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An enhanced high order multifiber Timoshenko beam is introduced to simulate structural be-
havior up to failure. The beam is displacement based and geometrically linear, its section can be
of arbitrary shape and a local constitutive law is assigned to each fiber. The Strong Discontinuity
Approach is adopted to enhance the displacement field of the fibers to describe crack openings.
The material behaviour at the discontinuity is characterized by a linear cohesive law linking the
axial stress and the displacement jump. The variational formulation is presented in the context of
the incompatible modes method and details are given on the corresponding computational
procedure and the numerical integration of the constitutive laws. The simulation of the non
linear behavior of a cantilever beam structure and of a reinforced concrete frame are provided to
illustrate the performance of the novel enhanced high order multifiber Timoshenko beam.

1. Introduction

Experimental observations show that under severe static or dynamic loadings strains localize in specific zones sometimes called
‘plastic hinges’. With increasing loading, discontinuities can appear leading to partial or total structural collapse. Among the different
existing numerical models to study post-peak behavior and failure, beams permit to reduce the necessary number of degrees of
freedom and are therefore computational very efficient.

A novel enhanced high order multifiber Timoshenko beam is introduced in this article. The beam is displacement based and
geometrically linear, its section can be of arbitrary shape and a local constitutive law is assigned to each fiber. The Strong
Discontinuity Approach (SDA) is adopted and the material behaviour at the discontinuity is characterized by a linear cohesive law
linking the axial stress and the displacement jump. When a significant amount of fibers reaches failure, failure at the beam and
structural level can be therefore ‘naturally’ reproduced.

Several finite element multifiber beam formulations have been developed and implemented in various Finite Element codes
[1–4]. Multifiber beams have proven highly effective for civil engineering applications: non-linear analysis of beams or walls with
non-homogeneous sections (e.g. reinforced concrete (RC)) [5–8]; Soil-Structure Interaction problems [9]; Fiber Reinforcing Polymer
confinement [10]; seismic vulnerability assessment of retrofitted RC structures [11]; sections submitted to bending, shearing or
torsion [12], flexure-shear interaction [13], axial and bending interactions [1–3,14,15]. Euler-Bernoulli multifiber beam formulations
are used when the shear effects are negligible [14]. Timosheko formulations are more suitable to reproduce the interactions between
axial forces, shear forces and moments [5,12,16–23].

⁎ Corresponding author.
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In order to realistically reproduce strain localization, some authors propose to replace the part of the beam where strain con-
centration is expected by 3D finite elements. This requires the definition of proper boundary conditions to satisfy compatibility with
the adjacent beam elements [24]. An energetic equivalence is therefore considered between the work done at the nodes of the volume
interface and the single node of the beam element. Another method, less expensive in terms of calculation time, is to modify the post-
peak material behavior at the fiber level [25]. A 3D finite element modelling is first performed to calculate the energy dissipated
during the development of the stain localization zone. The energy dissipated by the multifiber model is then considered equal by
suitably modifying the constitutive law. This makes possible to derive an estimate of the crack opening in a fiber. A kinematic
enhancement of the Timoshenko beam can be also adopted. In [12], the authors proposed to enhance the kinematics of the multifiber
section of a Timoshenko beam by a torsional warping function calculated solving of a local problem. [26] propose to update the
torsion warping function at each calculation step. A multifiber kinematic enhancement is also introduced in [27] to take into account
the effect of transverse reinforcements in reinforced concrete sections.

In order to simulate failure and to describe crack openings with classical (no multifiber) beams, several authors enhanced the
kinematic using the Strong Discontinuity Approach (SDA). The material behaviour at the discontinuity is characterized by a gen-
eralized law, linking for example the bending moment and the rotational jump, which allows capturing the released fracture energy
[28–36]. A generalized higher order Timoshenko beam with embedded rotation discontinuity has been recently presented by the
authors of this article in [37].

Up to now however, few authors have tried to combine SDA and multifiber beams. In [38], the authors developed a multifiber
Timoshenko beam with a discontinuity of the axial displacement at the fiber level. In [22], the authors presented an enhanced
multifiber Timoshenko beam for reinforced concrete structures. The displacement field within the fiber is enhanced by one strong
discontinuity variable to describe the local failure. Concrete is modeled by means of a one-dimensional damage model coupled to a
cohesive model and steel with a one-dimensional elasto-plastic model coupled to a cohesive model. In the following, the model of
[22,38] is referred as Full-Linear-Independent (FLI) since linear functions are used to interpolate the displacement fields at the beam
level.

We present in this article the way to combine SDA (rotation discontinuity) with a higher order multifiber Timoshenko beam. The
original beam formulation has shape functions of order three for the transverse displacements and two for the rotations. It is free of
shear locking and one element is able to predict the exact tip displacements for any complex distributed loadings and any suitable
boundary conditions [23]. In the following, it is stated as Full-Cubic-Quadratic (FCQ) and its performance has been already compared
with respect to other beam formulations found in the literature [39–41] in one of the previous articles of the authors [42].

This article is structured as follows: Section 2 presents the enhanced formulation of the FCQ multifiber Timoshenko beam and
describes the discontinuity kinematics. The variational formulation, the way to obtain the equilibrium equations and specific details
on the determination of the enhancement functions are also provided. Section 3 introduces the constitutive laws and Section 4 the
computational procedure. Two numerical applications are finally studied in Section 5 to show the performance of the novel enhanced
high order multifiber beam.

2. Enhanced multifiber Timoshenko Full-Cubic-Quadratic beam

2.1. Timoshenko FCQ beam

2.1.1. Modified shape functions considering an internal rotational degree of freedom
Fig. 1 illustrates a Timoshenko FCQ beam element denoted e (for simplicity reasons, presentation is provided hereafter in 2D). We

note Le the length of the beam, i and j the external nodes and k the internal node.
At time t, the generalized displacements US of a section S located at position x of the beam element axis are:
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Ux being the longitudinal displacement, Vy the transverse displacement and Θz the rotation of the section S. de is the nodal dis-
placement vector of the FCQ formulation defined by:

= U V V V U Vd [ Θ Δ ΔΘ Δ Θ ]e xi yi zi yk zk yk xj yj zj
1 2

(2)

where VΔ , ΔΘyk zk
1 and VΔ yk

2 are the degrees of freedom of the internal node (with no specific physical meaning) [23].

Fig. 1. Timoshenko FCQ beam [23].
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N N,u v and Nθ are the shape functions of the three displacement components defined as [23]:

⎡

⎣
⎢⎢

⎤

⎦
⎥⎥ =

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

x

x

x

N N

N N N N

N N N

N

N

N

( )

( )

( )

0 0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0 0

,

u

v

θ

u u

v v v v

θ θ θ

1 2

2 7 9 5

3 8 6 (3)

where

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟

⎜ ⎟⎜ ⎟

⎜ ⎟

= −
=

= − ⎛
⎝
+ ⎞

⎠

= − ⎛
⎝
⎞
⎠

= − ⎛
⎝
− ⎞

⎠
= ⎛

⎝
− ⎞

⎠

= ⎛
⎝
− ⎞

⎠
⎛
⎝
− ⎞

⎠
= − −

= −⎛
⎝
⎞
⎠
⎛
⎝⎜
− ⎞

⎠⎟
( )

( )

( )

( )

( )

N

N

N

N

N

N

N

N

N

1

1 1 2

2 1

2 1

3 2

1 1 3

1 1 2

2 3

u x

L

u x

L

v x

L

x

L

v x

L

x

L

v x

L

x

L

v x

L

x

L

θ x

L

x

L

θ x

L

θ x

L

x

L

1

2

2

2

7

2

9

2

5

2

3

8

2

6

e

e

e e

e e

e e

e e

e e

e

e e

(4)

With respect to the original formulation [23], a slight modification is introduced hereafter re-writing the interpolation of the
rotations as a function of the rotations at the nodes i and j and the rotation at the note k situated at the middle of the element

= tΘ Θ ( , )zk z
L

2
e (see Fig. 2). To do this, the relation between ΔΘzk and Θzk is first found calculating the rotation at the middle of the

element from Eq. (1) (expressing the shape functions N N,θ θ
3 8 and N θ

6 at =x L
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= + +t t t tΔΘ ( ) Θ ( )
1

4
[Θ ( ) Θ ( )]zk zk zi zj (6)

Introducing Eq. (6) in Eq. (1), the rotation field can now be interpolated function of the rotations at the external notes i j, and the
rotation at the middle point k:
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with the three modified interpolation functions:
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Eq. (8) satisfy all the necessary properties of a shape function [37,43,44]. The above modification helps to determine the en-
hancement functions of the multifiber Timoshenko FCQ beam element (see Section 2.3) and has no influence on the performance of
the FCQ formulation [23,42].

The use of linear interpolation functions for the axial displacement and quadratic approximation for the rotation provides in-
consistent results when N-M interactions and nonlinear material effects are considered. A solution to this problem was provided by
the authors in [42] using higher order interpolation functions for the axial displacement field for the FCQ beam. In this paper
however we focus on M-T interactions and therefore the initial version of the formulation is adopted [23].

2.1.2. Axial displacement: fiber vs. beam axis interpolation
Following the planar section hypothesis (Timoshenko theory), the displacements of a fiber of coordinates x y, at instant t are

deduced from the generalised displacements (Eq. (1)) as:

= −
=

u x y t U x t y x t
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( , , ) ( , ) Θ ( , )

( , , ) ( , )
x x z
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The multifiber beam formulation can be presented in two equivalent: an interpolation at the fiber level (Path a) and an inter-
polation at the beam level axis (Path b), illustrated in Fig. 3 and Eq. (10).

Fig. 2. Modified Timoshenko FCQ beam.
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The first formulation, Path (a) in Fig. 3a, consists in calculating the axial displacements vector y td ( , )f at the nodes of each fiber f
of ordinate y considering the hypothesis of planar sections (9). That works:
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Hence, the fiber can be considered as a 1D three-node bar as shown in Fig. 4.
The axial displacement field u x y t( , , )x along the fiber is thus interpolated by shape functions xN ( )f such that:
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As a result, the multifiber beam element formulation is transformed into a combination of 1D three-node bar elements.
On the other hand, Path (b) consists in interpolating the generalized displacement fields with the shape functions of the adopted

beam formulation. Then, the axial displacement along each fiber is determined using the planar section hypothesis, Eq. (9), at the
integration points. The displacement field is therefore no longer interpolated along each fiber but along the axis of the beam element
as follows:
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As shown in Sections 2.2, 2.3 and 4 Path (a), Eq. (12), allows writing the axial displacement at the fiber level and thus to define

Fig. 3. Two multifiber beam formulations: (a) fiber level (Path a), (b) beam level axis (Path b).

Fig. 4. A three-node fiber.
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the discontinuity kinematics and the corresponding enhancement functions. Path (b), Eq. (15), facilitates the writing of the varia-
tional formulation, the numerical implementation procedure and the construction of the element stiffness matrix.

2.2. Fiber kinematic enhancement

We propose hereafter a way to adapt the SDA for beams (see [22,28–34,37,38]) for the higher order multifiber Timoshenko beam
introduced in [23].

2.2.1. Enhanced axial displacement
In order to account for several discontinuities within a fiber, the enhanced axial displacement field at the fiber level is written as

follows (see Eq. (12)):
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with npg the number of integration points, H x( )xd the Heaviside function, ϕ x( )d( ) the functions associated with each discontinuity (d)
allowing to fulfill the compatibility conditions between the elements and u t( )x

d( ) , the displacement discontinuities variables.
Two Gauss integration points are sufficient to obtain an accurate integration of the axial forces at the fiber level since the

interpolation functions of the strain field are linear. It is assumed that each integration point carries only one discontinuity (Fig. 5):
The coordinates of the integrations points and the associated integration weights in the real and reference element are:
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In the proposed model in this paper, each fiber can carry one or two discontinuities. Also, it is a question of enhancing the integration
point here rather than enhancing the element. This choice is made in order to respect the ultimate values of the stresses throughout
the fiber, especially at the points that interest the calculation, i. e. at the integration points. More details will be addressed when
elaborating the equilibrium equations.

2.2.2. Enhanced axial strain
The strain field at the fiber is easily derived from the axial displacement field as follows:
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To simplify the equations, the vector tu ( )x carrying the discontinuities by fiber is introduced (see Fig. 5):

Fig. 5. (a) Three-node fiber. (b) Three-node fiber: two integration points, one discontinuity by integration point.
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We also use the vector:
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The index r indicates that the interpolated discontinuities are real variables (see Section 2.3 for the virtual variables).
Therefore, the enhanced strain filed takes the following form:
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In order to determine the enhancement functionsGr
d( ), known as the compatibility operators, two requirements should be met: (1)

the introduction of displacement field discontinuities must not influence the nodal displacements so that the elements compatibility is
satisfied. (2) to avoid stress locking phenomena Gr

d( ) must be able to reproduce the zero hinge mode [29]; i.e. in the case of a fully
opened discontinuity the cohesive stress at the discontinuity must vanish and the strain ̃εx must tend to zero.

1st requirement: compatibility
The following three equations have to satisfied:
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Following (27)–(29), the enhancement functions ϕ x( )d( ) corresponding to the two discontinuities can be defined as:
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The values of Eq. (31) at the two integration points are summarized in the table below:
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In Table 1, the values ofG x( )r
(1)

2 andG x( )r
(2)

1 are not zero, indicating that the strain states at the integration points are coupled, i.e.
the presence of a discontinuity at the first integration point influences the state of the discontinuity at the second integration point.
This leads to a complex numerical implementation, see Section 4.

2nd requirement: zero hinge mode
Eq. (31) should verify the zero hinge mode requirement. Three cases have to be checked: (i) only the first discontinuity is active,

(ii) only the second discontinuity is active, (iii) both discontinuities are active.
The first case implies: = −u u ux xk xi

(1) and =u uxj xk. Therefore,

  

̃

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ =

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ + = + + − ⎛

⎝
⎜⎜ + ⎞

⎠
⎟⎟
⎛
⎝
⎜⎜ − ⎞

⎠
⎟⎟

= + + =
=

ε x t x y t G x u t B x u B x u B x u B x B x u u

B x B x B x u

B d, ( ) , ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ( ) ( ) ( )) 0

x f f r x fi xi fj xj xk xk fj fk xj xi

fi fj fk xi

(1) (1)

0 (32)

The second case implies: = −u u ux xj xk
(2) and =u uxk xi. Therefore,

  ̃

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ =

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ + = + + − ⎛

⎝
⎜⎜ − ⎞

⎠
⎟⎟ = + +

=
=

ε x t x y t G x u t B x u B x u B x u B x u u B x B x B x uB d, ( ) , ( ) ( ) ( ) ( ) ( ) ( ) ( ( ) ( ) ( ))

0

x f f r x fi xi fj xj xk xk fj xj xk fi fj fk xi
(2) (2)

0

(33)

The third case implies: = −u u ux xj xk
(2) and = −u u ux xk xi

(1) . Therefore,

  

̃

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ =

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟ + + = + + − ⎛

⎝
⎜⎜ + ⎞

⎠
⎟⎟
⎛
⎝
⎜⎜ − ⎞

⎠
⎟⎟

− ⎛
⎝
⎜⎜ − ⎞

⎠
⎟⎟ = + + =

=

ε x t x y t G x u t G x u t B x u B x u B x u B x B x u u

B x u u B x B x B x u

B d, ( ) , ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ( ) ( ) ( )) 0

x f f r x r x fi xi fj xj xk xk fj fk xk xi

fj xj xk fi fj fk xi

(1) (1) (2) (2)

0 (34)

Eqs. (32)–(34) show that the compatibility operators Gr
d( ) satisfy the zero hinge mode requirement.

2.3. Variational formulation

2.3.1. Interpolation of the virtual fields
The upscript ∗• is adopted hereafter for the virtual variables. The virtual displacements are interpolated with the same shape

functions as the real displacements. Using (15), the axial virtual strains take the following expression:

= +∗ ∗ ∗ε x y t x y t x tB d G u( , , ) ( , ) ( ) ( ) ( )x f e v x (35)

whereGv is the enhancement function of the virtual discontinuities ∗ux , also known as the equilibrium operator, defined as the sum of
a regular Gv and a singular Gv part:

= + = + δx x x x xG G G G( ) ( ) ( ) ( ) ( )v v v v xd (36)

The use of (15) enables to write the variational formulation using the virtual values of the nodal degrees of freedom ∗ td ( )e , thus
facilitating the numerical developments (see Section 4).

The enhancement functions Gv associated with virtual discontinuities are not necessarily equal to Gr associated with the real
discontinuities (see for example [37]). Actually, real discontinuities are interpolated following kinematic considerations (see Section
2.2) while virtual discontinuities are interpolated following static considerations (see Section 2.4). This is in order to satisfy the
balance between the discontinuous and the continuous parts in the fiber, as well as the Patch test. Both interpolations in the same
formulation are first proposed in [45,46].

Following Timoshenko’s theory, the virtual shear strain is constant and calculated as:

Table 1

Values of the kinematic operator xG ( )r at the two integration points.

x1 x2

G x( )r
(1)

⎜ ⎟− ⎛
⎝
− − ⎞

⎠
1

Le
2

2

3
⎜ ⎟⎛
⎝
− + ⎞

⎠
1

Le
2

2

3

G x( )r
(2)

⎜ ⎟⎛
⎝
− + ⎞

⎠
1

Le
2

2

3
⎜ ⎟⎛
⎝
− − ⎞

⎠
1

Le
2

2

3
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⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠
= ⎛

⎝
⎞
⎠
= ∂
∂ − = ∂

∂ − =∗ ∗ ∗ ∗ ∗ ∗ ∗γ x y t γ x t
x
V x x

x
x t t x tN d N d B d, , , ( ) Θ ( ) ( ) ( ) ( ) ( ) ( )xy xy y z

v
e e

γ
e

Θ

(37)

2.3.2. Principle of virtual work
2.3.2.1. Fiber level. The internal work of each fiber is:

∫⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠
= ⎛

⎝
⎞
⎠
+ ⎛

⎝
⎞
⎠

∗ ∗W y t δε x y t σ x y t δγ x y t τ x y t d, ( , , ) , , ( , , ) , , Ωint
f

x
T

x xy
T
xy

f

Ω f
(38)

where σx and τxy are the axial and shear stresses at the fiber, ∗δεx and ∗δγxy are respectively the axial and the shear virtual strains

variations and Ω f is the fiber volume.
Introducing (35) and (37) in (38) results:

= +∗ ∗W y t δ t y t δ y t y td F u F( , ) ( ) ( , ) ( , ) ( , )int
f T

int B
f

x
T

int G
f

, , (39)

where

∫⎜ ⎟⎛
⎝

⎞
⎠
= ⎡

⎣⎢
⎤
⎦⎥

y t x y x
σ x y t

τ x y t
dF B B, [ ( , ) ( )]

( , , )

( , , )
Ωint B

f
f

γ T x

xy

f
, Ω f

(40)

and

∫⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠
= ⎛

⎝
⎞
⎠

y t x σ x y t dF G, ( ) , , Ωint G
f

v
T

x
f

, Ω f
(41)

Beam level
The internal work at the multifiber beam element level is found simply by summing up the internal work of the fibers:

∑ ∑= ⎛
⎝⎜

⎞
⎠⎟
= + ⎛

⎝⎜
⎞
⎠⎟

∗ ∗W t W y t δ t t δ y t y td F u F( ) , ( ) ( ) ( , ) ,int
e

f

nfib

int
f T

int B
e

f

n

x
T

int G
f

, ,

f

(42)

with nf the number of cracked fibers per beam element. A cracked fiber is a fiber with at least one discontinuity.
Structural level
Finally, the total internal work a the level of the structure is:

∑ ∑ ∑= = + ⎛
⎝⎜

⎞
⎠⎟

∗ ∗W t W t δ t t δ y t y td F u F( ) ( ) ( ) ( ) ( , ) ,int
str

e

nele

int
e strT

int B
str

e

n

f

n

x
T

int G
f

, ,

f

(43)

with n the number of elements with at least one cracked fiber.
The introduction of the last expression in the principle of virtual work gives:

∑ ∑
− =

− + ⎛
⎝⎜

⎞
⎠⎟
=∗ ∗

W t W t

δ t t t δ y t y td F F u F

( ) ( ) 0

( ) ( ( ) ( )) ( , ) , 0

int
str

ext
str

strT
int B
str

ext
str

e

n

f

n

x
T

int G
f

, ,

f

(44)

The equilibrium of the structure must be respected for all virtual displacements ∗δ td ( )str as well as for any virtual displacement
jump ∗δ y tu ( , )x at the fiber level. This provides the following system of equations:

− =
∀ ∈ … ∀ ∈ … =

t t

e n f n e y t

F F

F

( ) ( ) 0

{1, 2, , } et {1, 2, , ( )} : ( , ) 0

int B
str

ext
str

f int G
f

,

, (45)

The first equation corresponds to the overall equilibrium of the structure. The other equations represent the local equilibrium at the
level of each fiber with active discontinuities and can be solved locally at the fiber level.

y tF ( , )int G
f

, can be further developed using the decomposition (36) to give:

∫ ∫ ∫⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠
= ⎛

⎝
⎞
⎠

= ⎛
⎝

+ ⎞
⎠
⎛
⎝

⎞
⎠

= ⎛
⎝

⎞
⎠

+ ⎛
⎝

⎞
⎠

=
δ σt y t x σ x y t d x x σ x y t d x σ x y t d x y tF G G G( ) , ( ) , , Ω ( ) ( ) , , Ω ( ) , , Ω , ,

0

int G
f

v
T f

v
T

x
T f

v
T f

d, Ω Ω Ωf f d f

(46)

with

∫ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

= ⎛
⎝

⎞
⎠

δ σx σ x y t d x y t( ) , , Ω , ,x
T f

d
Ω f d

8



leading to:

∫ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

= − ⎛
⎝

⎞
⎠
= − ⎛

⎝
⎞
⎠

σx σ x y t d x y t y tG C( ) , , Ω , , ,v
T f

d
f

Ω f
(47)

with y tC ( , )f the vector of cohesive stresses at discontinuities level belonging to the same fiber defined as:

⎛
⎝⎜

⎞
⎠⎟
= ⎡
⎣⎢

⎤
⎦⎥

y t
C y t

C y t
C ,

( , )

( , )
f

f

f

,(1)

,(2)
(48)

2.4. Determination of xG ( )v

It remains to determine the functions =x G x G xG ( ) [ ( ) ( )]v v v
(1) (2) . Let’s assume a linear function for G x( )v

d( ) of the form +ax b (a
and b constants) and a linear expression for the fiber stress = +σ x αx β( ) (α and β constants). a and b are determined by an
identification procedure that ensures the following equality ∫ = −G x σ x y t d σ x y t( ) ( , , ) Ω ( , , )v

d T f
dΩ

( )
f (47) for each discontinuity level

=x xd. Indeed,

∫ ⎛
⎝
⎜⎜ + ⎞

⎠
⎟⎟
⎛
⎝
⎜⎜ + ⎞

⎠
⎟⎟ = −⎛

⎝
⎜⎜ + ⎞

⎠
⎟⎟ ⇒ ⎧

⎨⎩
= −
= − +ax b αx β d αx β

a x

b x
Ω f

d
α β

identification L L d

L L d
Ω with respect to and

6 12

4 6f

2 3

2 (49)

Therefore, the function G x x( , )v
d

d
( ) takes the following general form:

⎜ ⎟⎛
⎝

⎞
⎠
= ⎡
⎣⎢

− ⎤
⎦⎥

+ −G x x
L L

x x
L
x

L
,

6 12 6 4
v
d

d
e e

d
e

d
e

( )
2 3 2

(50)

Finally, for =x xd pg ele (Eq. (17)), the equilibrium operators are:

⎜ ⎟

⎜ ⎟

= − ⎛
⎝
+ ⎞

⎠
= − =

= − − ⎛
⎝
− ⎞

⎠
= = −

G x x G x G x

G x x G x G x

( ) 1 3 with ( ) and ( ) 0

( ) 1 3 with ( ) 0 and ( )

v L L v L v

v L L v v L

(1) 2 3 1 (1)
1

2 (1)
2

(2) 2 3 1 (2)
1

(2)
2

2

e e e

e e e

2

2
(51)

An additional verification is required to validate the choice of the equilibrium operator G x( )v
d( ) . The enhancement method with

embedded discontinuities is similar to the incompatible mode method and as mentioned in the literature [47] the equilibrium
operator should verify the Patch test. This test, initially proposed by [48], defines a convergence condition during mesh refinement
(the elementary strains and stresses should stay constant). In other words, this test guarantees the ability to represent a constant state
of stress per element [49].

The patch test requires that the additional virtual work associated with the enhancement must be zero if the stress is constant
along the element. This results the following condition:

∫ = −G x dx( ) 1
L

v
d( )

e (52)

This condition is easily verified using Eq. (50).

3. Constitutive laws

In an enhanced multifiber beam, each fiber corresponds to a specific material. Constitutive laws composed of a continuous and a
cohesive part should be therefore defined at the fiber level. A damage mechanics law, an elasto-plastic law and the corresponding
cohesive laws are detailed hereafter. This choice is particularly suitable for reinforced concrete structures (see Section 5), where
damage mechanics is often adopted for concrete and plasticity for steel. The laws are presented in 1D as shear is considered de-
coupled and linear elastic (see Section 3.3).

3.1. Damage mechanics model – cohesive model

3.1.1. Continuous part
In damage mechanics constitutive laws, damage evolution is often driven by a strain threshold [50–54,10,55]. A stress threshold

is however chosen hereafter in order to simplify the numerical implementation. The damage model developed in [49,22] is adopted.
The origin of this model goes back to the work of [56]. A scalar internal damage variable called compliance and noted D is in-
troduced such that the 1D strain-stress relation takes the following form:
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= ∈ ⎡
⎣⎢

∞⎤
⎦⎥

ε Dσ D
E

avec
1

,
(53)

The stress-based damage threshold surface becomes:

= − − ⩽ϕ σ σ q( ) 0by (54)

where σby the elastic limit for a material that may have a different behavior in compression and tension (e.g. concrete).

= ⎧⎨⎩
σ

σ

σ

for compression

for tension
by

by
c

by
t

(55)

q the stress-like variable associated with the hardening mechanism controling the evolution of the damage threshold surface (50)

= − = ⎧⎨⎩
q H ξ H

H

H
with

for compression

for tension
b b

b
c

b
t

(56)

Hb the (positive) damage hardening modulus, ξ the strain-like internal variable that controls the hardening mechanism. For more
details on the thermodynamic formulation of this model, the reader is referred to the work of [49]. In the following, only those
elements necessary for understanding the article are presented.

The free energy Ψ is written as follows:

⎜ ⎟⎛
⎝

⎞
⎠
= +−D ξ εD ε ξH ξΨ ,

1

2

1

2
b

1

(57)

The dissipated energy Db due to damage is (where the symbol •̇ is the derivative with respect to time):

∫ ∫= − = + >D σε d σDσ qξ ḋ Ψ̇ Ω
1

2
̇ ̇ Ω 0b

Ω Ω (58)

As usual, the evolution of the internal variables are determined using the principle of maximum dissipation; among all permissible
stresses, those that maximize dissipation are selected.

= =
= =

∂
∂

∂
∂

D γ γ

ξ γ γ

̇ ̇ ̇

̇ ̇ ̇

σ

ϕ

σ

sign σ

σ

ϕ

q

1 ( )

(59)

with γ ̇ the Lagrange multiplier.
The Kuhn-Tucker conditions and the consistency condition are:

⩾ ⩽ = =γ ϕ γϕ γϕ̇ 0 0 ̇ 0 ̇ ̇ 0

The damage process is active when γ ̇ is positive. Therefore, the value of ϕ ̇ must necessarily be zero to comply with the consistency
condition. This makes possible to deduce the expression of γ ̇:

= +
−

−γ
sign σ D ε

D H
̇

( ) ̇

b

1

1 (60)

Finally, the stress rate is written as function of the strain rate:

= ⎧⎨⎩
=
>

−

+
−
−

σ
D ε γ

ε γ
̇

̇ if ̇ 0

̇ if ̇ 0D H

D H

1

b

b

1

1 (61)

3.1.2. Cohesive part
A cohesive model is adopted to describe the behaviour at each discontinuity. The discontinuity activation criterion is again

formulated in terms of stresses; a failure surface ϕ
d( )

is introduced at each integration point in order to check the activation and
evolution of the discontinuity.

= − − =ϕ t C t σ q t d( ) ( ) ( ( )) 1, 2
d d

bu
d( ) ( ) ( ) (62)

where C t( )d( ) is the cohesive stress determined by Eq. (47), written as:

= =C y t σ x y t σ x y t( , ) ( , , ) ( , , )d
d pg

( ) (63)

Since the discontinuities d( ) occur at the integration points pg( ), the cohesive stresses C y t( , )d( ) should be equal to the continuous

stresses σ x y t( , , )pg . Therefore, the failure surfaces ϕ
d( )

at the integration points can be written as:

= − −ϕ t σ x y t σ q x t( ) ( , , ) ( ( , ))
pg

pg bu pg
( )

(64)
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where σbu is the ultimate stress, that may differ in compression and tension:

= ⎧⎨⎩
σ

σ

σ

for compression

for tension
bu

bu
c

bu
t

(65)

q is the stress-like variable associated with the cohesive model defined as:

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟
= −

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

=
⎧
⎨
⎪

⎩⎪

= −
= −

q x t Sξ x t S

S

S

, , with
for compression

for tension
pg pg b

b
c σ

G

b
t σ

G

2

2

bu
c

b
c

bu
t

b
t

2

2

(66)

Sb the softening (negative) modulus, Gb
c and Gb

t the compression and tensile failure energies and ξ the strain-like internal variable
whose role is to control softening.

The cohesive behaviour is defined by the following relation:

=u x t D x t C x t( , ) ( , ) ( , )pg pg
f

pg (67)

with D the compliance variable associated with cohesive model. This variable increases progressively with the discontinuity
=u x t u t( , ) ( )pg

d( ) . Fig. 6 illustrates the cohesive model.
The relation between the cohesive stress and the discontinuity can be also expressed as:

= +C x t S u x t σ( , ) ( , )f
pg b pg bu (68)

The total free energy of a fiber with several discontinuities takes the following form:

= + δt t tΨΨ( ) Ψ( ) ( )xd (69)

with δxd the Dirac function vector defined in Eq. (24) and tΨ( )the free energy vector associated with the discontinuities defined as:

= ⎡
⎣
⎢ ⎤

⎦
⎥t

t

t
Ψ( )

Ψ ( )

Ψ ( )

(1)

(2)
(70)

where Ψ
(1) and Ψ

(2) are respectively the free energies associated with discontinuities 1 and 2. The expressions are determined
according to the corresponding internal variables of the cohesive model:

= + =−t D u S ξ dΨ ( )
1

2
( ) ( )

1

2
( ) 1, 2

d d d
b

d( ) ( ) 1 ( ) 2 ( ) 2

(71)

Using the strain Eq. (25) and the expression of total free energy (69), one can deduce the total dissipation at the fiber level as:

= +D y t D y t D y t( , ) ( , ) ( , )tot (72)

where D is the dissipation due to discontinuities:

∫ ∑⎛
⎝⎜

⎞
⎠⎟
= ⎡

⎣⎢
⎛
⎝⎜

⎞
⎠⎟

− ⎛
⎝⎜

⎞
⎠⎟
⎤
⎦⎥

= − ⎛
⎝⎜

⎞
⎠⎟=

δD y t σ x y t ε y t d y t t y tC u Ψ, , , Ψ̇ , Ω ( , ) ( ) ̇ ,x

d

d
f f T

x x
Ω

1

2
( )

f

(73)

Among the admissible internal variables that verify the failure criteria, those that maximize dissipation are selected. To do this, a
Lagrange multiplier denoted γ is introduced. Therefore, the evolution equations of the internal variables are determined as:

Fig. 6. Cohesive model.
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=
=
=

D γ

ξ γ

u γ sign C

̇ ̇

̇ ̇

̇ ̇ ( )

sign C

C

f

( )f

f

(74)

Finally, in order to determine the Lagrange multiplier γ ̇ the consistency and Kuhn-Tucker conditions are used:

⩾ ⩽ = =γ ϕ γ ϕ γ ϕ̇ 0, 0, ̇ 0, ̇ ̇ 0 (75)

If the softening mechanism is active, the multiplier γ ̇ is strictly positive, which means that ϕ ̇ must be zero to respect =γ ϕ̇ ̇ 0. Using

Eq. (62) and =ϕ ̇ 0 result to:

=γ
S
C sign Ċ 1 ̇ ( )

b

f f

(76)

The cohesive force is finally given by:

=
⎧
⎨
⎪

⎩⎪

=
+ > <

> =

−

C

D u γ

σ S ξ sign C γ q σ

γ q σ

pour ̇ 0

( ) ( ) pour ̇ 0 and

0 pour ̇ 0 and

f
bu b

f
bu

bu

1

(77)

More information on the elaboration of these equations can be found in [22,44].

3.2. Elasto-plastic model – cohesive model

3.2.1. Continuous part
A classical 1D elasto-plastic model is briefly presented hereafter (for more details see [57]). As usual, the partition of (regular)

strains into an elastic and a plastic component is assumed:

= +ε x t ε x t ε x t( , ) ( , ) ( , )e p (78)

The elastic and hardening behaviours are assumed to decoupled and therefore the free energy Ψ can be also decoupled into an elastic
and a hardening term as follows:

⎜ ⎟⎛
⎝

⎞
⎠
= +ε ξ E ε H ξΨ ,

1

2
( )

1

2
( )e

s
e

s
2 2

(79)

with Es the Young modulus and Hs the hardening modulus. The elastic threshold is expressed as:

= − −ϕ σ σ q( ),sy (80)

with σsy the elastic limit and q the stress-variable hardening variable. ϕ is always negative when in elasticity. Once the elastic limit σsy
is reached, the material enters the plastic domain. As a result, the internal values associated with plasticity are activated and begin to
evolve. The plastic dissipation is written as:

∫= +D σ ε qξ d[ ̇ ]̇ Ωp T p

Ω (81)

In order to determine the evolution equations of the internal variables, the classical principle of maximum dissipation using the
Lagrange multiplier γ is applied. It is found that:

= =
= =

∂
∂
∂
∂

ε γ sign σ γ

ξ γ γ

̇ ̇ ( ) ̇

̇ ̇ ̇

p ϕ

σ

ϕ

q (82)

Using the consistency and the Kuhn-Tucker conditions, the rate of the Lagrange multiplier γ ̇ is finally found:

= +
∂
∂

∂
∂

∂
∂

∂
∂

∂
∂

γ
E ε

E H
̇

̇ϕ

σ s

ϕ

σ s
ϕ

σ

ϕ

q s
ϕ

q (83)

3.2.2. Cohesive part
The discontinuity represents a cohesive zone of zero thickness and appears at the integration points =x xd pg of the fiber when the

stress exceeds a critical value σu. The failure surface is written in terms of the cohesive force C as follows:

= − + ⩽ϕ C U C σ Su( , ) ( ) 0u (84)

The total dissipation energy is:

12



∫= + = + +D D D σ ε qξ dx C u[ ̇ ]̇ ̇tot T p T

Ω (85)

As before, an optimization under constraint problem is solved resulting to:

=u γ sign Ċ ̇ ( ) (86)

In order to find the rate of Lagrange multiplier γ ̇, the Kuhn-Tucker and the consistency conditions are used:

⩾ ⩽ = =γ ϕ γ ϕ γ ϕ̇ 0, 0, ̇ 0, ̇ ̇ 0 (87)

It is found that:

= =γ
S
C

S
Csign Ċ 1 ̇ 1 ̇ ( )

(88)

3.3. Shear behaviour

A multifiber Timoshenko beam can also account for the shear behavior. In the following and for simplicity reasons, shear is
considered elastic and decoupled from the axial behavior. Therefore,

⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠
= ⎛

⎝
⎞
⎠

= ⎧⎨⎩
τ x y t G y γ x y t G y

G

G
, , ( ) , , with ( )

Shear modulus for the fiber with the 1D damage mechanics law

Shear modulus for the fiber with the 1D plasticity law
c c

cb

ca (89)

4. Computational procedure

4.1. Linearization of the equilibrium equations

The first step toward the numerical implementation of the higher order enhanced multifiber beam is to linearize the equilibrium
Eq. (45). This operation gives the following system:

⎜ ⎟

⎧

⎨

⎪⎪⎪

⎩

⎪⎪⎪

⎡

⎣

⎢⎢⎢⎢⎢⎢

⋯
⋯
⋯⋯⋯
⋯

⎤

⎦

⎥⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢⎢⎢⎢
⎛
⎝

⎞
⎠

⎤

⎦

⎥⎥⎥⎥⎥⎥⎥⎥

=
⎡

⎣

⎢⎢⎢⎢⎢

− − ⎤

⎦

⎥⎥⎥⎥⎥

⎫

⎬

⎪⎪⎪

⎭

⎪⎪⎪

=

+ +
+

y t

y t

y t

K K K K

K K

K K

K K

d

u

u

u

F F

A

0 0

0 0
· · · ·
· · · ·

0 0

Δ

Δ ( , )

Δ ( , )
·
·

Δ ,

( )

0
0
·
·
0

e

n

BB BG BG BG

G B G G

G B G G

G B G G
t

e

x
e

x
e

x n e
e

t

int B
e

ext
e

t

1

1

1

2

( )

1

,

1

elm

nf e

nf e nf e nf e
f

1 2 ( )

1 1 1

2 2 2

( ) ( ) ( )

(90)

with

∑ ⎜ ⎟= ⎛
⎝

⎞
⎠=t y tK K( ) ,BB

f

n
BB

1

f

f
(91)

∫⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠
= ∂

∂
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

y t x y
σ

ε
x y t x y dK B B, ( , ) , , , ΩBB

f T x

x

f f

Ωf f
(92)

̃
∫⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠
= ∂

∂
⎛
⎝

⎞
⎠

y t x y
σ

ε
x y t x dK B G, ( , ) , , ( ) ΩBG

f T x

x
r

f

Ωf f
(93)

̃
∫⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠
= ∂

∂
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

y t x
σ

ε
x y t x y dK G B, ( ) , , , ΩG B v

T x

x

f f

Ωf f
(94)

̃
∫⎜ ⎟ ⎜ ⎟⎛

⎝
⎞
⎠
= ∂

∂
⎛
⎝

⎞
⎠

+ ∂
∂y t x

σ

ε
x y t x d AK G G

C

u
, ( ) , , ( ) ΩG G v

T x

x
r

f
f

x

f

Ωf f f
(95)

where Af is the fiber area and

∂
∂ =

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥
= ⎡⎣⎢

⎤
⎦⎥

∂
∂

∂
∂

∂
∂

∂
∂

S

S

C

u

0
0

f

x

C

u

C

u

C

u

C

u

(1)

(2)

f

x

f

x

f

x

f

x

(1),

(1)

(1),

(2)

(2),

(1)

(2),

(2) (96)

where S d( ) is the softening modulus for the cohesive models defined at integration points. The variables y tK ( , )G Gf f and ⎜ ⎟⎛
⎝

⎞
⎠

y tuΔ ,x f
e
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take respectively a matrix and vector form when both discontinuities are simultaneously active on a fiber.
The existence of two discontinuities per fiber necessitates to explain in details the numerical integration of the constitutive laws.

The different integration paths are discussed hereafter.

4.2. Numerical integration of the elasto-plastic model and the cohesive model

An elastic prediction (trial) is first made. The cohesive trial stresses +Ctf trial
1

,(1), and +Ctf trial
1

,(2), are written as follows (the enhancement
functionsG x( )v

d( ) were determined in section (2.4) such as the cohesive stressC f d,( ) at the discontinuity level is equal to the continuous
model stress σ x( )d , see Eq. (50)):

∫= − =+ + +C G x σ x d σ x( ) ( ) Ω ( )t
f trial

v t
f trial f

t
f trial

1
,(1),

Ω

(1)
1

,
1

,
1f (97)

∫= − =+ + +C G x σ x d σ x( ) ( ) Ω ( )t
f trial

v t
f trial f

t
f trial

1
,(2),

Ω

(2)
1

,
1

,
2f (98)

Assuming that each fiber is made of a single material and therefore =E x E( ) , the elastic predictor of the continuous stress

+σ x( )t
f trial

pg1
, is:

= = + −+ + +σ x Eε x E x y x εB d G u( ) ( ) [ ( , ) ( ) ]t
f trial

pg t
f trial

pg
f

pg e t r pg t t
p

1
,

1
,

, 1 (99)

Developing expression (99) for the two integration points gives (calculation details are given in appendices (A.1) and (A.2))
provides:

= + + −
= + + −

+ +
+ +

C E x y G x u x G x u x ε x

C E x y G x u x G x u x ε x

B d

B d

( ( , ) ( ) ( ) ( ) ( ) ( ))

( ( , ) ( ) ( ) ( ) ( ) ( ))

t
f trial f

e t r t r t t
p

t
f trial f

e t r t r t t
p

1
,(1),

1 , 1
(1)

1 1
(2)

1 2 1

1
,(2),

2 , 1
(1)

2 1
(2)

2 2 2 (100)

The above stresses (100) are used to calculate the trial failure surfaces +ϕt
f trial

1

,(1),
and +ϕt

f trial

1

,(2),
of the vector +ϕt

f trial

1

,
and therefore to

check whether one or both discontinuities are activated:

= − −+ + +ϕ σC q( )t

f trial
t
f trial

u t
f trial

1

,
1

,
1

,

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ =

⎡
⎣
⎢⎢

− −
− −

⎤
⎦
⎥⎥

+

+

+ +
+ +

ϕ

ϕ

C σ q

C σ q

( )

( )

t

f trial

t

f trial

t
f trial

u t
f trial

t
f trial

u t
f trial

1

,(1),

1

,(1),

1
,(1),

1
,(2),

1
,(2),

1
,(2),

(101)

Depending on the results, the following situations may occur, see Table 2:

• Case 1: no active discontinuities in the fiber.

• Cases 2 and 3: one active discontinuity in the fiber. Calculation of the internal variables and stresses at the corresponding
integration point.

• Case 4: two active discontinuities in the fiber. Calculation of the internal variables and stresses at two integration points.

4.2.1. Two active discontinuities per fiber
The Lagrange multipliers of the two failure surfaces are γ x( )1 and γ x( )2 . Considering that the cohesive models evolve in-

dependently at the two integration points x1 and x2 and using a backward Euler numerical integration scheme we get:

= +
= +

+ +
+

u x u x γ x sign C

ξ x ξ x γ x

( ) ( ) Δ ( ) ( )

( ) ( ) Δ ( )

t t t
f trial

t t

1 1 1 1 1
,(1),

1 1 1 1 (102)

and

= +
= +

+ +
+

u x u x γ x sign C

ξ x ξ x γ x

( ) ( ) Δ ( ) ( )

( ) ( ) Δ ( )

t t t
f trial

t t

1 2 2 2 1
,(2),

1 2 2 2 (103)

In order to simplify the expressions, we set = +s x sign C( ) ( )t
f trial

1 1
,(1), and = +s x sign C( ) ( )t

f trial
2 1

,(2), . The new stresses at the two

Table 2

Different cases depending on the trial failure surfaces.

Case 1 <+ϕ 0t

f trial

1
,(1),

and <+ϕ 0t

f trial

1
,(2),

Case 2 >+ϕ 0t

f trial

1
,(1),

and <+ϕ 0t

f trial

1
,(2),

Case 3 <+ϕ 0t

f trial

1
,(1),

and >+ϕ 0t

f trial

1
,(2),

Case 4 >+ϕ 0t

f trial

1
,(1),

and >+ϕ 0t

f trial

1
,(2),
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integration points become (see Appendix A.3 for the details):

= + +
= + +

+ +
+ +

C σ x EG x γ x s x EG x γ x s x

C σ x EG x γ x s x EG x γ x s x

( ) ( )Δ ( ) ( ) ( )Δ ( ) ( )

( ) ( )Δ ( ) ( ) ( )Δ ( ) ( )

t
f

t
trial

r r

t
f

t
trial

r r

1
,(1)

1 1
(1)

1 1 1
(2)

1 2 2

1
,(2)

1 2
(1)

2 1 1
(2)

2 2 2 (104)

Eq. (104) can be written in a matrix form as follows:

⎡
⎣⎢

⎤
⎦⎥
= ⎡
⎣⎢

⎤
⎦⎥
+ ⎡
⎣
⎢ ⎤

⎦
⎥⎡⎣⎢

⎤
⎦⎥

+
+

+
+

σ x

σ x

σ x

σ x

EG x s x EG x s x

EG x s x EG x s x

γ x

γ x

( )

( )

( )

( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

Δ ( )

Δ ( )
t

t

t
trial

t
trial

r r

r r

1 1

1 2

1 1

1 2

(1)
1 1

(2)
1 2

(1)
2 1

(2)
2 2

1

2 (105)

γ xΔ ( )1 and γ xΔ ( )2 are determined introducing (105) in the failure surfaces (that are equal to zero). This gives (see Appendix (A.5)
for the details):

⎡
⎣⎢

⎤
⎦⎥
= −⎡

⎣
⎢ −

−
⎤
⎦
⎥

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

−
+

+

γ x

γ x

EG x S EG x s x s x

EG x s x s x EG x S

ϕ x

ϕ x

Δ ( )

Δ ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( )

r r

r r

t

trial

t

trial

1

2

(1)
1

(2)
1 2 1

(1)
2 1 2

(2)
2

1

1 1

1 2 (106)

According to Eq. (106), the calculation of Lagrange multipliers is interdependent. This means numerically that the calculation for
both discontinuities will take place simultaneously and not successively. The final step consists in updating the internal variables
following Eqs. (102) and (103).

4.2.2. Complete failure at the two discontinuities
If both discontinuities are fully open, the two failure surfaces become zero ( − =+σ q x( ) 0u t pg1 ) and no stress transfer occurs. Both

cohesive stresses are therefore zero and this results to (see Appendix (A.6) for the details):

⎡
⎣⎢

⎤
⎦⎥
= −⎡

⎣
⎢ ⎤

⎦
⎥ ⎡

⎣⎢
⎤
⎦⎥

−
+
+

γ x

γ x

EG x s x EG x s x

EG x s x EG x s x

σ x

σ x

Δ ( )

Δ ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( )

r r

r r

t
trial

t
trial

1

2

(1)
1 1

(2)
1 2

(1)
2 1

(2)
2 2

1

1 1

1 2 (107)

4.2.3. Complete failure at one discontinuity
For the case of a complete failure at one discontinuity, the corresponding cohesive stress cancels out while the other discontinuity

continues its opening process. Two equations have to be used, the first corresponding to the fully open discontinuity ( =+σ x( ) 0t 1 1 ) and
the second resulting from the failure surface +ϕt 1 of the still evolving discontinuity. This gives the following system:

⎧
⎨⎩

=
=

+
+

σ x

ϕ x

( ) 0

( ) 0

t

t

1 1

1 2 (108)

The first equation is similar to the first equation of the system in Eq. (107), while the second equation is the one in Eq. (106). We
finally get (see Appendix (A.7) for the details):

⎡
⎣⎢

⎤
⎦⎥
= −⎡

⎣
⎢ −

⎤
⎦
⎥ ⎡

⎣
⎢⎢

⎤
⎦
⎥⎥

−
+

+

γ x

γ x

EG x s x EG x s x

EG x s x s x EG x S

σ x

ϕ x

Δ ( )

Δ ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( )

( )

r r

r r

t
trial

t

trial
1

2

(1)
1 1

(2)
1 2

(1)
2 1 2

(2)
2

1
1 1

1 2 (109)

4.3. Numerical integration of the damage mechanics model and the cohesive model

The numerical integration of the damage mechanics model associated with the cohesive model is presented hereafter. The
evolution of the internal variables of each discontinuity is independent. Nevertheless, the calculation of strains and stresses as well as
the corresponding Lagrange multipliers are coupled. Therefore, equations illustrating the evolution of the cohesive variables are
hereafter adopted for each discontinuity.

The particularity of the damage model lies in the fact that the trial values of the displacement jumps ( +u x( )t
trial

1 1 and +u x( )t
trial

1 2 ) at the
discontinuities at time step +t 1 are not the same as the ones (u x( )t 1 and u x( )t 2 ) of the previous time step t (this remark is important
for a successful numerical implementation of the model). Indeed,

= = ≠ =
= = ≠ =

+ + + +
+ + + +

u x D x C D x σ x D x σ x u x

u x D x C D x σ x D x σ x u x

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

t
trial

t
trial

t
f trial

t t
trial

t t t

t
trial

t
trial

t
f trial

t t
trial

t t t

1 1 1 1 1
,(1),

1 1 1 1 1 1

1 2 1 2 1
,(2),

2 1 2 2 2 2 (110)

The first step is the elastic prediction of stresses. We obtain the following system (see Appendix B for the details):

⎡
⎣⎢

⎤
⎦⎥
= ⎡
⎣
⎢ −

−
⎤
⎦
⎥ ⎡

⎣⎢
−
−

⎤
⎦⎥

+
+

− −
− −

− − +
− +

σ x

σ x

D x G x D x D x G x D x

D x G x D x D x G x D x

D x x y

D x x y

B d

B d

( )

( )

( ) ( ) ( ) 1 ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) 1

( ) ( , )

( ) ( , )

t
trial

t
trial

t r t t r t

t r t t r t

t
f

e t

t
f

e t

1 1

1 2

1
1

(1)
1 1

1
1

(2)
1 2

1
2

(1)
2 1

1
2

(2)
2 2

1
1

1 1 , 1

1
2 2 , 1 (111)

showing that elastic predictions of the stress states at the integration points are coupled.
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The next step is to introduce the calculated stresses in the failure surfaces +ϕ x( )t

trial

1 1 and +ϕ x( )t

trial

1 2 :

⎡
⎣
⎢⎢

⎤
⎦
⎥⎥ =

⎡
⎣⎢

⎤
⎦⎥
− ⎡
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−

⎤
⎦⎥

+

+

+
+
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ϕ x

σ x
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σ q x

σ q x

( )

( )

( )

( )

( )

( )
.t
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t

trial

t
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t
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u t

u t
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1 2

1 1

1 2

1

2
(112)

and the stress vector of Eq. (111) in Eq. (112):

⎡
⎣
⎢⎢

⎤
⎦
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⎣
⎢ −

−
⎤
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− ⎡
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B d
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t

trial

t r t t r t
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e t
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e t
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t
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1
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1
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(2)
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1
1

1 1 , 1 1

1
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1

2

(113)

The different cases presented in Section 4.2 and Table 2 are found.

4.3.1. Two active discontinuities per fiber

The two failure surfaces ( +ϕ x( )t

trial

1 1 and +ϕ x( )t

trial

1 2 ) are positive. The internal variables associated with the continuous damage model
are thus frozen while the internal variables associated with the cohesive model must be updated. The new stresses obtained at the
integration points take the following form (see Appendices (B.5) and (B.6) for the calculation details):

⎡
⎣⎢

⎤
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= ⎡
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⎤
⎦⎥
+ ⎡
⎣
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2 (114)

In order to determine the Lagrange multipliers γ xΔ ( )1 and γ xΔ ( )2 , Eq. (114) are introduced to the failure surfaces:

=
= ⇔ ⎡
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= ⎡⎣ ⎤⎦
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The Lagrange multipliers are calculated as follows (see Appendix B.1.1 for the details):
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The internal variables associated with the cohesive models are finally updated.

4.3.2. Complete failure at the two discontinuities
When both discontinuities are fully open, we have:

⎡
⎣⎢

⎤
⎦⎥
= ⎡⎣ ⎤⎦

+
+

σ x

σ x

( )

( )
0
0

t

t

1 1

1 2 (117)

It can be found (see Appendix B.3 for the details):
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4.3.3. Complete failure at a one discontinuity
As in Section 4.2.3, the following system is found:
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The corresponding Lagrange multipliers are:
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For the case when a constant stress/strain occurs in the fiber the choice made is to allow only one discontinuity.

5. Numerical applications

In order to validate the numerical implementation of the higher order enhanced Timoshenko multifiber beam and to study its
performance, two numerical applications are presented: (1) a cantilever beam structure (2) a reinforced concrete framed structure
tested by [58] and simulated in [59,60].

5.1. Cantilever beam structure

A cantilever beam structure of length =L 2.5 m submitted to a transverse displacement vy at its free end is studied hereafter, see
Fig. 7. The aim of this example is to prove the numerical efficiency of the higher order multifiber beam (FCQ) and to compare its
performance with first order multifiber beams (FLI) existing in the literature [40].

A first case is considered where the fibers are not enhanced and follow a bilinear softening constitutive law (Fig. 8a). Symmetrical
thresholds are considered in tension and compression. Then, a second case is studied with a linear elastic constitutive law coupled
with a linear cohesive model (Fig. 8b). The material properties are summarized in Table 3.

The structure is discretized with different number (NE) of FLI or FCQ multifiber Timoshenko beams. Each section is discretized
with 20 fibers. Results are presented in Fig. 9.

Fig. 9 illustrates the effect of mesh refinement on the global (bending moment – transversal imposed displacement) structural
response considering or not fiber enhancement. Without enhancement, the results of the FLI and FCQ elements are similar and
depend on the mesh size, see Fig. 9a and b. Fig. 9a and c show that the fiber enhancement improves the FLI performance. Never-
theless, mesh dependency is still significant in terms of softening response but also ultimate moment. Finally, Fig. 9b and d clearly
show that the fiber enhancement of the FCQ Timoshenko beams makes the answer (almost) identical, independent of the number of
elements.

5.2. Reinforced concrete frame

The non linear behavior of a reinforced concrete frame is studied hereafter. The frame has been tested by [58] and numerically
modeled by several authors using classical finite elements [61,59] or FLI multifiber Timoshenko beam elements [22]. The frame
geometry is illustrated in Fig. 10. The geometry and the applied loading being symmetric, half of the frame is considered for the
numerical model. All frame sections are of rectangular shape with a height =h 0.1524 m and width =b 0.1016 m. The top and bottom
fiber concrete covering is 0.014 m. The steel reinforcement is shown in Fig. 10.

Concrete fibers are modeled with the damage model presented in Section 3.1.1. The steel fibers are modeled with the elasto-

Fig. 7. Cantilever beam structure submitted to a transverse displacement.

Fig. 8. Constitutive laws (a) case without enhancement (b) case with enhancement.
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plastic model of Section 3.2.1. Both damage and elasto-plastic models are coupled with cohesive models (Sections 3.1.2 and 3.2.2
respectively) in order to describe the material behaviour at the discontinuities level, i.e. the integration points. Concrete and steel
properties are summarized in the Tables 4 and 5.

The frame is modeled using only 5 FCQ multifiber Timoshenko beam elements (NE=5): two elements for the column and three

Table 3

Material properties.

Properties Symbol Value

Young modulus E ×4 107 kNm−2

Poisson coefficient ν 0.2
Softening modulus S − ×8 105 kNm−3

Ultimate elastic stress σu 5000 kNm−2

Fig. 9. Cantilever beam structure – Bending moment versus transversal imposed displacement as a function of the number (NE) and type (FLI or
FCQ) of multifiber Timoshenko beam elements.

Fig. 10. Reinforced concrete frame tested by Cranston [58].
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elements for the beam. Each section is discretized with 20 fibers (18 for concrete and 2 for steel). The thickness of the steel fibers is
calculated by respecting the steel ratio of the section, given in Fig. 10. Perfect bonding is considered between steel and concrete and
3D phenomena – as concrete confinement due to the stirrups – are not taken into account. In Fig. 11 (right), the notation S(e g, )
means the section S at the integration point g of element e. Also, f(i) denotes the fiber of number i. Due to the symmetric configuration
of the frame structure (see Fig. 10, left), only half of it is simulated (see Fig. 10, right) and thus a vertical increasing displacement vy is
imposed as shown in Fig. 11.

The global response (force versus applied vertical displacement) of the frame is illustrated in Fig. 12. Results of the NE=5 FCQ

multifiber Timoshenko beams model are compared with experimental results [58], classical finite element results [61] and the
NE=104 FLImultifiber Timoshenko beams model [22]. The FCQmodel response is in good agreement with the experimental results

Table 4

Reinforced concrete frame – Concrete properties.

Properties Symbol Value

Young modulus Eb ×31.5 106 kNm−2

Poisson’s coefficient νb 0.2
Ultimate stress in traction σbtu 950 kNm−2

Elastic stress in compression σbcy 14,600 kNm−2

Ultimate stress in compression σbcu 36,500 kNm−2

Hardening modulus in compression Hbc ×29 106 kNm−2

Softening modulus in compression Sbc − ×40 106 kNm−3

Softening modulus in tension Sbt − ×11 106 kNm−3

Table 5

Reinforced concrete frame – Steel properties.

Properties Symbol Value

Young Modulus Ea ×200 106 kNm−2

Poisson’s coefficient νa 0.3
Elastic stress limit σay 293,000 kNm−2

Ultimate stress σau 310,000 kNm−2

Hardening modulus Ha ×5.02 105 kNm−2

Softening modulus Sa − ×42 106 kNm−3

Fig. 11. Reinforced concrete frame – Detail of the frame (left) and cross section (right) meshes.
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[58] and the finite element numerical results [61]. The FLI model results are less accurate, despite the important number of beam
elements adopted.

In order to analyze the local behaviour at the fiber level and to see how it affects the global response, the results of the FCQmodel
are isolated in Fig. 13. The force/displacement coordinates of the points A-G in Fig. 13 are summarized in Table 6. Each point
corresponds to a local phenomenon that affects the global response of the structure. More specifically:

• Point A corresponds to the first change of the slope. It is related to the beginning of the hardening phase of the lower steel fiber in
element 5 (see Fig. 14c).

• Point B corresponds to the same fiber when it reaches its ultimate stress (310MPa), see Fig. 14c.

• Point C denotes the beginning of hardening of the upper steel fiber in Section 2 of the upper steel fiber (S(2,2)/f (2), Fig. 11) of
element 2 (Fig. 14a).

• Point D corresponds to the hardening of Section 1 (S(3,1), Fig. 11) of the upper steel fiber (f(2), Fig. 11) of element 3.

• Points E and F represent the beginning of hardening of the upper steel fibers f(2) of sections S(2,1) and S(3,2) of elements 2 and 3
respectively.

• Point G indicates the time step where the top-steel fibers of sections S(2,2) and S(3,1) of elements 2 and 3 reach their ultimate
values ( =σ 310su MPa).

Fig. 12. Reinforced concrete frame – Force versus vertical imposed displacement: experimental, finite elements (FE), FLI and FCQ model results.

Fig. 13. Reinforced concrete frame – Force versus vertical imposed displacement: FCQ model results.
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Table 6

Reinforced concrete frame – The coordinates of the green points on the Fig. 13.

Point 0 A B C D E F G

vy (m) 0 0.0084 0.01504 0.01904 0.02208 0.0272 0.0432 0.0546

Fy (kN) 0 15.93 20.49 21.71 22.51 21.98 19.17 16.12

Fig. 14. Reinforced concrete frame – Evolution of stress in the fibers, FCQ model.

Fig. 15. The number of discontinuities developed per element as a function of the imposed displacement.
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Following the previous analysis, the behaviour of the steel fibers dominates the global reinforced concrete frame response.
Nevertheless, discontinuities in concrete fibres start developing from the very beginning. Indeed, Fig. 15 illustrates the number of
fibers with discontinuities developed in each element (ELE) as a function of the imposed vertical displacement. This numerical study
proves the ability of the higher order multifiber FCQ Timoshenko beam to reproduce the non linear behavior of realistic reinforced
concrete structures and to follow the evolution of non-linearities both at global and local levels, reason for considering it as a high
valuable multi-scale numerical tool.

6. Conclusion

A novel high order enhanced multifiber Timoshenko beam is introduced in this article. The element is based on the Timoshenko
finite element beam formulation of [23]. The novelty of the enhanced beam lies in its ability to reproduce several discontinuities
along the fibers ensuring compliance with the stress limit values. The variational formulation, the constitutive models and several
computational issues are covered. Numerical examples are given to validate the model and to study its performance.

As a perspective of this work, one can mention the enhancement of the transverse component of the displacement field at the fiber
level in order to study torsion or shear problems. Coupling between axial and transverse discontinuities can be also useful to simulate
two-dimensional softening behaviour at the fiber level. Finally, extension of the model for cyclic and dynamic loadings requires to
take into account crack opening and closure.
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Appendix A. Integration of the cohesive elasto-plastic model

First, the trial values of the cohesive stresses (100) are obtained in the following way:

= = − = + + −
= + + −

+ + + + + +
+

C σ x E ε x ε x E x y G x u x G x u x ε x

E x y G x u x G x u x ε x

B d

B d

( ) ( ( ) ( )) ( ( , ) ( ) ( ) ( ) ( ) ( ))

( ( , ) ( ) ( ) ( ) ( ) ( ))

t
f trial

t
trial

t
trial

t
p f

e t r t
trial

r t
trial

t
p

f
e t r t r t t

p

1
,(1),

1 1 1 1 1 1 , 1
(1)

1 1 1
(2)

1 1 2 1

1 , 1
(1)

1 1
(2)

1 2 1 (A.1)

= = − = + + −
= + + −

+ + + + + +
+

C σ x E ε x ε x E x y G x u x G x u x ε x

E x y G x u x G x u x ε x

B d

B d

( ) ( ( ) ( )) ( ( , ) ( ) ( ) ( ) ( ) ( ))

( ( , ) ( ) ( ) ( ) ( ) ( ))

t
f trial

t
trial

t
trial

t
p f

e t r t
trial

r t
trial

t
p

f
e t r t r t t

p

1
,(2),

1 2 1 2 2 2 , 1
(1)

2 1 1
(2)

2 1 2 2

2 , 1
(1)

2 1
(2)

2 2 2 (A.2)

A.1. Two active discontinuities per fiber

For the case of two active discontinuities per fiber, the new values of the cohesive stresses (104) are:
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The Lagrange multipliers obtained in (106) are calculated as:
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A.2. Complete failure at two discontinuities

When the two discontinuities are fully open, there is no stress transfer and therefore the stresses are zero:
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From this system, one can easily deduce the two Lagrange multipliers (107).

A.3. Complete failure at a single discontinuity level

Developing the system of Eq. (108) gives:
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Appendix B. Integration of the cohesive model with a continuous damage model

The trial damage stresses are:
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This equation can be reformulated as follows:
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The same procedure is applied for the other integration point. As in (B.1) the expression of +Ctf trial
1

,(2), is calculated and we obtain:
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Eqs. (B.2) and (B.3) can be written as:
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The elastic stress trial values are deduced as in (111).

B.1. Two active discontinuities per fiber

For the case of both discontinuities active per fiber, the new values of the damage cohesive stresses (114) are:
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B.1.1. Calculation of the Lagrange multipliers
The calculation of the Lagrange multipliers γ xΔ ( )1 and γ xΔ ( )2 can be done using (114) and (115):
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Furthermore, since we have:

23



− =
− =

σ q x σ x

σ q x σ x

( ) ( )

( ) ( )
u t t

u t t

1 1

2 2 (B.7)

The use of this notation in the failure surfaces equations results:
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The latter equation is reformulated as follows:
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From Eq. (B.8) it can be noted that the first two terms are the expressions of the failure surface ( +ϕ x( )t

trial

1 1 and +ϕ x( )t

trial

1 1 ) derived from
the elastic prediction multiplied by a factor of −( 1). This makes possible to get a simpler expression:
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The Lagrange multipliers are obtained as in (116).

B.2. Complete failure at two discontinuities

The system of Eq. (117) gives:
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Therefore, the system (118) is deduced.

B.3. Complete failure at a single discontinuity level

The development of the first equation of the system (119) gives:
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The second equation of the system (119) becomes:
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The two equations developed above are written as:
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The Lagrange multipliers are finally deduced as in (120).
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