Jk−S,kK
are computed

for every observation of every track. The residuals rj (0)
are then computed and stored in individual arrays for each
map marking. For each marking id m, a list of residuals
{rj}j∈J0,MmK is therefore obtained (where Mm is the number
of tracks associated to marking m).

B. Reliability evaluation

To account for a map marking inaccuracy, its weight in
the filtering process is changed by adapting its variance.
The variance used for a map marking in equation (6) and
equation (19) is σ2

m. When no information on a marking
exists, it is assumed accurate and has a variance of 0.0.
If the marking is found to be unreliable it will instead be
attributed a variance of σ2

bad (chosen at 1 m2). The variance
of a marking varies between these two values based on a
factor pm ∈ [0, 1] as follows:

σ2 = pm · σ2
m + (1− pm) · σ2

bad + σ2
i . (23)

The factor pm is chosen so that when r2
j = 0.0, the factor

tends to 1 and when r2
j → +∞, the factor tends to 0.0 as

illustrated in Figure 5. An exponential function is chosen for
this purpose:

pm = exp

(
−
r2
j

α2

)
(24)

where α is a tuning parameter affecting the size of the errors
to consider.

V. EXPERIMENTAL RESULTS

A. Experimental setup

Our approach has been evaluated using an experimental
vehicle (Renault ZOE) of the laboratory. The vehicle was
equipped with a Novatel SPAN-CPT system which computed
RTK positioning loosely coupled with a high accuracy IMU.
This system is used as ground truth to evaluate our approach.
Through the vehicle CAN bus were available: four wheel
encoders, a gyro and the steering wheel angle. These were
used for the odometric estimation [14]. The vehicle was
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Fig. 5. Attribution of the reliability pm based on r2j . The top row shows
the observations (orange dots) relative to the smoothed state. The residuals
between observations and the map (black dots) are used to compute the
reliability.

Fig. 6. Experimental vehicle of the Heudiasyc laboratory used in the
experiments.

also equipped with a Mobileye EyeQ3 smart camera which
provided up to four lane marking observations at a time. The
sensors were interfaced using the ROS1 framework. It is the
recording and replay feature of this framework that has been
used in the following tests.

The experiments were conducted in the city of Rambouil-
let, France. The path along which the algorithm has been
tested is 2 km long and includes several straight lines and
intersections including roundabouts. Moreover, it contains a
200 m long section where the central map marking is inac-
curately localized. Two recordings have been done following
this path: one in the morning and one in the afternoon, under
similar lighting conditions.

The buffer size chosen for these experiments is 0.5 second,
the other parameters of the algorithm are given in Table I.

1Robot Operating System: http://www.ros.org/

TABLE I
PARAMETERS USED IN THE ALGORITHM

γ δ ε η α
0.2 (unitless) 1.0 m 0.5 m 0.001 m 0.3 m



TABLE II
NUMBER OF WRONG AND CORRECT ASSOCIATIONS

Wrong Correct Proportion
Our method 66 133 67%

Without finding the overlap 84 112 57%

B. Association between observations and map markings

To evaluate our method for associating observations with
lane markings, the associations using the ground truth state,
based on closest distance have been used as true associations.
The same was done without the likelihood maximization
step to provide a point of comparison. Only the results for
the associations that have not been rejected in the outliers
rejection step are considered.

This test is performed on a particularly challenging section
of road. Both on the right and left side of the road, several
markings are referenced in the map separated by less than
0.3 meter. The results are presented in Table II.

The distance between markings in the map having the
same order of magnitude as the sensor noise, the number
of failed association is quite high in both cases. The re-
sults, however, show that using likelihood maximization, the
matching accuracy is improved in such difficult situations.

C. Reliability evaluation

The reliability of the map markings has been evaluated
using the first recording. Three markings of the map used in
these experiments are known to be incorrectly located. This
error is on a straight road oriented north-south and concerns
the marking separating both lanes. The actual marking is
located roughly 0.5 meter west of the mapped marking. To
our knowledge, this is the only marking that is erroneous
along the testing path.

Some GNSS measurements are added to the filter every
second to avoid drift in intersections. This enables us to
complete the full trajectory without drifting out and therefore
been able to evaluate the markings using data going to the
end of the trajectory and coming back to the initial position.

The result of the reliability evaluation shows that most
markings have been assigned a reliability close to 1. Also the
erroneous markings have been correctly assigned a reliability
close to 0 as Figure 7 shows. The histogram of the values
of pm is given in Figure 8. It can be seen that on the overall
trajectory several other map markings have been attributed a
low reliability. This can be explained either by sensor errors
or by the small number of samples used, in particular on
higher speed roads.

D. Localization

The accuracy of the localization is evaluated using the sec-
ond recording. To evaluate the method, the ROS framework
is used. The sensor data have been recorded in Rambouillet
and can be replayed to test a program. The replay feature of
ROS is not perfect. In particular, the small timing differences
can appear and slightly affect the final result. This is due to

Fig. 7. Representation of marking reliability. (black uncategorized, green
most reliable, red least reliable)

Fig. 8. Distribution of the reliability factor pm.

the way ROS handles the transmission of messages between
programs. It uses a network based architecture which makes
it prone to transmission delays. Hence, a program tested with
the same data several times will not produce the exact same
result. This could make it hard to interpret the results. To
circumvent this issue, the method using the reliability factor
and the method that does not have been run multiple times
with the same dataset. The result of each run is averaged to
limit the effect of the timing differences. The final results
are presented in Figure 9.

For these tests, no GNSS was used in the estimation
process. This has been done to avoid that the GNSS mea-
surements compensate for the error in the map and mask the
effect of using the reliability factor. The system, therefore,
estimates the position using only the dead-reckoning sensors
and the lane markings measurements. The system has been
evaluated on the portion of the trajectory before the first
roundabout since without GNSS it sometimes drifts out of
it.



Fig. 9. Localization cross-track error on a section of road where the map
is erroneous. The blue line is the error of an estimation assuming every
marking are equally accurate. The red line is the result of an estimation
weighting the markings based on the reliability factor.

The results show an improvement in the lateral localization
accuracy when using the reliability factor of about 0.12 meter
on average while traversing the area with the map error (see
Figure 9).

Also in the area where the map has no error the result of
using or not a reliability factor yields similar results.

VI. CONCLUSION

In this paper, a method to estimate the reliability of
map markings has been proposed. This enables to have
localization robust to erroneous mapping. Lateral accuracy
of less than 0.2 meter even with up to 0.5 meter errors on
one marking can be reached. In theory, to detect errors in
the map, one needs a ground truth localization which is
not reasonable in practice. However, by performing a first
run through the mapped environment and use a Kalman
smoothing scheme over the whole trajectory, estimates as
close to the true states as possible can be found. A likelihood
maximization based method is employed for associating the
observations to the map markings making the matching
process more robust. After this first run, a reliability estimate
for each marking is computed and can be used to mitigate
the weight of wrong mapping in the following runs.

ACKNOWLEDGMENT

This work has been carried out within SIVALab, a shared
laboratory between Renault and Heudiasyc (UTC/CNRS) and
in the framework of the Equipex ROBOTEX (ANR-10-EQPX-
44-01). It has been co-financed by the Hauts-de-France
region (ERDF grant) and Renault.

REFERENCES

[1] David Betaille and Rafael Toledo-Moreo. Creating Enhanced Maps
for Lane-Level Vehicle Navigation. IEEE Transactions on Intelligent
Transportation Systems, 11(4):786–798, dec 2010.

[2] L. Delobel, R. AufrÃšre, C. Debain, R. Chapuis, and T. Chateau.
A real-time map refinement method using a multi-sensor localization
framework. IEEE Transactions on Intelligent Transportation Systems,
20(5):1644–1658, May 2019.

[3] F. Ghallabi, F. Nashashibi, G. El-Haj-Shhade, and M. Mittet. Lidar-
based lane marking detection for vehicle positioning in an hd map. In
21st International Conference on Intelligent Transportation Systems
(ITSC), pages 2209–2214, Nov 2018.

[4] A. Hata and D. Wolf. Road marking detection using lidar reflective
intensity data and its application to vehicle localization. In 17th
International IEEE Conference on Intelligent Transportation Systems
(ITSC), pages 584–589, Oct 2014.

[5] Isaac Miller, Mark Campbell, and Dan Huttenlocher. Map-aided
localization in sparse global positioning system environments using
vision and particle filtering. Journal of Field Robotics, 28(5):619–
643, 2011.

[6] T. T. Nguyen, J. Spehr, M. Uhlemann, S. Zug, and R. Kruse. Learning
of lane information reliability for intelligent vehicles. In IEEE
International Conference on Multisensor Fusion and Integration for
Intelligent Systems (MFI), pages 142–147, Sep. 2016.

[7] J. Pauls, T. Strauss, C. Hasberg, M. Lauer, and C. Stiller. Can
we trust our maps? an evaluation of road changes and a dataset
for map validation. In 21st International Conference on Intelligent
Transportation Systems (ITSC), pages 2639–2644, Nov 2018.

[8] F. Poggenhans, N. O. Salscheider, and C. Stiller. Precise localization in
high-definition road maps for urban regions. In IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS), pages 2167–
2174, Oct 2018.

[9] H. E. Rauch, C. T. Striebel, and F. Tung. Maximum likelihood
estimates of linear dynamic systems. AIAA Journal, 3(8):1445–1450,
August 1965.

[10] M. Schreiber, C. Knöppel, and U. Franke. Laneloc: Lane marking
based localization using highly accurate maps. In IEEE Intelligent
Vehicles Symposium (IV), pages 449–454, June 2013.

[11] Zui Tao, Philippe Bonnifait, Vincent Frémont, Javier Ibañez-Guzmán,
and Stéphane Bonnet. Road-centred map-aided localization for driver-
less cars using single-frequency gnss receivers. Journal of Field
Robotics, 34(5):1010–1033, 2017.

[12] R. P. D. Vivacqua, M. Bertozzi, P. Cerri, F. N. Martins, and R. F.
Vassallo. Self-localization based on visual lane marking maps: An ac-
curate low-cost approach for autonomous driving. IEEE Transactions
on Intelligent Transportation Systems, 19(2):582–597, Feb 2018.

[13] L. Wei, C. Cappelle, and Y. Ruichek. Horizontal/vertical lrfs and
gis maps aided vehicle localization in urban environment. In 16th
International IEEE Conference on Intelligent Transportation Systems
(ITSC 2013), pages 809–814, Oct 2013.

[14] A. Welte, P. Xu, and P. Bonnifait. Four-wheeled dead-reckoning model
calibration using rts smoothing. In IEEE International Conference
on Robotics and Automation (ICRA), volume to appear at Montreal,
Canada in May 2019, 2019.

[15] Clément Zinoune, Philippe Bonnifait, and Javier Ibañez-Guzmán. A
sequential test for autonomous localisation of map errors for driving
assistance systems. IEEE Transactions on Intelligent Transportation
Systems, pages 1377–1382, September 2012.


