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Periodic event-triggered control for nonlinear networked control systems

Periodic event-triggered control (PETC) is an appealing paradigm for the implementation of controllers on platforms with limited communication resources, a typical example being networked control systems. In PETC, transmissions over the communication channel are triggered by an event generator, which depends solely on the available plant and controller data, and is only evaluated at given sampling instants to enable its digital implementation. In this paper, we consider the general scenario where the controller communicates with the plant via multiple decoupled networks. Each network may contain multiple nodes, in which case a dedicated protocol is used to schedule transmissions among these nodes. The transmission instants over the networks are asynchronous and generated by local event generators. At given sampling instants, the local event generator evaluates a rule, which only involves the measurements and the control inputs available locally, to decide whether a transmission is needed over the considered network. Following the emulation approach, we show how to design the local triggering generators to ensure input-to-state stability and Lp-stability for the overall system based on a continuous-time output feedback controller that robustly stabilizes the network-free system. The method is applied to a class of Lipschitz nonlinear systems, for which we formulate the design conditions as linear matrix inequalities. The effectiveness of the scheme is illustrated via simulations of a nonlinear example.

I. INTRODUCTION

N Etworked control systems (NCS) refer to systems in which the plant and the controller communicate via networks. Integrating networks into control systems, compared with the traditional dedicated point-to-point (wired) links, has major advantages like lower cost, reduced weight and power, simpler installation and maintenance, and higher reliability [START_REF] Walsh | Scheduling of networked control systems[END_REF]. Moreover, the NCS configuration is essential when the plant consists of many subsystems, which are physically distributed and interconnected to coordinate their tasks and achieve an overall objective, see their applications in smart grids, widearea systems or for systems with distributed sensors, actuators and controllers. A major challenge in NCS is to design control strategies which do not "overuse" the network, to limit the transmission delays and the occurrence of packet losses, which may destroy the desired closed-loop system properties. An attractive approach in this context is event-triggered control, which adapts the transmission instants based on the current state, input and/or output measurement of the plant, see [START_REF] Heemels | An introduction to eventtriggered and self-triggered control[END_REF] and the references therein. The idea of ETC is to use the network only when this is needed by generating transmissions whenever a state or output-dependent condition is satisfied. Most literature on ETC focuses on continuous event-triggered control (CETC), in the sense that the triggering condition is evaluated at all times, see, for instance, [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF]- [START_REF] Postoyan | A framework for the event-triggered stabilization of nonlinear systems[END_REF]. Although CETC may significantly reduce the number of transmissions compared with traditional periodic sampling, the continuous evaluation of the triggering condition causes issues when sensors are battery powered for mobility and/or flexibility reasons. Moreover, it is not even possible to evaluate triggering rules continuously when the implementation platform is digital. In this case, it is more natural to evaluate the triggering criterion at some discrete sampling instants, leading to periodic eventtriggered control (PETC), see [START_REF] Heemels | Periodic event-triggered control for linear systems[END_REF], [START_REF] Heemels | Periodic event-triggered control[END_REF].

Hybrid systems are commonly used to model CETC systems (e.g. [START_REF] Dolk | Output-based and decentralized dynamic event-triggered control with guaranteed Lp-gain performance and Zeno-freeness[END_REF], [START_REF] Postoyan | A framework for the event-triggered stabilization of nonlinear systems[END_REF], [START_REF] Abdelrahim | Stabilization of nonlinear systems using event-triggered output feedback controllers[END_REF], [START_REF] Abdelrahim | Robust eventtriggered output feedback controllers for nonlinear systems[END_REF]), as the plant and the controller are often described by continuous-time systems and transmissions are discrete events, which can be modeled by jumps. The generic results in [START_REF] Sanfelice | Lyapunov analysis of sampled-and-hold hybrid feedbacks[END_REF] about the sampled-and-hold implementations of hybrid controllers ensure that the emulation of a continuous event-triggered controller as a periodic eventtriggered controller still "works", if the sampling period is sufficiently small. To be more precise, the uniform global asymptotic stability of a compact set ensured by CETC is semiglobally and practically preserved for fast sampling by PETC. Unfortunately, these results do not provide exploitable explicit bounds on the sampling period. Furthermore, it is of interest to preserve global asymptotic stability properties in PETC, instead of semiglobal practical asymptotic stability. Works addressing these points have mostly been developed for systems with linear dynamics, see [START_REF] Heemels | Periodic event-triggered control for linear systems[END_REF], [START_REF] Chen | Periodic event-triggered state-feedback and outputfeedback control for linear systems[END_REF]- [START_REF] Braksmayer | Redesign of stabilizing discrete-time controllers to accommodate intermittent sampling[END_REF]. On the other hand, PETC results for nonlinear systems are scarce. In [START_REF] Heemels | Periodic event-triggered control[END_REF]Chapter 6.5] and [START_REF] Borgers | Periodic event-triggered control of nonlinear systems using overapproximation techniques[END_REF], it is explained how to convert general continuous state-feedback event-triggered controllers to periodic event-triggered ones, while (approximately) preserving the properties of the former. The work in [START_REF] Etienne | Periodic event-triggered observation and control for nonlinear Lipschitz systems using impulsive observers[END_REF] develops observer-based output-feedback controllers for a class of nonlinear Lipschitz systems and a practical stability property is ensured at the end. Another work is [START_REF] Escolástico | Design of periodic event-triggered control for polynomial systems: A delay system approach[END_REF], where output-feedback PETC scheme is studied to ensure global asymptotic stability for a class of polynomial nonlinear systems. Obviously, PETC for nonlinear systems is at its early stage and a lot remains to be done. In particular, there is a need for systematic design frameworks, which are flexible enough to cope with output feedbacks as well as exogenous disturbances. The primary aim of this paper is to address this challenge.

We study plants modeled by a continuous-time nonlinear system affected by exogenous disturbances and for which only some output is available for control. We proceed by emulation to design the periodic event-triggered controller. Thus, we first assume that we know an output feedback controller, which robustly stabilizes the plant in absence of communication constraints, in the sense that it either ensures an input-to-state stability or a L p stability property for the closed-loop system with respect to the exogenous disturbances as well as output and input noises. At this stage, any continuous-time design technique can be applied. We then implement the controller over networks. We investigate the scenario where multiple asynchronously operating networks are used to connect the controller to the plant: this is an additional novelty of this work. This setup is relevant, for instance, when one network ensures the communication from the sensors to the controller, and another one is used to connect the controller to the actuators. The sensors and the actuators are grouped into nodes, which are connected to a given network. The transmissions over each network are generated by a local triggering generator. The latter collects measurements and control inputs, which are locally available, at some sampling instants specific to the considered network (and not necessarily periodic), it evaluates a criterion and then decides whether a node needs to transmit its packet over this network. The transmitting node is selected according to the local scheduling rule, such as the Round-Robin (RR) or Try-Once-Discard (TOD) protocol considered in [START_REF] Walsh | Scheduling of networked control systems[END_REF], [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF]. To design the local triggering generators, we therefore have to define three elements: (i) the criterion; (ii) the sampling instants at which the criterion is evaluated; (iii) the scheduling rule. Regarding the scheduling rules, we require that they are uniformly globally asymptotically stable as characterized in [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF], which cover the RR, TOD and the sampled-data protocols. We also make assumptions on the robust stability of the original closed-loop system in the absence of network, which can be checked a priori. Note that imposing robust stability properties is required for any nonlinear control systems to be implementable in practice. Based on these assumptions, we provide the expression of the local triggering conditions as well as an explicit bound on the maximum allowable sampling periods (MASP), which are used to characterize the sampling instants. We actually show that there is a tradeoff between the MASP of each triggering generator and a parameter used to define the corresponding triggering condition.

The overall system is modeled as a hybrid system using the formalism of [START_REF] Cai | Characterizations of input-to-state stability for hybrid systems[END_REF], [START_REF] Goebel | Hybrid dynamical systems: Modeling, Stability, and Robustness[END_REF], for which a jump corresponds to a sampling instant of one local triggering generator. We then ensure an input-to-state stability or a L p -stability with respect to the exogenous disturbances, depending on the assumptions. These results lead to a uniform global asymptotic stability property in the absence of disturbances. The analysis relies on a novel hybrid Lyapunov function. We apply the results to a class of globally Lipschitz nonlinear systems and formulate the assumptions as linear matrix inequalites (LMIs). The obtained LMIs are always verified in the special cases when the nonlinearity only involves the measured output or for any stabilizable and detectable LTI systems. The latter case appears to be a contribution in its own right as it extends the centralized and state-feedback PETC for linear systems in [START_REF] Heemels | Periodic event-triggered control for linear systems[END_REF], [START_REF] Chen | Periodic event-triggered state-feedback and outputfeedback control for linear systems[END_REF] and the output-feedback PETC in [START_REF] Heemels | L 2 -gain analysis for a class of hybrid systems with applications to reset and event-triggered control: A lifting approach[END_REF] to decentralized implementations. Simulation results on a nonlinear system, which is not globally Lipschitz, are also provided.

The decentralized setup we investigate is similar to the one in [START_REF] Dolk | Output-based and decentralized dynamic event-triggered control with guaranteed Lp-gain performance and Zeno-freeness[END_REF] where continuous event-triggered controllers are synthesized. The fact that we consider PETC, as opposed to CETC, benefits for digital implementations, which leads to additional difficulties. Because the triggering rules are continuously evaluated in CETC, properties, which are essential to guarantee stability, are ensured at all times. This is no longer the case in PETC, as the triggering criteria are only checked at some sampling instants and may therefore be violated between two successive sampling instants. As a result, our approach requires a new hybrid model, a different set of assumptions as well as a novel hybrid Lyapunov function compared to [START_REF] Dolk | Output-based and decentralized dynamic event-triggered control with guaranteed Lp-gain performance and Zeno-freeness[END_REF]. Note that CETC as proposed in [START_REF] Dolk | Output-based and decentralized dynamic event-triggered control with guaranteed Lp-gain performance and Zeno-freeness[END_REF] relies on timeregularization, as the triggering criterion is evaluated continuously after a fixed waiting time has elapsed since the previous event. This is different from PETC as done in the paper, as the triggering conditions here are evaluated only at some sampling instants, which facilitates digital implementations. Compared to [START_REF] Heemels | Periodic event-triggered control[END_REF]Chapter 6.5] and [START_REF] Borgers | Periodic event-triggered control of nonlinear systems using overapproximation techniques[END_REF], the results are applicable for decentralized output-feedback control, tolerate the presence of exogenous disturbances and explicitly reveal a link between the triggering conditions and the sampling instants. Compared to [START_REF] Etienne | Periodic event-triggered observation and control for nonlinear Lipschitz systems using impulsive observers[END_REF], we consider exogenous disturbances, a decentralized scenario, we do not restrict our attention to nonlinear systems with a specific structure, and we ensure asymptotic stability in the absence of perturbations. Conference versions of this work can be found in [START_REF] Wang | Stabilization of nonlinear systems using state-feedback periodic event-triggered controllers[END_REF] and [START_REF]Periodic event-triggered output feedback control of nonlinear systems[END_REF]. In particular, a centralized fullstate feedback PETC is provided for disturbance-free systems in [START_REF] Wang | Stabilization of nonlinear systems using state-feedback periodic event-triggered controllers[END_REF], and a centralized output-feedback control for systems implemented on a single network is studied in [START_REF]Periodic event-triggered output feedback control of nonlinear systems[END_REF] where only input-to-state stability results are provided.

To summarize, our work leads to the following contributions on PETC: (i) a generic design framework of the triggering generators for nonlinear systems, which is applicable for output feedback control as well as in the presence of exogenous disturbances; (ii) decentralized PETC strategies over multiple asynchronously operating networks, for the first time to the best of our knowledge; (iii) a novel hybrid Lyapunov function is constructed to investigate stability properties of the system; (iv) even in the particular case of linear systems, the results extend those in [START_REF] Heemels | Periodic event-triggered control for linear systems[END_REF], [START_REF] Chen | Periodic event-triggered state-feedback and outputfeedback control for linear systems[END_REF], [START_REF] Heemels | L 2 -gain analysis for a class of hybrid systems with applications to reset and event-triggered control: A lifting approach[END_REF] to decentralized output-feedback control.

The rest of the paper is organized as follows. The notation and preliminaries on hybrid systems are given in Section II. We state the problem and present the hybrid model in Section III. The main results are provided in Section IV and applied to a class of globally Lipschitz nonlinear systems in Section V. Simulation results for a nonlinear system are given in Section VI and conclusions are provided in Section VII. The proofs are postponed to the appendix, where technical lemmas are also provided.

II. PRELIMINARIES Let

Z >0 := {1, 2, . . .}, Z ≥0 := {0, 1, 2, . . .}, R := (-∞, ∞) and R ≥0 := [0, ∞). For k 0 ∈ Z ≥0 and Γ ⊂ Z ≥0 , k 0 + Γ := {k 0 + k : k ∈ Γ}.
For sets A and B in a universe U , A \ B := {x ∈ U : x ∈ A and x ∈ B}. Let 0 n and 1 n , n ∈ Z >0 , be the n-dimensional vector for which elements are all zeros and ones, respectively. Let 0 n×n and I n×n be the square zero matrix and the identity matrix of dimension n, respectively. Let |x| denote the Euclidean norm of the vector x ∈ R n . Let λ min (P ) and λ max (P ) stand for the minimum and maximum eigenvalues of real symmetric matrix P , respectively. For x ∈ R n and y ∈ R m , (x, y) stands for [x T , y T ] T . Given a set A ⊂ R n and x ∈ R n , we define the distance of x to A as [START_REF] Goebel | Hybrid dynamical systems: Modeling, Stability, and Robustness[END_REF]. A function γ : R ≥0 → R ≥0 is of class-K, if it is continuous, zero at zero and strictly increasing and it

|x| A := inf y∈A |x -y|. A set-valued mapping M : R m ⇒ R n is outer semi-continuous when its graph {(y, z) ∈ R m × R n : z ∈ M (y)} is closed, see Lemma 5.10 in
is of class-K ∞ if, in addition, it is unbounded. A function γ : R ≥0 × R ≥0 → R ≥0 is of class-KL, if it is continuous, γ(•, r) is of class-K for each r ∈ R ≥0 , and, for each s ∈ R ≥0 , γ(s, •) is decreasing to zero. The notation (t , j ) ≤ (t, j) refers to t ≤ t and j ≤ j with t, t ∈ R ≥0 and j, j ∈ Z ≥0 . For x, v ∈ R n and locally Lipschitz U : R n → R, U • (x; v) is the Clarke derivative of the function U at x in the direction v, i.e. U • (x; v) := lim sup y→x,λ↓0 U (y + λv) -U (y)
λ . This notion will be useful as we will be working with locally Lipschitz Lyapunov functions, which are not differentiable everywhere. We omit the definitions on hybrid systems and refer the reader to [START_REF] Cai | Characterizations of input-to-state stability for hybrid systems[END_REF], [START_REF] Goebel | Hybrid dynamical systems: Modeling, Stability, and Robustness[END_REF].

III. PETC SETUP AND HYBRID MODEL

In this section, we introduce the setup and model the overall system as a hybrid system. We then formally state the problem.

A. PETC setup

We consider the plant model

ẋp = f p (x p , u, w) y = g p (x p ), (1) 
where x p ∈ R np is the state, w ∈ R nw is the exogenous disturbance, u ∈ R nu is the control input, and y ∈ R ny is the plant output. As already mentioned in the introduction, we use an emulation-based design approach. We therefore assume that we know an output-feedback controller

ẋc = f c (x c , y) u = g c (x c ) (2) 
with state x c ∈ R nc , which robustly stabilizes the origin of (1) in a sense made precise in Section IV-A. The functions f p and f c are assumed to be continuous, and g p and g c are assumed to be continuously differentiable and zero at zero. We consider the scenario where plant (1) and controller (2) communicate with each other via multiple networks, as illustrated in Figure 1. In particular, sensors and actuators are connected by N ∈ Z >0 independently and asynchronously operating networks N 1 , . . . , N N . Let N := {1, 2, . . . , N } and v := (y, u) ∈ R ny+nu . For simplicity of exposition, we assume v = (v 1 , . . . , v N ) (after reordering, if necessary), where v i , i ∈ N , corresponds to the sensors and the actuators whose signals are transmitted through network N i .

A local event-triggering generator generates the sequence of transmission instants for each network N i , i ∈ N , in the following manner. A triggering condition is evaluated at each sampling instant s i j , i ∈ N , j ∈ Z ≥0 , where

ε i ≤ s i j+1 -s i j ≤ T i (3) 
with T i > 0 the upper bound on the inter-sampling times and ε i ∈ (0, T i ] the minimum time between two successive evaluations of the triggering condition. Note that each network has its own sequence of sampling instants, which is not necessarily periodic or synchronized with the other networks. Consequently, the sequence of transmission instants of network N i , which we denote {t i κi } κi∈Z ≥0 , is a subsequence of {s i j } j∈Z ≥0 , and two successive transmissions are spaced by at least ε i units of time in view of (3), thereby avoiding the Zeno phenomenon. Parameter ε i reflects the minimum achievable transmission interval given by the hardware constraints. Note that ε i can be chosen arbitrarily in the set (0, T i ]. In fact, the stability and performance results below apply for any ε i ∈ (0, T i ]. In practical, ε i > 0 is determined by the hardware constraint. We assume that transmission delays and quantization effects are negligible. Each transmission generator consists of a triggering law and a scheduling rule. We need to introduce some variables before presenting those.

We denote by û the networked version of u available to plant (1). Similarly, controller (2) has access to ŷ, the networked version of y. We let v be the networked version of v and we partition it as (v 1 , . . . , vN ) in the same way as v is. Thus, vi , i ∈ N , is related to the network N i . Between two successive transmission instants, vi is governed by

vi = fvi (v, g p (x p ), g c (x c )), t ∈ s i j , s i j+1 , j ∈ Z ≥0 , i ∈ N , ( 4 
)
where fvi is the holding function corresponding to network N i and we define fv := fv1 , . . . , fv N . Zero-order-hold devices correspond to fv = 0 for instance. Other holding functions can also be envisioned, like model-based ones, see, for example, [START_REF] Lunze | A state-feedback approach to event-based control[END_REF]. Before modeling the dynamics of vi , i ∈ N , at each sampling instant s i j , we introduce the vector of networkinduced errors e i := vi -v i ∈ R ne i , where n ei ∈ Z >0 satisfies N i=1 n ei = n y +n u . Hence, n ei is the number of sensor/actuator signals associated with network N i .

At each sampling instant s i j , j ∈ Z ≥0 and i ∈ N , a function Υ i : R ne i × R ne i × Z ≥0 → R is evaluated, which depends on v i , vi and an auxiliary variable κ i , which counts the number of transmissions over network N i . The expression of Υ i will be given in Section IV-B. A transmission is triggered depending on the sign of Υ i , which leads to the update law for vi given by vi (s i j

+ ) ∈                v i (s i j ) + χ i (e i (s i j ), κ i (s i j )) when Υ i (e i (s i j ), v i (s i j ), κ i (s i j ))) > 0 vi (s i j ) when Υ i (e i (s i j ), v i (s i j ), κ i (s i j )) < 0 v(s i j ), v i (s i j ) + χ i (e i (s i j ), κ i (s i j )) when Υ i (e i (s i j ), v i (s i j ), κ i (s i j )) = 0, (5) 
where χ i models the scheduling protocol corresponding to network N i , such as the RR 1 , or TOD protocol 2 , or the socalled sampled-data protocol for which χ i = 0 when the network is composed of a single node. Expressions of χ i for various protocols are available in [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF], [START_REF] Nešić | Input-to-state stability of networked control systems[END_REF] 

) := (I -∆ i (κ i ))e i , where ∆ i (κ i ) = diag δ i 1 (κ i )I n i 1 ×n i 1 , δ i 2 (κ i )I n i 2 ×n i 2 , . . . , δ i i (κ i )I n i i ×n i i , δ i s (κ i ) = 1 for s ∈ {1, 2 
, . . . , i } when s -1 = κ i mod i and δ i s (κ i ) = 0 otherwise. Let i ∈ Z >0 be the number of nodes of network N i , and v i and vi are, respectively, partitioned as (v i,1 , . . . , v i, i ), and (v i,1 , . . . , vi, i ) (after reordering these, if needed), where v i,j and vi,j , j ∈ {1, • • • , i }, denote a group of sensors or/and actuators associated to the same node on N i . In view of (5), when Υ i e i (s i j ), v i (s i j ), κ i (s i j ) > 0, a transmission occurs over network N i at time s i j and the scheduling protocol grants access to the network to a single node, say the k-th 1 RR protocol assigns access to network in a predetermined and cyclic manner.

2 TOD protocol gives access to the node with the largest mismatch between the current signal value and the last transmitted one.

node with k ∈ {1, 2, . . . , i }. Then, vi,k (s i j

+ ) = v i,k (s i j ) and vi,m (s i j + ) = vi,m (s i j )
for all m ∈ {1, 2, . . . , i }\{k}. When Υ i e i (s i j ), v i (s i j ), κ i (s i j ) < 0, no transmission occurs, κ i and the complete vector vi remain unchanged. When Υ i e i (s i j ), v i (s i j ), κ i (s i j ) = 0, the model allows two possibilities: either a transmission occurs or not. This construction ensures that the jump map in ( 5) is outer semi-continuous, which is essential for the hybrid model presented below to be (nominally) well-posed, see Chapter 6 in [START_REF] Goebel | Hybrid dynamical systems: Modeling, Stability, and Robustness[END_REF] for more details. Note that the transmissions over the N networks are independently generated, as a result, several transmissions can occur at the same time, but over distinct networks.

We are almost ready to model the overall system. Before that, we need to write the dynamics of the network-induced errors. Let x := (x p , x c ) ∈ R nx and n x := n p +n c . We deduce from (5) that the variable e i has the following dynamics at jumps

e i (s i j + ) ∈ h i x(s i j ), e i (s i j ), κ i (s i j ) , (6) 
where

h i (x, e i , κ i ) := 1 -Γ i (e i , v i , κ i ) e i + Γ i (e i , v i , κ i )χ i (e i , κ i ), (7) 
and

Γ i : R ne i × R ne i × Z ≥0 ⇒ {0, 1} in (7)
indicates whether a transmission occurs. Based on the discussion above (5),

Γ i (e i , v i , κ i ) = {1} when Υ i (e i , v i , κ i ) > 0, which corresponds to a transmission and h i (x, e i , κ i ) = χ i (e i , κ i ) in this case. When Υ i (e i , v i , κ i ) < 0, Γ i (e i , v i , κ i ) = {0}
and this corresponds to no transmission and h i (x, e i , κ i ) = e i . When Υ i (e i , v i , κ i ) = 0, Γ i (e i , v i , κ i ) = {0, 1} covers the above two possibilities. In agreement with [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF], we call (6) the protocol map. We see from the right hand-side of ( 7) that h i depends on v i and not on the complete vector of x. Writing

v i = g vi (x), (8) 
since v i is composed of components of y and u, which depend on x in view of ( 1) and (2), we make h i depend on x and not v i in [START_REF] Postoyan | A framework for the event-triggered stabilization of nonlinear systems[END_REF], for the sake of convenience. We note that h i depends on the state x contrary to [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF], [START_REF] Heemels | Networked control systems with communication constraints: Tradeoffs between transmission intervals, delays and performance[END_REF], [START_REF] Nešić | Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems[END_REF], which will have important consequences on the stability property and analysis of the protocols compared to the latter references, see Remark 3 in Section IV-B.

B. Hybrid model

We model the overall system as a hybrid system using the formalism of [START_REF] Cai | Characterizations of input-to-state stability for hybrid systems[END_REF], [START_REF] Goebel | Hybrid dynamical systems: Modeling, Stability, and Robustness[END_REF] so that we can resort to the analytical tools of [START_REF] Cai | Characterizations of input-to-state stability for hybrid systems[END_REF], [START_REF] Goebel | Hybrid dynamical systems: Modeling, Stability, and Robustness[END_REF] to study the stability properties of the system. We introduce for this purpose clock variables τ i ∈ R ≥0 for i ∈ N to keep track of the time elapsed since the last evaluation of the triggering criterion of network N i . Thus, τ i and κ i , the transmission counter of network N i , have the dynamics

τi = 1 κi = 0 when τ i ∈ [0, T i ] τ + i = 0 κ + i ∈ κ i + Γ i (e i , v i , κ i ) when τ i ∈ [ε i , T i ],
where Γ i is introduced after (7). Let τ := (τ 1 , . . . , τ N ) and κ := (κ 1 , . . . , κ N ). We model the overall closed-loop system as q = F (q, w)

q ∈ C q + ∈ G(q) q ∈ D, (9) 
where q := (x, e, κ, τ

) ∈ X := R nx × R ne × Z N × R N , C :=R nx × R ne × Z N ≥0 × T 1 × . . . × T N D := N i=1 D i D i :=R nx × R ne × Z N ≥0 × T 1 × . . . × T i-1 × [ε i , T i ] × T i+1 × . . . × T N , (10) 
and 9) is defined as, for q ∈ C, F (q, w) := (f (x, e, w), g(x, e, w), 0 N , 1 N ), where f (x, e, w) := (f p (x p , g c (x c ) + e u , w), f c (x c , g p (x p ) + e y )), g(x, e, w) := (g 1 (x, e, w), . . . , g N (x, e, w)), and for i ∈ N ,

T i := [0, T i ]. The mapping F in (
g i (x, e, w) := fvi (g vi (x) + e i , g vi (x)) -f vi (x, e, w) f vi (x, e, q) := ∂g vi ∂x f (x, e, w), (11) 
with f p , g p , f c , g c , fvi , g vi coming from ( 1), ( 2), ( 4) and ( 8), respectively. The set-valued mapping G is defined, for q ∈ X , as

G(q) := N i=1 G i (q) with G i (q) := (12)                       x H i (x, e, κ) κ + Γ i (e i , x, κ i )Λ i Λ i τ            when q ∈ D i ∅ when q / ∈ D i ,
where Λ i ∈ R N ×N and Λ i ∈ R N ×N are diagonal matrices, for the former the diagonal elements are 1 except the i-th one which is 0, and for the latter the diagonal elements are 0 except the i-th one which is 1. Hence,

Λ i + Λ i = I N ×N . Function H i : R nx × R ne × Z N ≥0 → R ne is defined as H i (
x, e, κ) := (e 1 , e 2 , . . . , e i-1 , h i (x, e i , κ i ), e i+1 , . . . , e N ), where h i comes from [START_REF] Postoyan | A framework for the event-triggered stabilization of nonlinear systems[END_REF]. The map G i describes how e jumps when a transmission occurs over network N i : e i is updated to h i (x, e i , κ i ), κ i is incremented to κ i + 1 when the local generator triggers a transmission, otherwise it keeps the same value, and τ i is always reset to 0 after a jump. The function G i keeps x, e j , κ j , τ j unchanged for all j ∈ N \ {i}. In model [START_REF] Heemels | Periodic event-triggered control[END_REF], simultaneous transmissions over different networks are modeled by successive jumps with no flow in between.

C. Problem statement

Our objective is to design the local triggering generators, namely Υ i and T i , i ∈ N , to ensure either input-to-state (ISS) or L p stability properties for system [START_REF] Heemels | Periodic event-triggered control[END_REF], as defined next.

Definition 1: Set S ⊂ X is input-to-state stable (ISS) for system [START_REF] Heemels | Periodic event-triggered control[END_REF] if there exist β ∈ KL and ψ ∈ K ∞ such that any solution pair (ϕ, w) satisfies 3 |ϕ(t, j)| S ≤ β(|ϕ(0, 0)| S , t + 3 See the definition of ||w||∞ in [START_REF] Cai | Characterizations of input-to-state stability for hybrid systems[END_REF]. j) + ψ(||w|| ∞ ) for all (t, j) ∈ dom ϕ. We say that S is exponentially-ISS with a linear gain when β(s 1 , s 2 ) = ks 1 exp(-cs 2 ) and ψ(s) = γs for some k, c, γ > 0 and for s 1 , s 2 , s ≥ 0.

We define L p -stability with respect to output z := η(x, w), which may correspond to y or not.

Definition 2: System ( 9) is L p -stable from w to z with respect to set S ⊂ X with gain less than or equal to θ, if there exists γ ∈ K ∞ such that any solution pair (ϕ, w) satisfies 4||z|| Lp ≤ γ(|ϕ(0, 0)| S ) + θ||w|| Lp .

IV. MAIN RESULTS

In this section, we first state the assumption we make on the closed-loop system (1)-( 2) and the scheduling rule, based on which we construct the triggering condition Υ i and the bound on T i , for i ∈ N . We then present the stability guarantees.

A. Assumptions

We assume that each e i -system in (9) satisfies the following properties.

Assumption 1: For each i ∈ N , there exist a locally Lipschitz function [START_REF] Walsh | Scheduling of networked control systems[END_REF] and L Wi ≥ 0 such that the following hold.

W i : R ne i × Z ≥0 → R ≥0 , a continuous function H i : R nx × R ne × R nw → R ≥0 , α Wi , α Wi ∈ K ∞ , ρ i ∈ [0,
(i) For any e i ∈ R ne i and

κ i ∈ Z ≥0 , α Wi (|e i |) ≤ W i (e i , κ i ) ≤ α Wi (|e i |). (ii) For any (e i , x, κ i ) ∈ R ne i × R nx × Z ≥0 , W i (χ i (e i , κ i ), κ i + 1) ≤ ρ i W i (e i , κ i ). (iii) For almost all e i ∈ R ne i , all κ i ∈ Z ≥0 and (x, w) ∈ R nx × R nw , ∂W i (e i , κ i ) ∂e i , g i (x, e, w) ≤ L Wi W i (e i , κ i ) + H i (
x, e, w) with g i coming from [START_REF] Abdelrahim | Robust eventtriggered output feedback controllers for nonlinear systems[END_REF].

Items (i) and (ii) are exclusively related to the scheduling protocol implemented on network N i . Indeed, these items state that the protocol is uniformly globally asymptotically stable, see Definition 1 in [START_REF] Nešić | Input-to-state stability of networked control systems[END_REF]. These conditions are always satisfied for the sampled-data case, RR and TOD protocols for which expressions of W i are available, see [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF]. Then given W i , item (iii) of Assumption 1 essentially requires that W i exponentially grows on flows. Such a property is natural, as the e i -system is typically unstable between two transmission instants. Item (iii) of Assumption 1 is always feasible when W i is globally Lipschitz in e i uniformly in κ i , and g i satisfies a linear growth condition for instance, see Remark 11 in [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF].

We assume that controller (2) has been designed to robustly stabilize system (1) in the following sense.

Assumption 2: There exist a locally Lipschitz function V :

R nx → R ≥0 , α V , α V , α W ∈ K ∞ , locally Lipschitz functions δ i : R ne i → R ≥0 satisfying δ i (0) = 0, continuous functions α V : R nx ×R ne ×R nw → R and J i : R nx ×R ne ×R nw → R ≥0 , γ i > 0, L δi ∈ R, i ∈ N , such that the following hold. (i) For all x ∈ R nx , α V (|x|) ≤ V (x) ≤ α V (|x|). (ii) For almost all x ∈ R nx and all (e, w) ∈ R ne × R nw , ∇V (x), f (x, e, w) ≤ -α V (x, e, w) + N i=1 γ 2 i W 2 i (e i , κ i ) -H 2 i (x, e, w) -J i (x, e, w) -δ i (v i ) ,
where W i and H i come from Assumption 1. (iii) For almost all x ∈ R nx and all (e, w)

∈ R ne × R nw , ∇δ i (v i ), f vi (x, e, w) ≤ L δi δ i (v i ) + H 2 i (
x, e, w) + J i (x, e, w) with f vi coming from [START_REF] Abdelrahim | Robust eventtriggered output feedback controllers for nonlinear systems[END_REF].

Assumption 2 states properties of the closed-loop system (1)-( 2) and it neither requires any knowledge on the network, nor it implies the stability of [START_REF] Heemels | Periodic event-triggered control[END_REF]. Indeed, variable e is here understood as a generic perturbation affecting (y, u). To verify whether Assumption 2 holds, we simply have to take the Lyapunov function V used to ensure the stability of ( 1)-( 2) in the absence of network, and study whether the required conditions are verified.

Function α V in Assumption 2 will be taken in the following

as α V (x, e, w) = α V (|x|) + α W (|e|) - N i=1 V,i (|w|) for some α V , α W , V,i ∈ K ∞ , i ∈ N ,
when investigating ISS, and as α V (x, e, w) = -µ(θ p |w| p -|z| p ) with µ > 0, θ ≥ 0, when studying L p -stability. Item (ii) of Assumption 2 means that either the origin of ( 1)-( 2) is ISS with respect to input (e, w) or ( 1)-( 2) is L p -stable from w to z. That type of conditions are natural as we approach the problem by emulation, that is, the original closed-loop system needs to satisfy some robustness properties to cope with the errors induced by the network, as does any nonlinear controller, which is implemented in practice. But again, this does not mean that (9) satisfies desired stability properties because the e-system is typically unstable. Similar assumptions as item (ii) of Assumption 2 are often made in the literature on NCS, see, e.g., [START_REF] Dolk | Output-based and decentralized dynamic event-triggered control with guaranteed Lp-gain performance and Zeno-freeness[END_REF], [START_REF] Abdelrahim | Stabilization of nonlinear systems using event-triggered output feedback controllers[END_REF], [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF], where examples of systems satisfying these conditions are provided. The functions δ i in Assumption 2 will be used to define the local event triggering condition. Item (iii) is an exponential growth condition of δ i on flows, where the function J i is used to collect the redundant terms when we bound the norm of the derivative of

δ i (v i ) with L δi δ i (v i ) + H 2 i (
x, e, w). We show in Section V how to satisfy Assumptions 1 and 2 for a class of globally Lipschitz systems. A nonlinear example, which is not globally Lipschitz and satisfies all the required conditions, is provided in Section VI.

Remark 1: Assumptions 1-2 may be verified by systems subject to model uncertainties. Indeed, these Lyapunov-like conditions do not necessarily require a precise model of the plant to checked, as will be illustrated in Section VI.

Remark 2: Assumptions 1-2 impose conditions on the class of systems to which the results apply. It is possible to relax these assumptions to only hold in a given compact set. In this case, the forthcoming results can be adapted to derive local stability properties, at the price of more technicalities, which we do not present in order not to blur the main message of the paper.

B. Local triggering generators

We exploit Assumptions 1-2 to design the triggering generators and

T i , i ∈ N . We define Υ i in (5) as, for v i , e i ∈ R ne i and κ i ∈ Z ≥0 , Υ i (e i , v i , κ i ) = γ i W 2 i (e i , κ i ) -λ i ρ i δ i (v i ), (13) 
where

ρ i := max ρ i , γ i λ i 1 -λ i L δi
≥ 0 with ρ i and W i coming from Assumption 1, L δi ∈ R, γ i > 0, δ i coming from Assumption 2, and λ i ≥ 0 is a design parameter. The triggering condition ( 13) is similar to those proposed in [START_REF] Tabuada | Event-triggered real-time scheduling of stabilizing control tasks[END_REF], [START_REF] Dolk | Output-based and decentralized dynamic event-triggered control with guaranteed Lp-gain performance and Zeno-freeness[END_REF], [START_REF] Abdelrahim | Stabilization of nonlinear systems using event-triggered output feedback controllers[END_REF], [START_REF] Abdelrahim | Robust eventtriggered output feedback controllers for nonlinear systems[END_REF] for CETC in different contexts. Note that ρ i in (13) depends on ρ i and thus on the scheduling protocol.

The mapping Υ i only depends on the local variables e i , v i and κ i , and not the whole state q, which is essential for the envisioned setup and for the decentralized implementation of the triggering rule.

We select λ i in ( 13) such that λ i < λ * i , where λ * i is defined as

λ * i :=    1 when L δi ≤ -γ i min 1, 1 L δi + γ i when L δi > -γ i . (14) 
Given λ i ∈ [0, λ * i ), we select T i defined after ( 9) such that T i < T MASP,i (λ i ), where T MASP,i (λ i ) is the maximum allowable sampling period (MASP) of network N i and is defined as

T MASP,i (λ i ) :=              1 L Wi r i arctan(ϑ i ), when γ i > L Wi 1 L Wi 1 -ρ i 1 + ρ i , when γ i = L Wi 1 L Wi r i arctanh(ϑ i ), when γ i < L Wi ( 15 
)
where ρ i is defined above,

r i := γ i L Wi 2 -1 , ϑ i := r i (1 -ρ i ) 2 ρ i 1+ρ i γi L W i -1 + 1 + ρ i
, L Wi ≥ 0 and γ i > 0 come respectively from Assumptions 1 and 2.

The bound in [START_REF] Selivanov | Event-triggered H∞ control: a switching approach[END_REF] depends on the triggering parameter λ i . More precisely, the bound is decreasing in λ i . In other words, the larger the λ i , the smaller T MASP,i (λ i ) and vice versa.

Remark 3: The local event-triggering condition in (13) ensures that the protocol equation ( 6) is input-to-state stable (ISS) with respect to v i , see Definition 5.3 in [START_REF] Tabbara | Input-output stability with input-to-state stable protocols for quantized and networked control systems[END_REF]. In particular, in view of the definition of Υ i in [START_REF] Chen | Periodic event-triggered state-feedback and outputfeedback control for linear systems[END_REF] and item (ii) of Assumption 1, a transmission is triggered when [START_REF] Walsh | Scheduling of networked control systems[END_REF], for any v i , e i ∈ R ne i . Although the actual protocol equation [START_REF] Wang | Event-triggering in distributed networked control systems[END_REF], which is implemented, is ISS, the scheduling rule itself, which is modeled by χ i and decides which nodes gets access to the network is uniformly globally asymptotically stable (UGAS) in view of items (i) and (ii) of Assumption 1, see the definition of UGAS protocols in Remark 7 of [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF].

W i (e i , κ i ) ≥ λ i ρ i δ i (v i )/γ i , which ensures that W i (χ i (e i , κ i ), κ i + 1) ≤ ρ i W i (e i , κ i ), where ρ i ∈ [0,
Remark 4: When λ i = 0, i ∈ N , the triggering function Υ i is always non-negative. Consequently, transmissions occur at every sampling instant according to [START_REF] Lunze | A state-feedback approach to event-based control[END_REF]. We then recover the time-triggered results of [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF], in particular the bound on the maximal allowable transmission interval (MATI) is the same when a single network is used and there are no disturbances, i.e. w = 0, as well as those in [START_REF] Nešić | Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems[END_REF] when the network consists of a single node.

C. Input-to-state stability

We are ready to state the next result about the input-to-state stability of system [START_REF] Heemels | Periodic event-triggered control[END_REF].

Theorem 1: Consider system (9) and suppose the following hold.

1) Assumption 1 holds with H i (x, e, w) = H i (x, e) +

Wi (|w|) for some continuous functions

H i : R nx × R ne → R ≥0 and Wi ∈ K ∞ , i ∈ N . 2) Assumption 2 holds with α V (x, e, w) = α V (|x|) + α W (|e|) - N i=1 V,i (|w|) for some α V , α W , V,i ∈ K ∞ , i ∈ N . 3) For each i ∈ N , let λ i ∈ [0, λ * i ) and T i ∈ [ε i , T MASP,i (λ i ))
, where λ * i and T MASP,i (λ i ) are defined in ( 14) and ( 15), respectively. Then, the set

A := {q ∈ C ∪ D : x = 0, e = 0, κ i ∈ Z ≥0 , τ i ∈ [0, T i ], i ∈ N } is ISS for system (9).
Theorem 1, whose proof is given in Appendix A, shows that set A is ISS for system (9). This implies that (i) x and e globally converge to a neighborhood of the origin, whose "size" depends on the norm of the disturbance w; (ii) the set A is uniformly globally asymptotically stable [22, Definition 3.6] when w = 0.

Remark 5: Theorem 1 relies on small-gain techniques. The general idea is that the x-system is assumed to satisfy an ISS property with respect to (w, W 1 (e 1 , κ 1 ), . . . , W N (e N , κ N )) on flows according to items (i)-(ii) of Assumption 2, and remains constant at jumps. On the other hand, Assumption 1 leads to an ISS property of the e-system with respect to (x, w) as well, as shown in Proposition 6 in [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF], thanks to the definition of the event generators. Then, by carefully selecting the triggering conditions and T i , the small gain condition apply and the desired result is obtained. While the connection with smallgain techniques is easier to see in the case where the controller is a state-feedback law and there is only one network as in [START_REF]Periodic event-triggered output feedback control of nonlinear systems[END_REF], the fact that output-feedback control is addressed and the decentralized scenario we investigate prevent us to directly apply existing hybrid small-gain results. That is the reason why we propose a completely novel hybrid Lyapunov construction in the proof of Theorem 1.

Tailored results can be derived from Theorem 1 either under stronger conditions or for more specific implementation setups. Thus, an exponential-ISS property is obtained by strengthening the conditions of Theorem 1 as stated next, whose proof follows directly from the proof of Theorem 1 and is therefore omitted.

Corollary 1: Consider system [START_REF] Heemels | Periodic event-triggered control[END_REF]. Suppose that items 1) and 2) of Theorem 1 are satisfied and there exist a Wi , a Wi , a V , a V , a V , a W > 0, i ∈ N , such that Assumptions 1 and 2, respectively, hold with

α Wi (s) = a Wi s, α Wi (s) = a Wi s, α V (s) = a V s 2 , α V (s) = a V s 2 , α V (s) = a V s 2 and α W (s) = a W s 2 for s ≥ 0.
Then, the set A defined in Theorem 1 is exponentially-ISS with a linear gain.

When a single network is used and the state of plant x p is available for control, i.e. y = x p in (1), we can relax Assumption 2 and modify the triggering condition. Since we consider only one network here, only one triggering generator is needed. We therefore use the notation Υ to define the triggering condition, and χ to denote the scheduling rule. As we need to specify the expressions of H i , J i in Assumptions 1 and 2 for this special case, we rewrite those conditions here as follows.

Assumption 3: There exist locally Lipschitz functions V :

R nx → R ≥0 and W : R ne × Z ≥0 → R ≥0 with V and W positive definite, W ∈ K ∞ , continuous function α V : R nx × R ne × R nw → R ≥0 , ρ ∈ [0, 1), a V , γ > 0, and L W , L V ≥ 0 such that the following hold. (i) For any (e, x, κ) ∈ R ne × R nx × Z ≥0 , W (χ(e, κ), κ + 1) ≤ ρW (e, κ). (ii) For almost all e ∈ R ne , all κ ∈ Z ≥0 and (x, w) ∈ R nx × R nw , ∂W (e, κ) ∂e , g(x, e, w) ≤ L W W (e, κ) + L V V (x) + W (|w|). (iii) For almost all x ∈ R nx and all (e, w) ∈ R ne × R nw , ∇V (x), f (x, e, w) ≤ -a V V (x) -α V (x, e, w) + γ 2 W 2 (e, κ).
We define the single triggering condition Υ, as for

(x, e) ∈ R nx × R ne and κ ∈ Z ≥0 , Υ(e, x, κ) = γW 2 (e, κ) -λρV (x), (16) 
where ρ := max ρ, γλ a V . We select λ such that λ < λ * with

λ * := min 1, a V γ . ( 17 
)
For each λ ∈ [0, λ * ), the MASP T MASP (λ) is defined as

T MASP (λ) :=              1 L W r arctan(ϑ), when γL V > L W , 1 L W 1 -ρ 1 + ρ , when γL V = L W , 1 L W r arctanh(ϑ), when γL V < L W , ( 18 
)
where ρ is defined below [START_REF] Braksmayer | Redesign of stabilizing discrete-time controllers to accommodate intermittent sampling[END_REF],

r := γL V L W √ a V 2 -1 , ϑ := r(1 -ρ) 2 ρ 1+ρ γ L W L 2 V +a V 2a V -1 + 1 + ρ
, L W , L V ≥ 0, and a V , γ > 0 come from Assumption 3. The MASP in ( 18) is different to [START_REF] Selivanov | Event-triggered H∞ control: a switching approach[END_REF] since extra parameters L V ≥ 0 and a V > 0 are introduced in Assumption 3 and it is consistent with (15) when L 2 V /a V = 1. We can state the next theorem. Theorem 2: Consider system [START_REF] Heemels | Periodic event-triggered control[END_REF]. Suppose that Assumption 3 holds with α V (x, e, w) = α W (|e|) -V (|w|) for some α W , V ∈ K ∞ from Assumption 3. Let λ ∈ [0, λ * ) and T < T MASP (λ), where λ * and T MASP (λ) are defined in [START_REF] Borgers | Periodic event-triggered control of nonlinear systems using overapproximation techniques[END_REF] and ( 18), respectively. Then, set A defined in Theorem 1 is ISS.

Theorem 2 extends the main result of [START_REF] Wang | Stabilization of nonlinear systems using state-feedback periodic event-triggered controllers[END_REF] to scheduling and allows considering exogenous disturbances acting on the plant and [START_REF]Periodic event-triggered output feedback control of nonlinear systems[END_REF] to scheduling. Note that the conditions in [START_REF]Periodic event-triggered output feedback control of nonlinear systems[END_REF] which are parallel to Assumption 3 are slightly different, where ρ = 0 and H i , J i are not specified as in Assumption 3.

D. L p -stability

We now consider the input-output stability of system (9) from w to the output z = η(x, w).

Theorem 3: Consider system (9) and suppose the following hold.

1) Assumptions 1 and 2 are verified with α V (x, e, w) = -µ(θ p |w| p -|η(x, w)| p ) for some µ, θ > 0. 2) For each i ∈ N , let λ i ∈ [0, λ * i ) and T i < T MASP,i (λ i ), where λ * i and T MASP,i (λ i ) are defined in ( 14) and ( 15), respectively. Then system ( 9) is L p -stable from w and to z with respect to the set A defined in Theorem 1 with gain less than or equal to θ.

Like in Section IV-C, we derive a tailored result for the case where a single network is used and y = x p . Its proof follows from the ones to Theorems 2 and 3, and is therefore again omitted.

Theorem 4: Consider system (9). Suppose that Assumption 3 holds with α V (x, e, w) = -µ(θ p |w| p -|η(x, w)| p ) for some µ, θ > 0. Let λ ∈ [0, λ * ) and T < T MASP (λ), where λ * and T MASP (λ) are defined in ( 17) and ( 18), respectively. Then, system ( 9) is L p -stable from w and to z with respect to the set A defined in Theorem 1 with gain less than or equal to θ.

V. CASE STUDY

A. Setup and hybrid model

We consider nonlinear systems of the form

ẋp = A p x p + B p u + D p ψ(x p ) + E p w y = C p x p , (19) 
where x p ∈ R np is the state, u ∈ R nu is the control input, w ∈ R nw is the external disturbance, y ∈ R ny is the measured output, A p , B p , C p , D p and E p are matrices of appropriate dimensions, (A p , B p ) and (A p , C p ) are assumed to be stabilizable and detectable, respectively, and ψ : R np → R nr , satisfies ψ(0) = 0 and |ψ(x

1 ) -ψ(x 2 )| ≤ L|x 1 -x 2 | for all x 1 , x 2 ∈ R np with constant L > 0, where n r ∈ Z > 0.
We focus on observer-based controllers of the form

ẋc = A p x c + B p u + D p ψ(x c ) -M (C p x c -y) u = Kx c , (20) 
where x c ∈ R np is the state estimate, M and K are matrices of appropriate dimensions such that

A 1 := A p B p K M C p A p + B p K -M C p
is Hurwitz, which is always possible since (A p , B p ) and (A p , C p ) are stabilizable and detectable, respectively. We consider the scenario where the plant and the controller communicate via N independently operating networks, as described in Section III. Zero-order-hold devices are used so that fv = 0 as defined after (4). Each network is scheduled by an arbitrary uniformly globally exponentially stable (UGES) protocol, whenever the local triggering rule is satisfied. Hence, items (i) and (ii) of Assumption 1 hold with W i : R ne i × Z ≥0 → R ≥0 , ρ i ∈ [0, 1), α Wi (s) = a Wi s, α Wi (s) = a Wi s, i ∈ N , for some a Wi ≥ a Wi > 0 and all s ≥ 0, which depend on the considered protocol. We further assume that there exists i ≥ 0 such that | ∂W i (e i , κ i )

∂e i | ≤ i
for almost all e i ∈ R ne i and κ i ∈ Z ≥0 , which is the case for the sampled-data case and RR and TOD protocols according to Section V in [START_REF] Nešić | Input-output stability properties of networked control systems[END_REF].

Let x = (x p , x c ) ∈ R nx , v = (y, u) ∈ R ne , e = (v -v), n x = n p + n c and n e = n y + n u . We write v := Cx, C := C p 0 0 K ∈ R ne×nx and v i := C i x ∈ R ne i , i ∈ N , (21) 
be the i-th element of v associated with network N i with C i ∈ R ne i ×nx . Define e y := ŷ-y = C y e, e u := û-u = C u e, with appropriate matrices C y ∈ R ny×ne and C u ∈ R nu×ne . In this case, the hybrid model ( 9) is given by,

q =     A 1 x + B 1 e + D 1 ψ(x) + E 1 w A 2 x + B 2 e + D 2 ψ(x) + E 2 w 0 N 1 N     q ∈ C q + ∈ G(q) q ∈ D, (22) 
where q = (x, e, κ, τ ),

B 1 := B p C u M C y , D 1 := D p 0 0 D p , E 1 := E p 0 , ψ(x) := (ψ(x p ), ψ(x c )), A 2 := -    C 1 A 1 . . . C N A 1   , B 2 := -    C 1 B 1 . . . C N B 1   , D 2 := -    C 1 D 1 . . . C N D 1   , E 2 := -    C 1 E 1 . . . C N E 1   .
The flow and jump sets C and D are defined after [START_REF] Heemels | Periodic event-triggered control[END_REF], and the jump map G is given in [START_REF] Sanfelice | Lyapunov analysis of sampled-and-hold hybrid feedbacks[END_REF].

B. Input-to-state stability

Before stating the main results of this section, we need to introduce some notation. For any π = (π 1 , ..., π N ) ∈ R N ≥0 , we define

Ψ(π) := diag{π 1 I ne 1 , . . . , π N I ne N } ∈ R ne×ne . ( 23 
)
Let Ψ i := diag{0 ne 1 ×ne 1 , . . . ,

0 ne i-1 ×ne i-1 , I ne i ×ne i , 0 ne i+1 ×ne i+1 , . . . , 0 ne N ×ne N } ∈ R ne×ne , B 2,i := C i B 1 (I ne -Ψ i ) ∈ R ne i ×ne , i ∈ N , B 2 :=    B 2,1 . . . B 2,N    ∈ R ne×ne
, where C i comes from [START_REF] Cai | Characterizations of input-to-state stability for hybrid systems[END_REF]. 
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The next proposition states that all conditions of Corollary 1 hold if the linear matrix inequality (LMI) in ( 24) is satisfied.

Proposition 1: If there exist a positive definite symmetric matrix P , a V , a W , θ, a Wi , i > 0, i ≥ a Wi and

ν i ≥ a W + 2 i |B 2,i | 2 , i ∈ N , such that the following LMI holds   Σ 11 Σ 21 Σ 22 Σ 31 E T 2 Ψ T ( )Ψ( )B 2 Σ 33   < 0, ( 24 
)
where Ψ is defined in [START_REF] Wang | Stabilization of nonlinear systems using state-feedback periodic event-triggered controllers[END_REF], := ( 1 , . . . , N ), := ( 1 , . . . , N ), Σ 11 , Σ 21 , Σ 22 , Σ 31 and Σ 33 are given in Table I. Then, Assumptions 1-2 hold with the data given in Table I.

An immediate consequence of Proposition 1 is that the set

A = {q ∈ C ∪ D : x = 0, e = 0, κ i ∈ Z ≥0 , τ i ∈ [0, T i ], i ∈ N } is
exponentially-ISS with a linear gain for system [START_REF] Goebel | Hybrid dynamical systems: Modeling, Stability, and Robustness[END_REF] according to Corollary 1 by suitably defining λ i and T i , as Proposition 1 ensures the satisfaction of all the conditions of Corollary 1.

C. L 2 -stability

We now consider L 2 -stability for system [START_REF] Goebel | Hybrid dynamical systems: Modeling, Stability, and Robustness[END_REF] using Theorem 3, with respect to the performance output z := C z x + D z w.

We can follow the proof of Proposition 1, provided in the Appendix A, to show that the conditions of Theorem 3 hold.

Proposition 2: If there exist a positive definite symmetric matrix P , µ, θ, i , a Wi > 0, i ≥ a Wi and ν i ≥ 2 i |B 2,i | 2 , i ∈ N , such that (24) holds. Then, Assumptions 1-2 hold with the data given in Table I.

Based on Proposition 2, system ( 22) is L 2 -stable from w to z with respect to the set A with gain less than or equal to θ according to Theorem 3, when λ i < λ * i and T i < T MASP,i (λ i ) with λ * i in [START_REF] Heemels | L 2 -gain analysis for a class of hybrid systems with applications to reset and event-triggered control: A lifting approach[END_REF] and T MASP,i (λ i ) in [START_REF] Selivanov | Event-triggered H∞ control: a switching approach[END_REF].

D. Special cases

When ψ in [START_REF] Escolástico | Design of periodic event-triggered control for polynomial systems: A delay system approach[END_REF] only depends on the output y, not the state x p , and D p = B p , condition [START_REF]Periodic event-triggered output feedback control of nonlinear systems[END_REF] slightly differs and can be shown to always hold as formalized next.

Lemma 1: Consider system [START_REF] Escolástico | Design of periodic event-triggered control for polynomial systems: A delay system approach[END_REF] with ψ(y) instead of ψ(x p ), and D p = B p . Let D 1 := B p 0 0 0 and replace ψ(x) in ( 22) by ψ(y, e) := ψ(y) -ψ(y + e y ) 0 . Then, there exist a positive definite symmetric matrix [START_REF]Periodic event-triggered output feedback control of nonlinear systems[END_REF] holds with Σ 21 , Σ 31 and Σ 33 from Table I andΣ 

P , a V , a W , θ, a Wi , i > 0, i ≥ a Wi and ν i ≥ a W + L 2 |D 1 | 2 |P | 2 /a V + 2 i |B 2,i | 2 + 2 i L 2 |C i D 1 | 2 + 2 2 i (L 2 |C i D 1 | 2 + L|C i D 1 ||B 2,i |), i ∈ N , such that
11 := A T 1 P + P A 1 + A T 2 Ψ T √ 2 Ψ √ 2 + Ψ T ( )Ψ( ) A 2 + 2a V I nx + C T Ψ T ( )Ψ( )C, Σ 22 := -Ψ(ν) + (a W + L 2 |D 1 | 2 |P | 2 /a V )I ne + B T 2 Ψ T ( )Ψ( )B 2 + Ψ T ( L|D 2 |)Ψ( L|D 2 | + Ψ T (k )Ψ T (k ) with k 2 = 2L 2 |D 2 | 2 + 2L|D 2 |B 2 |. As a result, Assumptions 1-2 hold with the data from Table I except that H i (x, e) := i (|C i A 1 x + B 2,i e| + L|C i D 2 ||e|), γ 2 i = ν i -(a W + L 2 |D 1 | 2 |P | 2 /a V + 2 i |B 2,i | 2 + 2 i L 2 |C i D 1 | 2 + 2 2 i (L 2 |C i D 1 | 2 + L|C i D 1 ||B 2,i |)) /a 2 Wi , J i (x, e, w) := 2 i (|A T 1 C T i C i A 1 | + |C i | 2 )|x| 2 + L 2 C i D 1 2 |e| 2 + 2 2 i x T C T i C i (B 1 e + E 1 w) .
It is important to note that Lemma 1 covers linear timeinvariant systems as in this case ψ(y) = 0. In other words, the proposed approach can always be applied to stabilizable and detectable linear time-invariant systems.

VI. ILLUSTRATIVE EXAMPLE

In this section, we provide an example of a nonlinear system, which is not globally Lipschitz contrary to the systems addressed in Section V, to which our results apply. The control system consists of two coupled plants P 1 and P 2 , whose origin is unstable, as in Section VII.B in [START_REF] Dolk | Output-based and decentralized dynamic event-triggered control with guaranteed Lp-gain performance and Zeno-freeness[END_REF]. The plants P i , i ∈ {1, 2}, are modeled as

P 1 : ẋ1 = d 1 x 2 1 -x 3 1 + x 2 + u 1 + w y 1 = x 1 ( 25 
)
P 2 : ẋ2 = d 2 x 2 2 -x 3 2 + x 1 + u 2 + w y 2 = x 2 (26) 
where

x i ∈ R, i ∈ {1, 2}, is the state of subsystem P i , y i = x i is its output, d 1 , d 2 ∈ R are unknown uncertain parameters (potentially time-varying) verifying |d 1 | ≤ 1 and |d 2 | ≤ 1,
w ∈ R is the exogenous disturbance. For each subsystem, its own controller is collocated with the actuator and is given by We consider the case where the output measurements of y 1 and y 2 are respectively transmitted via two independently operating networks, N 1 and N 2 , and received by the controller as ŷ1 and ŷ2 , as illustrated in Figure 2. Zero-order-hold devices are used to implement the controller and this gives fv = 0, as defined after [START_REF] Dolk | Output-based and decentralized dynamic event-triggered control with guaranteed Lp-gain performance and Zeno-freeness[END_REF]. Let e 1 = ŷ1 -y 1 and e 2 = ŷ2 -y 2 be the networked-induced error (there is no need to introduce û -u since the controller is static), x = (x 1 , x 2 ), e = (e 1 , e 2 ). 9) is irrelevant here since both networks have only one node. We obtain system (9) with q = (x, e, τ ), F (q, w) = (f (e, x, w), g(e, x, w), 1, 1), f (x, e, w) = (d

u i = -2y i .
Let τ = (τ 1 , τ 2 ) with τ 1 , τ 2 ∈ R ≥0 . Note that κ ∈ Z ≥0 in (
1 x 2 1 -x 3 1 + x 2 - 2(x 1 + e 1 ) + w, d 2 x 2 2 -x 3 2 + x 1 -2(x 2 + e 2 )
+ w), g(x, e, w) = -f (x, e, w), C, D defined as after [START_REF] Heemels | Periodic event-triggered control[END_REF], G(q) in ( 12) with h i (e i , x) being defined as h i (e i , x) = (1 -Γ i (e i , x))e i , i ∈ {1, 2}.

We now verify Assumptions 1 and 2. Let i ∈ {1, 2}, we take

W i (e i ) = |e i |. Assumption 1 holds with α Wi (s) = α Wi (s) = s for all s ≥ 0, ρ i = 0 (since the networks consist of one node), L Wi = 2, H i (x, e, w) = |-d i x 2 i +x 3 i -x 3-i +2x i |+|w|, i ∈ {1, 2}.
To verify Assumption 2, we take δ i (v i ) = 0.5y 2 i and consider the candidate Lyapunov function

V (x) = a 2 2 i=1 b x 2 i 2 + c x 4 i 4
for any x i ∈ R, some a, b, c > 0

and i ∈ {1, 2}. Since ∇δ i (v i ), f vi (x, e, w) ≤ -2x 2 i + |d i x 3 i + x i x 3-i -2x i e i + x i w| ≤ -4δ i (v i ) + |d i x 3 i -x 4 i + x i x 3-i | + |2x 2 i | + |e i | 2 + |w| 2 ≤ L δi δ i (v i ) + J i (x, e, w), item (iii) of Assumption 2 holds with L δi = -4, J i (x, e, w) = |x 3 i + x i x 3-i | + |2d i x 2 i | + |e 2 i | + |w| 2 , i ∈ {1, 2}. We now verify item (ii) of Assumption 2. Since 2s 1 s 2 ≤ s 2 1 + s 2 2 for any s 1 , s 2 ∈ R, we have that ∇V (x), f (x, e, w) ≤ a 2 2 i=1 [(b 2 + c 2 )e 2 i + 0.5(b 2 + c 2 )w 2 + (-c + 1.5)x 6 i + cd i x 5 i + (-b -2c)x 4 i + bd i x 3 i + (-2b + 1.5)x 2 i ] + 2bx 1 x 2 + cx 3 1 x 2 + cx 1 x 3 2 . Noting that (s 1 + s 2 ) 2 ≤ 2(s 2 1 + s 2 2 ) for any s 1 , s 2 ∈ R, H 2 i (x, e, w) ≤ 2(-d i x 2 i + x 3 i -x 3-i + 2x i ) 2 + 2w 2 ≤ 4(-d i x 2 i + x 3 i + 2x i ) 2 + 4x 2 3-i + 2w 2 ≤ 4(x 6 i -2d i x 5 i + 5x 4 i - 4d i x 3 i +4x 2 i )+4x 2 3-i +2w 2 and J i (x, e, w) ≤ 0.5x 2 i +0.5(x 2 i + x 3-i ) 2 +2d i x 2 i +e 2 i +w 2 ≤ x 4 i +x 2 3-i +(2d i + 0.5)x 2 i +e 2 i +w 2 , i ∈ {1, 2}.
We then subtract and add α(x, e, w)

= νx 2 + νe 2 , δ i (v i ) = 0.5x 2 i , H 2 i (x, e, w) and J i (x, e, w) to get ∇V (x), f (x, e, w) ≤ -α V (x) -α W (e) + a 2 p(x) + 2 i=1 2 Vi (|w|) -δ i (v i ) -H 2 i (x, e, w) + 2 i=1 -J i (x, e, w) + a 2 (b 2 + c 2 + a -2 (1 + ν))e 2 i ,
where p(x) :=

2 i=1 x 2 i -2b+1.5+a -2 (21+2d i +ν) +d i (b- 16a -2 )x i + (-b -2c + 21a -2 )x 2 i + d i (c -8a -2 )x 3 i + (-c + 1.5+4a -2 )x 4 i +2bx 1 x 2 +cx 3 1 x 2 +cx 1 x 3 2 , Vi (s) := 0.5(b 2 + c 2 ) + 3a -2 s 2 for all s ≥ 0. This implies that item (ii) of Assumption 2 holds with γ 1 = γ 2 = a b 2 + c 2 + a -2 (1 + ν)
provided parameters a, b, c, ν are such that p(x) ≤ 0 for all x ∈ R 2 . We take (a, b, c, ν) = (1.7, 3.93, 2.9, 0.01) to ensure p(x) ≤ 0 for all x ∈ R 2 , which yields γ i = 8.36 and determines the expression of V (x), hence, item (i) of Assumption 2 holds.

Note that

H i (x, e, w) = H i (x, e) + Wi (|w|) with H i (x, e) := | -d i x 2 i + x 3 i -x 3-i + 2x i | and Wi (|w|) := |w| for i ∈ {1, 2}, and α V (x, e, w) = α V (|x|) + α W (|e|) with α V (|x|) := ν|x| 2 , α W (|e|) := ν|e| 2 .
Items 1) and 2) of Theorem 1 are therefore verified. We have that λ * i = 0.2289 according to [START_REF] Heemels | L 2 -gain analysis for a class of hybrid systems with applications to reset and event-triggered control: A lifting approach[END_REF], from which we derive T MASP,i (λ i ) for any λ i ∈ [0, λ * i ). Indeed, T MASP,1 can be taken as a function of λ 1 , which tends to zero as λ 1 tends to its maximal value λ * 1 , and the maximal value for T MASP,1 is 0.1634, which arises when λ 1 → 0. As a result, the set A is ISS according to Theorem 1. To illustrate the impact of λ i and sampling period T i , i ∈ {1, 2}, on the number of transmissions over the networks, we have considered different values of λ i and T i with T i < T MASP,i (λ i ) being satisfied, where T MASP,i (λ i ) is the MASP determined by the given λ i ∈ (0, λ * i ). We have set ε i = T i for all i ∈ {1, 2}, and run 50 simulations over 10 seconds with parameters d 1 = d 2 = 0.8 and initial conditions randomly selected in [-20, 20] for both systems. Parameter ε i was selected as T i , so that the triggering generators periodically evaluate their triggering condition. We have taken w(t) = 2 sin(20πt). The obtained average inter-transmission times over the 50 simulations are reported in Table II.

= 0.06 λ 2 = 0.02 λ 1 = 0.1 λ 2 = 0.09 λ 1 = 0.15 λ 2 = 0.12 N 1 N 2 N 1 N 2 N 1 N 2 T 1 = 0.01 T 2 = 0.
Empty boxes in Table II mean that the condition T i < T MASP,i (λ i ) is violated. In view of the lines of Table II, we see that the average inter-transmission times increase when λ i grows for the same sampling period T i . Also, when we keep the same triggering parameter λ i and vary the sampling period T i , the average inter-transmission times increase with T i . This suggests that, for this example and this set of simulations, setting sampling periods close to T MASP,i (λ i ) uses less network bandwidth and ensures system stability. Interestingly, selecting T i large and λ i small, or T i small and λ i large, lead to similar average inter-transmission times in view of Table II.

VII. CONCLUSIONS

We considered periodic event-triggered control of nonlinear systems subject to exogenous disturbances, where the controller communicates with the plant via multiple asynchronously operating networks. An emulation-based systematic design procedure was proposed, which is applicable for output feedback control. The starting point of the design is the availability of a controller, which robustly stabilizes the system in the absence of communication constraints. In the next step, the implementation of the controller over the networks was considered. Each network consists of multiple nodes, in which case a protocol is used to schedule transmissions. Moreover, a transmission over each network is triggered when a criterion, which only depends on the local measurements and the local control signals, is violated at given discrete sampling instants. We derived a hybrid system model to describe the resulting dynamics of the NCS and constructed a novel hybrid Lyapunov function for stability analysis. We provided conditions on the controller and scheduling protocols in order to design the local event-triggering criteria and explicit bounds on the maximum allowable sampling periods (MASP), to ensure input-to-state stability and L p -stability of the NCS. We showed that our design framework is applicable to a class of globally Lipschitz nonlinear systems and formulated the required conditions as linear matrix inequalities. We also showed explicitly that our results are applicable to any stabilizable and detectable linear time-invariant system. The effectiveness of the scheme was illustrated via simulations for a nonlinear example, which is not globally Lipschitz and suffered from parametric uncertainties.

Several extensions can be envisioned based on the framework laid down in this paper. Refined results could be developed for more specific classes of nonlinear systems. The results on LTI systems in Section V may also serve as a basis to derive co-design techniques, where both the triggering generator and the controller are designed simultaneously, similarly to [START_REF] Abdelrahim | Co-design of output feedback laws and event-triggering conditions for the L 2 -stabilization linear systems[END_REF] where CETC is studied.

APPENDIX A PROOFS A. Proof of Theorem 1
We define, for any q ∈ C ∪ D, the Lyapunov function

U (q) := V (x) + N i=1 S i (q) S i (q) := max γ i φ i (τ i )W 2 i (e i , κ i ), λ i δ i (v i ) , (27) 
where W i , δ i and V come from Assumptions 1 and 2, and

φ i : [0, T i ] → µ i , µ i with µ i > µ i > 0 is defined as in Lemma 3 in Appendix B.
We first show that the following properties hold for system [START_REF] Heemels | Periodic event-triggered control[END_REF]. There exist α U , α U , α U , θ F ∈ K ∞ such that: a) U is locally Lipschitz in x, e and τ , and, for all q ∈ C ∪D, α U (|q| A ) ≤ U (q) ≤ α U (|q| A ); b) for all q ∈ C and w ∈ R nw , U • (q; F (q, w)) ≤ -α U (U (q)) + θ F (|w|); c) for all q ∈ D, w ∈ R nw and g ∈ G(q), U g ≤ U (q). Proof of item a). It follows from Assumptions 1 and 2, the definition of φ i in Lemma 3 that the Lipschitz property of U in item a) is satisfied. Since δ i is continuous and positive semidefinite, v i = g vi (x) with g vi in ( 8) is continuous and g vi (0) = 0, as g = (g p , g c ) and g p (0) = g c (0) = 0 with g p and g c in (1) and ( 2), there exists α δi ∈ K ∞ such that δ i (v i ) ≤ α δi (|x|), see Lemma 4.3 in [31]. In view of Lemma 3,φ 

i (τ i ) ∈ µ i , µ i for all τ i ∈ [0, T i ] with 0 < µ * i < µ i < µ i < µ * i , i ∈ N . Consequently,
γ i µ i α 2 Wi (|e|) ≤ U (q) ≤ α V (|x|) + N i=1 γ i µ i α 2 Wi (|e|) + λ i α δi (|x|)
. By applying Lemma 4 in Appendix B, we derive that there exist α

U , α U ∈ K ∞ such that α U (|q| A ) ≤ U (q) ≤ α U (|q| A ), hence item a) holds.
Proof of item b). Let q ∈ C, w ∈ R nw and i ∈ N . We distinguish three cases according to Lemma 2 in Appendix B: Case I)

γ i φ i (τ i )W 2 i (e i , κ i ) < λ i δ i (v i ); Case II) γ i φ i (τ i )W 2 i (e i , κ i ) > λ i δ i (v i ); and Case III) γ i φ i (τ i )W 2 i (e i , κ i ) = λ i δ i (v i ).
Suppose that Cases I), II) and III), respectively, hold for i ∈ N I , i ∈ N II and i ∈ N III , where N I , N II , N III ⊆ N and N I ∪ N II ∪ N III = N . Then, in view of item (ii) of Assumption 2, items 1)-2) of Theorem 1,

U • (q; F (q, w)) ≤ -α V (|x|) -α W (|e|) + i∈N (Z i (q, w) + S • i (q; F (q, w))) , (28) 
where

Z i (q, w) = γ 2 i W 2 i (e i ) -H 2 i (
x, e, w) -J i (x, e, w)δ i (v i )+ V,i (|w|). We next consider S • i (q; F (q, w)) for i ∈ N I , i ∈ N II and i ∈ N III , respectively. Case I) i ∈ N I . We have that S i (q) = λ i δ i (v i ) in [START_REF] Nešić | Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems[END_REF] in this case. It then follows from item (iii) of Assumption 2 and [START_REF] Teel | On assigning the derivative of a disturbance attenuation control Lyapunov function[END_REF] that

S • i (q; F (q, w)) ≤ λ i L δi δ i (v i ) + H 2 i (
x, e, w) + J i (x, e, w) .

Since φ i (τ i ) ≥ µ i > µ * i = ρ i ≥ γ i λ i 1 -λ i L δi according to Lemma 3, 1 -λ i L δi > 0 as ensured by λ i < λ * i with λ * i defined in (14), γ i φ i (τ i )W 2 i (e i , κ i ) < λ i δ i (v i ) implies that γ 2 i W 2 i (e i , κ i ) < γ i λ i δ i (v i ) φ i (τ i ) < γ i λ i δ i (v i ) ρ i ≤ γ i λ i δ i (v i ) γiλi 1-λiL δ i = (1 -λ i L δi )δ i (v i ), and 
Z i (q, w) + S • i (q; F (q, w)) ≤ γ 2 i W 2 i (e i ) -H 2 i (x, e, w) -J i (x, e, w) -δ i (v i ) + V,i (|w|) + λ i δi δ i (v i ) + H 2 i (x, e, w) + J i (x, e, w) ≤ -(1 -λ i ) H 2 i (x, e, w) + J i (x, e, w) + V,i (|w|) ≤ V,i (|w|) (29) 
since λ i < λ * i ≤ 1 in view of [START_REF] Heemels | L 2 -gain analysis for a class of hybrid systems with applications to reset and event-triggered control: A lifting approach[END_REF].

Case II) i ∈ N II . We have that S i (q) = γ i φ i (τ i )W 2 i (e i , κ i ) in this case. We omit below the dependency of φ i on τ i for the sake of convenience. In view of item (ii) in Assumption 1 and the facts that φ i (τ i ) ≤ µ i according to Lemma 3, H i (x, e, w) = H i (x, e) + Wi (|w|) according to item 1) of Theorem 1, s 2 1 + s 2 2 ≤ s 1 + s 2 and 2s 3 s 4 ≤ νs 2 3 + 1 ν s 2 4 , for s 1 , s 2 , s 3 , s 4 ≥ 0 and ν > 0,

S • i (q; F (q, w)) = γ i (-2(L Wi + νi )φ i -γ i (φ 2 i + 1))W 2 i (e i , κ i ) + 2γ i φ i W i (e i , κ i ) (L Wi W i (e i , κ i ) + H i (x, e) + Wi (|w|)) ≤ γ i (-(2L Wi + νi )φ i -γ i (φ 2 i + 1))W 2 i (e i , κ i ) + 2γ i L Wi φ i W 2 i (e i , κ i ) + γ 2 i φ 2 i W 2 i (e i , κ i ) + H 2 i (x, e) + γ i φ i νi W 2 i (e i , κ i ) + 1 νi 2 Wi (|w|) ≤ -γ 2 i W 2 i (e i , κ i ) + H 2 i (x, e) + µ i γ i νi 2 Wi (|w|),
where νi > 0 is given in Lemma 3. Then, since µ i < µ * i and

H 2 i (x, e, w) ≥ H 2 i (x, e), Z i (q, w) + S • i (q; F (q, w)) ≤ γ 2 i W 2 i (e i ) -H 2 i (x, e, w) -J i (x, e, w) -δ i (v i ) + V,i (|w|) -γ 2 i W 2 i (e i , κ i ) + H 2 i (x, e) + µ i γ i νi 2 Wi (|w|) ≤ -δ i (v i ) -J i (x, e, w) + µ i γ i νi 2 Wi (|w|) + V,i (|w|) ≤ μ * i γ i νi 2 Wi (|w|) + V,i (|w|). (30) 
Case III) i ∈ N III . In view of Lemma 2 and (30), in this case, Z i (q, w) + S • i (q; F (q, w)) ≤

µ * i γ i νi 2 Wi (|w|) + V,i (|w|).
In view of Cases I)-III),

U • (q; F (q, w)) ≤ -α V (|x|) -α W (|e|) (31) 
+ i∈N (Z i (q, w) + S • i (q; F (q, w))) ≤ -α V (|x|) -α W (|e|) + i∈N µ * i γ i νi 2 Wi (|w|) + V,i (|w|) .
In view of item a), there exists α U ∈ K ∞ such that item b) holds with θ F (s) := i∈N θ Fi (s), and

θ Fi (s) := µ * i γ i νi 2 
Wi (s) + V,i (s) for all s ≥ 0.

Proof of item c). Let q ∈ D i , i ∈ N . We distinguish two cases whether a transmission occurs. When a transmission occurs, W i (χ i (e i , κ i ), κ i + 1) ≤ ρ i W i (e i , κ i ) according to item (ii) of Assumption 1. Note that φ i (0

) < µ * i = 1/ρ i , φ i (T i ) > µ * i = ρ i and ρ i ≥ ρ i in view of Lemma 3. Let g ∈ G i (q), S i (g) = max γ i φ i (0)W 2 i (χ i (e i , κ i ), κ i + 1)), λ i δ i (v i ) ≤ max γ i 1 ρ i ρ 2 i W 2 i (e i , κ i ), λ i δ i (v i ) ≤ max γ i ρ i W 2 i (e i , κ i ), λ i δ i (v i ) ≤ max γ i φ i (T i )W 2 i (e i , κ i ), λ i δ i (v i ) ≤ S i (q). (32 
) When no transmission occurs, it follows from ( 7), [START_REF] Chen | Periodic event-triggered state-feedback and outputfeedback control for linear systems[END_REF] and item (ii) of Assumption 1 that

γ i W 2 i (χ i (e i , κ i ), κ i ) = γ i W 2 i (e i , κ i ) ≤ λ i ρ i δ i (v i ). Since φ i (0) < µ * i = 1/ρ i according to Lemma 3, we have that S i (g) = max γ i φ i (0)W 2 i (e i , κ i ), λ i δ i (v i ) ≤ max 1 ρ i λ i ρ i δ i (v i ), λ i δ i (v i ) = λ i δ i (v i ) ≤ S i (q).
As a result, for all q ∈ D and g ∈ G(q),

U (g) ≤ V (x) + N i=1 S i (g) ≤ V (x) + N i=1 S i (q) = U (q),
and item c) holds.

Let (ϕ, w) be a solution to [START_REF] Heemels | Periodic event-triggered control[END_REF]. Note that U is locally Lipschitz in x, e, τ from item a). In view of page 99 in [START_REF] Teel | On assigning the derivative of a disturbance attenuation control Lyapunov function[END_REF], for any ν ∈ (0, 1), all j ∈ Z ≥0 such that there exists t ∈ R ≥0 with (t, j) ∈ dom ϕ and almost all s ∈ I j := { t : ( t, j) ∈ domφ}, d ds U (ϕ(s, j)) ≤ U • (ϕ(s, j); F (ϕ(s, j), w(s, j)))

≤ -(1 -ν)α U (U (ϕ(s, j))

-να U (U (ϕ(s, j)) + θ F (|w(s, j)|).

By invoking standard ISS arguments, we derive that there exists β ∈ KL such that for all (t, j) ∈ dom ϕ,

U (ϕ(t, j)) ≤ β(U (ϕ(t, t j ), t -t j ) + α -1 U 1 ν θ F (||w|| (t,j) ) ,
where t j := inf I j . It follows from item c) that, for all j such that (t, j) ∈ dom ϕ, U (ϕ(t j+1 , j + 1)) ≤ U (ϕ(t j+1 , j)).

Let ε := min i∈N ε i , where ε i > 0 is the minimum inter-sampling time corresponding to network N i . Let (t, j) ∈ domϕ. The integer j represents the total number of transmissions over the N networks, we can therefore write it as j = j 1 + ... + j N , where j i is the number of transmissions that has occured so far on network N i . In view of the definition of the jump set

in (9), t ≥ ε(j i -1). Consequently, t N ≥ ε N (j i -1) and t = N t N ≥ ε N (j 1 + .... + j N ) -ε = ε N j -ε. Since t ≥ 0, we have that t ≥ t/2 + ε/2 max j N -1, 0 . Consequently, for any (t, j) ∈ dom ϕ, U (ϕ(t, j)) ≤ β(U (ϕ(0, 0), t) + α -1 U 1 ν θ F (||w|| (t,j) ) ≤ β U (ϕ(0, 0)), 0.5t + 0.5ε max j N -1, 0 + α -1 U 1 ν θ F (||w|| (t,j) ) .
Since α(s 1 + s 2 ) ≤ α(2s 1 ) + α(2s 2 ) for any α ∈ K ∞ and s 1 , s 2 ≥ 0, see [START_REF] Postoyan | A framework for the event-triggered stabilization of nonlinear systems[END_REF] in [START_REF] Jang | Small-gain theorem for ISS systems and applications[END_REF], we deduce from item a), to have that |ϕ(t, j)

| A ≤ β(|ϕ(0, 0)| A , t + j) + ψ(||w|| (t,j) ), for all (t, j) ∈ dom ϕ, where β(s 1 , s 2 ) := α -1 U 2β α U (s 1 ), 0.5 min{ε, 1} max s 2 N -2, 0 and 
ψ(s) := α -1 U 2α -1 U 1 ν θ F (||w|| (t,j) ) .

B. Sketched proof of Theorem 2

For any q ∈ C ∪ D, let U (q) := V (x) + max γφ(τ )W 2 (e, κ), λV (x) with W and V coming from Assumption 3. The function φ : [0, T ] → µ, µ is defined as in Lemma 5 in Appendix B.

The proof Theorem 2 follows same steps as the proof of Theorem 1. We only explicitly prove the flow property corresponding to item b) in Appendix A-A in the following. In particular, we need show that item b) holds under Assumption 3. Let q ∈ C and w ∈ R nw and we distinguish three cases according to Lemma 2.

Case I) γφ(τ )W 2 (e, κ) < λV (x). We have that U (q) = (λ + 1)V (x) in this case. According to Lemma 5, φ(τ ) ≥ ρ > γλ a V . Hence, there exists ν ∈ (0, 1) such that ρ ≥

1 1 -ν γλ a V . Thus, γ 2 W 2 (e, κ) ≤ γλV (x) ρ ≤ (1 -ν)a V V (x)
and U • (q; F (q, w))

≤ (λ + 1) -a V V (x) -α W (|e|) + γ 2 W 2 (e, κ) + ρ V (|w|) ≤ (λ + 1) -νV (x) -α W (|e|) + V (|w|) .
Case II) γφ(τ )W (e, κ) > λV (x). In this case, we have that U (q) = V (x)+γφ(τ )W 2 (e, κ). From item (ii) of Assumption 3, the facts that φ(τ ) ≤ µ in view of Lemma 5, and 2ab ≤ ca 2 + 1/cb 2 for all a, b ≥ 0 and c > 0,

U • (q; F (q, w)) = -a V V (x) -α W (|e|) + γ 2 W 2 (e, κ) + ρ V (|w|) + γ -(2L W + ν)φ -γ L 2 V a V - ν φ 2 + 1 W 2 (e, κ) + 2γφW (e, κ) L W W (e, κ) + L V V (x) + W (|w|) ≤ -a V V (x) -α W (|e|) + γ 2 W 2 (e, κ) + ρ V (|w|) -γ(2L W + ν)φW 2 (e, κ) -γ 2 L 2 V a V - ν φ 2 + 1 W 2 (e, κ) + γ 2 L 2 V a V - ν φ 2 W 2 (e, κ) + (a V -ν)V (x) + 2γL W φW 2 (e, κ) + γφ νW 2 (e, κ) + 1 ν 2 W (|w|) ≤ -νV (x) -α W (|e|) + µγ ν 2 W (|w|) + V (|w|),
where ν > 0 comes from Lemma 5.

Case III: γφ(τ )W 2 (e, κ) = λV (x). In view of Lemma 2, and cases I and II, U • (q; F (q, w)) ≤ -min{ν, ν}V (x) -

α W (|e|) + V (|w|) + µγ ν 2 W (|w|). In view of cases I)-III), U • (q; F (q, w)) ≤ -min{ν, ν}V (x) -α W (|e|) + V (|w|) + µγ ν 2 W (|w|) for all q ∈ C and w ∈ R nw . Then, there exists α U ∈ K ∞ such that item b) holds with θ F (s) := µγ ν 2 W (|w|) + V (|w| 
) for all s ≥ 0. The rest of proof follows the same steps as the proof of Theorem 1 and is therefore omitted.

C. Sketched proof of Theorem 3

We define the storage function as [START_REF] Nešić | Explicit computation of the sampling period in emulation of controllers for nonlinear sampled-data systems[END_REF] and prove the desired result by ensuring the satisfaction of the next properties. a) U is locally Lipschitz in x, e and τ , and, for all q ∈ C ∪D, α U (|q| A ) ≤ U (q) ≤ α U (|q| A ), where α U , α U ∈ K ∞ ; b) for all q ∈ C and w ∈ R nw , U • (q; F (q, w)) ≤ µ(θ p |w| p -|z| p ); c) for all q ∈ D, w ∈ R nw and g ∈ G(q), U g ≤ U (q).

The proof of items a) and c) follows the same steps as the proof of Theorem 1. We therefore prove the flow property corresponding to item b) in Appendix A-A. Recall that there are three cases to consider when q ∈ C: Case I)

γ i φ i (τ i )W 2 i (e i , κ i ) < λ i δ i (v i ); Case II) γ i φ i (τ i )W 2 i (e i , κ i ) > λ i δ i (v i ); and Case III) γ i φ i (τ i )W 2
i (e i , κ i ) = λ i δ i (v i ), and they are respectively hold for i ∈ N I , i ∈ N II and i ∈ N III . We derive that the following hold.

Case I) i ∈ N I . In this case, S • i (q; F (q, w))

≤ λ i L δi δ i (v i ) + H 2 i (x, e, w) + J i (x, e, w) . Let Z i (q, w) = γ 2 i W 2 i (e i ) - H 2 i (x, e, w) -J i (x, e, w) -δ i (v i ). We have that Z i (q, w) + S • i (q; F (q, w)) ≤ γ 2 i W 2 i (e i , κ i ) -(1 -λ i L δi )δ i (v i ) -(1 - λ i ) H 2 i (x, e, w) + J i (x, e, w) ≤ -(1 -λ i ) H 2 i (x, e, w) - (1 -λ i )J i (x, e, w), i ∈ N , since λ i L δi < 1 from (14) and γ 2 i W 2 i (e i , κ i ) < (1 -λ i L δi )δ i (v i ). Case II) i ∈ N II . In Case II), S • i (q; F (q, w)) = γ i (-(2L Wi + νi )φ i -γ i (φ 2 i + 1))W 2 i (e i , κ i ) + 2γ i φ i W i (e i , κ i ) L Wi W i (e i , κ i ) + H i (x, e, w) ≤ -γ 2 i W 2 i (e i , κ i )+ H 2 i (x, e, w) and Z i (q, w)+S • i (q; F (q, w)) ≤ -δ i (v i ) -J i (x, e, w), i ∈ N .
Case III) i ∈ N III . In view of Lemma 2, and cases I and II, Z i (q, w) + S [START_REF] Heemels | L 2 -gain analysis for a class of hybrid systems with applications to reset and event-triggered control: A lifting approach[END_REF]. The satisfaction of items a) and c) follows by applying similar arguments as in the proof of Theorem 1.

• i (q; F (q, w)) ≤ max{-(1 -λ i ) H 2 i (x, e, w) - (1 -λ i )J i (x, e, w), -δ i (v i ) -J i (x, e, w)}. Consequently, U • (q; F (q, w)) ≤ µ(θ p |w| p - |z| p ) + i∈N Z i (q, w) + S • i (q; F (q, w)) ≤ µ(θ p |w| p - |z| p ) - i∈N II (δ i (v i ) + J i (x, e, w)) - i∈N I (1 - λ i ) H 2 i (x, e, w) + J i (x, e, w) - i∈N III max{(1 - λ i )( H 2 i (x, e, w) + J i (x, e, w)) + δ i (v i ) + J i (x, e, w)} ≤ µ(θ p |w| p -|z| p ) since λ i < λ * i ≤ 1 in view of
Let (ϕ, w) be a solution to [START_REF] Heemels | Periodic event-triggered control[END_REF]. In view of page 99 in [START_REF] Teel | On assigning the derivative of a disturbance attenuation control Lyapunov function[END_REF], for all j ∈ Z ≥0 such that there exists t ∈ R ≥0 with (t, j) ∈ dom ϕ and almost all s ∈ I j := { t : ( t, j) ∈ domφ}, d ds U (ϕ(s, j)) ≤ U • (ϕ(s, j); F (ϕ(s, j), w(s, j))) ≤ -|z(s, j)| p + θ p |w(s, j)| p . We then follow similar lines as the the proof of Theorem 1 and the Theorem IV.7 in [START_REF] Heemels | Networked control systems with communication constraints: Tradeoffs between transmission intervals, delays and performance[END_REF] and we obtain that ||z|| Lp ≤ γ(|ϕ(0, 0)| A )+θ||w|| Lp , where γ := α U .

D. Proof of Proposition 1

Let matrix P , a V , a W , θ, i > 0 and ν i ≥ a W + 2 i |B 2,i | 2 , i ∈ N , be given such that [START_REF]Periodic event-triggered output feedback control of nonlinear systems[END_REF] 

= i /a Wi |C i B 1 Ψ i |, H i (x, e, w) = i (|C i A 1 x + B 2,i e + C i E 1 w| + L|C i D 1 ||x|). Recall that δ i (v i ) = 2 i |v i | 2 , v i = C i x and note that x T C T i C i A 1 + A T 1 C T i C i x = 2 C i x, C i A 1 x ≤ 2 C i x C i A 1 x ≤ x T C T i C i x + x T A T 1 C T i C i A 1 x . Hence, ∇δ i (v i ), C i (A 1 x + B 1 e + D 1 ψ(x) + E 1 w) ≤ 2 i x T C T i C i A 1 + A T 1 C T i C i x + 2 2 i (|x T C T i C i (B 1 e + E 1 w)|+L|C T i C i D 1 ||x| 2 ) ≤ L δi δ i +J i (
x, e, w), where L δi = 1 and J i (x, e, w)

= 2 i A T 1 C T i C i A 1 + 2L C T i C i D 1 |x| 2 + 2 2 i x T C
T i C i (B 1 e + E 1 w) , hence item (iii) of Assumption 2 holds.

Let V (x) = x T P x. Item (i) of Assumption 2 holds with α V (s) := λ min (P )s 2 , α V (s) := λ max (P )s 2 for all s ≥ 0. Note that, for all x ∈ R nx and almost all e ∈ R ne , ∇V (x), A 1 x+B 1 e+D 1 ψ(x)+E 1 w = x T (A T 1 P +P A 1 )x+ 2x T P B 1 e+2L|D 1 |x T P x+2x T P E 1 w. We now post-and premultiply LMI in [START_REF]Periodic event-triggered output feedback control of nonlinear systems[END_REF] respectively by the state vector (x, e, w) and its transpose, re-arrange its terms, and derive from [START_REF]Periodic event-triggered output feedback control of nonlinear systems[END_REF] and the definitions of A 2 , B 2 and E 2 defined after [START_REF] Goebel | Hybrid dynamical systems: Modeling, Stability, and Robustness[END_REF] that item (ii) of Assumption 2 holds with functions H i , J i , δ i , V,i and γ i > 0 given in Proposition 1.

E. Proof of Lemma 1

The proof agrees with the one to Proposition 1 with replacing ψ(x) by ψ(y, e), and the property |ψ(y, e)| ≤ L|e| in view of properties of ψ. Since 2L|P x||D 1 ||e| ≤ a V |x| 2 + 1/a V (L|P ||D 1 ||e|) 2 for all x ∈ R nx , e ∈ R ne and any a V > 0, and hence, ∇V (x), A 1 x+B 1 e+D 1 ψ(y, e)+E 1 w = x T (A T 1 P + P A 1 )x + 2x T P B 1 e + 2L|P x||D 1 e| + 2x T P E 1 w. We then follow similar lines as in the proof of Proposition 1 to show Assumptions 1-2 hold. On the other hand, [START_REF]Periodic event-triggered output feedback control of nonlinear systems[END_REF] always has a solution in this case since A 1 is Hurwitz, which ensures Σ 11 < 0 and (24) follows by taking sufficiently large θ, ν and small enough > 0.

APPENDIX B TECHNICAL LEMMAS

The next statements corresponds to Lemma II.1 in [START_REF] Liberzon | Lyapunov-based small-gain theorems for hybrid systems[END_REF]. Lemma 2: Consider two functions U 1 : R n → R and U 2 : R n → R that have well-defined Clarke derivatives for all x ∈ R n and v ∈ R n . Introduce three sets A := {x : U 1 (x) > U 2 (x)}, B := {x : U 1 (x) < U 2 (x)}, Γ := {x : U 1 (x) = U 2 (x)}. Then, for any v ∈ R n , the function U (x) := max{U 1 (x), U 2 (x)} satisfies U • (x; v) = U • 1 (x; v) for all x ∈ A, U • (x; v) = U • 2 (x; v) for all x ∈ B, and U • (x; v) ≤ max{U • 1 (x; v), U • 2 (x; v)} for all x ∈ Γ.

Lemma 3: Let i ∈ N , λ i ∈ [0, λ * i ) and T i < T MASP,i (λ i ) with λ * i and T MASP,i (λ i ) defined in ( 14) and [START_REF] Selivanov | Event-triggered H∞ control: a switching approach[END_REF], respectively. Let µ * i := 1/ρ i , µ * i = ρ i with ρ i defined after [START_REF] Chen | Periodic event-triggered state-feedback and outputfeedback control for linear systems[END_REF]. There exist µ i > µ i > 0, satisfying 0 < µ * i < µ i < µ i < µ * i , and νi > 0 such that the solution φ i to φi = -(2L Wi + νi )φ i -γ i (φ 2 i + 1), φ i (0) = µ i , verifies φ i (t) ∈ µ i , µ i for all t ∈ [0, T i ], where L Wi ≥ 0 comes from Assumption 1 and γ i > 0 from Assumption 2.

Proof of Lemma 3. Let i ∈ N , λ i ∈ [0, λ * i ) and T i < T MASP,i (λ i ). We first show that the following fact holds.

Fact 1: 0 ≤ γ i λ i 1 -λ i L δi < 1, i ∈ N .
Fact 1 holds since 0 ≤ γ i λ i 1 -λ i L δi ≤ γ i λ i 1 + γ i λ i < 1 when L δi ≤ -γ i , and λ i < 1 L δi + γ i when L δi > -γ i , in view of the definition of λ * i in [START_REF] Heemels | L 2 -gain analysis for a class of hybrid systems with applications to reset and event-triggered control: A lifting approach[END_REF]. Fact 1 leads to ρ i = max ρ i , γ i λ i 1 -λ i L δi ∈ [0, 1) since ρ i ∈ [0, 1). Hence, 0 ≤ µ * i < µ * i . Denote by T (µ i , µ i , νi ) the time it takes for the solution φ i to decrease from µ i to µ i for a given νi ≥ 0. In view of the dynamics of φ i , the function T i is continuous in all its arguments, increasing in µ i , decreasing in µ i and decreasing in νi . By following similar lines as in the proof of Lemma 2 in [START_REF] Carnevale | A Lyapunov proof of an improved maximum allowable transfer interval for networked control systems[END_REF], we have that T MASP,i defined in [START_REF] Selivanov | Event-triggered H∞ control: a switching approach[END_REF] satisfies T MASP,i (λ i ) = T i (λ i , µ * i , µ * i , 0). Since T i < T MASP,i (λ i ), by continuity of T i and in view of its increasing/decreasing properties, there exists a triplet (µ i , µ i , νi ) with µ i < µ * i , µ i > µ * i and νi > 0, such that T i = T i (λ i , µ i , µ i , νi ) and φ i (t) ∈ µ i , µ i holds for all t ∈ [0, T i ]. The proof of Lemma 5 follows the proof to Lemma 3 and is therefore is omitted.

Lemma 5: Let λ ∈ [0, λ * ) and T < T MASP (λ) with λ * and T MASP (λ) defined as [START_REF] Borgers | Periodic event-triggered control of nonlinear systems using overapproximation techniques[END_REF] and [START_REF] Etienne | Periodic event-triggered observation and control for nonlinear Lipschitz systems using impulsive observers[END_REF], respectively. There exist µ > µ > 0, satisfying 0 < ρ < µ < µ < 1/ρ, and ν ∈ (0, a V ) such that the solution φ to φ = -(2L W + ν)φγ L 2

V a V -ν φ 2 + 1 , φ(0) = µ, verifies φ(t) ∈ µ, µ for all t ∈ [0, T ], where ρ := max ρ, γλ a V , ρ ∈ [0, 1) L W , L V ≥ 0 and a V , γ > 0 come from Assumption 3.
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 1 Fig. 1: Block diagram of the setup

Fig. 2 :

 2 Fig. 2: Control setup of the two coupled systems.

Lemma 4 :sProof of Lemma 4 .

 44 For any α 1 , . . . , α N ∈ K, α i holds for all s i ≥ 0 and i ∈ N , where α, α : s → min α 1 Let α 1 , . . . , α N ∈ K and s 1 , ..., s N ≥ 0.Since α 1 , . . . , α N are increasing functions,N i=1 α i (s i ) ≤ N i=1 α i (s 1 + . . . , s N ) = α N i=1s i . Without loss of generality, we assume that s j = max{s 1 , . . . , s N } for some j ∈ N . It then follows that 1 N s i ) ≥ α j (s j ) ≥ α j

  Let i ∈ N and i ∈ Z >0 denote the number of nodes of N i network. TOD protocol is modelled as χ i (e i ) := I -Ψ i (e i ) e i , where Ψ i (e i ) :=

		and the cases of
	RR and TOD are provided next for completeness.				
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	The functions ψ i s s = min(arg max j∈{1,..., i} satisfy ψ i s (e i ) |e i j |) and ψ s (e i ) = 0 otherwise, = 1 when
	for s ∈ {1, 2, . . . , i }.					
	Example 2 (RR protocol): RR protocol has the form
	of χ i (e i , κ i					
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  in view of items (i) of Assumptions 1 and 2 and (27), α V (|x|) +

	N
	i=1

  holds. Let i ∈ N , since ∂W i (e i , κ i ) ∂e i ≤ i for almost all e i ∈ R ne i and κ i ∈ Z ≥0 (as the protocol is UGES, see discussions above (21)), we have that for all x ∈ R nx and almost all e ∈ R ne , ∂W i (e i , κ i) ∂e i , -C i (A 1 x + B 1 e + D 1 ψ(x) + E 1 w) ≤ i |C i A 1 x + C i B 1 e + C i D 1 ψ(x) + C i E 1 w| ≤ i |C i A 1 x + B 2,i e+C i D 1 ψ(x)+C i E 1 w|+|C i B 1 Ψ i e|) and |C i D 1 ψ(x)| ≤ L|C i D 1 ||x|in view of the properties of ψ. Note that B 2,i e is independent to e i and B 1 Ψ i e depends only on e i according to the definition of B 2,i and Ψ i . This implies that item (iii) of Assumption 1 holds with L Wi

See the definition of ||w|| Lp in[START_REF] Dolk | Output-based and decentralized dynamic event-triggered control with guaranteed Lp-gain performance and Zeno-freeness[END_REF].
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