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Abstract: This paper presents a comparative study between two micro-macro modeling approaches to simulate 

stress-induced martensitic transformation in shape memory alloys (SMA). One model is a crystal plasticity based 

model and the other describes the evolution of the microstructure with a Boltzmann-type statistical approach. 

Both models consider a self-consistent scheme to perform the scale transition from the local thermomechanical 

behavior to the global one. The way the two modeling approaches describe the local behavior is analyzed. 

Similarities and differences are pointed out. Numerical simulations of the thermo-mechanical behavior of an 

isotropic titanium-niobium SMA are performed. These alloys have known a growing interest of scientific 

community given their high potential for application in the biomedical field. Stress-strain curves obtained from 

the two simulations are compared with experimental results. Evolutions of volume fractions of martensite 

variants predicted by the two approaches are compared for <100>, <110> and <111> tensile directions. Due to 

the absence of comparative studies between multiscale models dedicated for SMA, this paper fills a gap in the 

state of the art in this field and provides a significant step toward the definition of an efficient numerical tool for 

the analysis of SMA behavior under multiaxial loadings. 

KEYWORDS SHAPE MEMORY ALLOYS (SMA). MARTENSITIC TRANSFORMATION. MICRO - MACRO MODELING.   

1. Introduction 

Since the 80’s the modeling of shape memory alloys (SMA) behavior presents an everlasting interest [Cissé, 

2016]. The large field of applications met by these alloys [Mohd Jani, 2014] combined with the relative 

complexity of their behavior explain this interest. Three main groups of models are classically distinguished. 

Most part of the modeling effort has been devoted to the development of phenomenological macroscopic 

approaches. Popularity of this group of models comes from their ability for implementation in finite element 

softwares for structural analysis [Chemisky, 2011, Aurichio, 2014, Lagoudas, 2012] and for the relatively easy 

calibration of the material parameters involved [Chemisky, 2015]. Phase field approaches constitute a second 

group of models aiming at the description of the microstructure evolution during any thermomechanical process. 
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Several examples of these models can be found in [Mamivand, 2013]. The third group of models aims at 

determining the macroscopic behavior of the materials through a description of its microstructure and a modeling 

of local strain mechanisms [Lagoudas, 2006]. The present paper focuses on this third group called multiscale 

modeling. The objective of the present work is to investigate multiaxial aspects of the mechanical behavior of Ti-

Nb alloys as a new class of shape memory alloys [Laheurte, 2010, Miyazaki, 2006]. This is performed from a 

numerical point of view considering the lack of commercial Ti-Nb alloys products (plates, tubes, sheets, …) 

required for a complete multiaxial experimental characterization. Multiscale modeling can then be considered as 

a virtual testing machine for material evaluation. The choice of a particular multiscale model is not an easy task. 

Many multiscale models have been developed and published in the literature but to the authors’ best knowledge, 

the capabilities of these various models have never been compared. An important Round-robin for SMA 

modeling was performed within the ESF S3T EUROCORE project [Sittner, 2009] but only phenomenological 

macroscopic approaches have been considered. In an attempt to fill this gap, two different multiscale approaches 

are considered in the present work and applied to the modeling of a TiNb alloy superelastic behavior. 

2. Multiscale modeling of SMA  

Many multiscale models, based on micromechanics, are used to describe the quasi-static behavior of SMAs. 

Three characteristic microstructural scales are classically considered in these models (Figure 1): 

• The phase: either austenite or martensite variants. Each phase is characterized by its crystallographic 

structure and its properties (resistivity, stiffness, entropy, transformation strain ...) 

• The grain or crystal: according to the evolution and direction of transformation, the grain may consist in 

single phased austenite, martensite variants or in a mixture of both phases in separated domains. The 

local strain mechanism is described at this length scale. 

• The polycrystal: representative of an aggregate of grains with given orientations separated by grain 

boundaries. The crystallographic texture of parent phase is the relevant information at this length scale. 

 
Models mainly differ in the way the crystal behavior is modeled. We mainly distinguish two different 

approaches: 

• Plasticity based models: these models are inspired by crystal plasticity models of metallic alloys (steels, 

nickel, or cooper-based alloys). A like-Schmid law is considered and evolution of the transformation is 
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expressed thanks to a consistency condition. Most of the models describing the SMA behavior belong to 

this category. Some models consider a single martensite variant with the assumption that only one main 

variant may appear during a superelastic monotonic uniaxial loading. The multivariant/multidomain 

modeling approaches mainly differ with each other regarding the definition of the intragranular internal 

stresses. The latter can be expressed as a constant value, as a full interaction matrix or as a simplified 

matrix composed of two independent terms associated with compatible and incompatible domains 

respectively. It can also be estimated from a second scale transition scheme in which domains are seen 

as individual oblate inclusions. The interesting reviews from [Cissé, 2016, Lagoudas, 2006] can be 

referred to for more details. 

• Statistical models: Less usual, this modeling expresses the microstructure as a statistical distribution. 

Statistical functions are used to estimate the evolution of the transformation [Fischlschweiger, 2012]. 

We can also classify models according to the adopted scale transition schemes to link grain scale and 

polycrystalline scale. Mori-Tanaka scheme, self-consistent one, uniform stress/strain approaches or finite elements 

based analyses may be used to perform the scale transition. 

An important drawback for multiscale models is their high computational cost depending on the complexity of 

the local description. The local stress field is strongly multiaxial, even for a macroscopic simple tension, due to 

grain to grain interactions or to variant selection which may be activated or deactivated at each loading step. Our 

motivation in this study is to compare, for the first time in the framework of shape memory alloys behavior, the 

formulations and performances of two different multiscale approaches. 

In a first part, we introduce the micromechanical model proposed by [Siredey, 1999] which describes the local 

thermomechanical behavior inside a single grain considering the crystallographic nature of the martensitic 

transformation. Volume fractions of martensite variants are chosen as internal variables and their evolution is 

derived from the definition of a thermodynamic potential at the grain scale. In a second part, we present the 

micromechanical model proposed by [Maynadier, 2011], which describes the behavior of a representative volume 

of polycrystalline SMA where a Boltzmann type statistical law allows the volume fractions of martensite variants 

and of austenite to be calculated. Finally, the two models are used to simulate the superelastic behavior of a 

titanium-niobium (TiNb) alloy. 

TiNb alloys are good candidates for biomedical applications. We can cite the study from [McMahon, 2012] 

where TiNb alloys exhibit reduced ion release and better corrosion resistance, compared to NiTi alloys. Some 



 

4 

TiNb alloys exhibiting a very low Young modulus, close to bone stiffness (which is between 10 and 30 GPa), are 

presented in [Elmay, 2013, Hon, 2003]. These TiNb alloys are especially good candidates for manufacturing 

bone implants. They reduce both the cytotoxicity and stress-shielding, which defines bone loss mainly observed 

with high stiffness implants [Piotrowski, 2012]. 

Unfortunately, few experimental mechanical characterizations of these alloys are nowadays available. Most of 

these experimental data comes from tensile loadings since TiNb are most of the time available in a wire form. 

Relevant multiscale modeling of TiNb alloys would allow a first estimation of the multiaxial behavior of these 

alloys. 

3. [Siredey, 1999] and [Maynadier, 2011] Multiscale models 

3.1 Single crystal  model of [Siredey, 1999] 

 
This 3D multivariant model relies on micromechanics to propose a simplified expression of the interaction 

energy between the martensite variants in the material. An interaction matrix Hnm is used for the description of 

the interactions between martensitic variants n and m with respective volume fractions f n and f m. In the 

framework of small perturbations, total strain εn of a variant n of volume Vn is the sum of elastic and 

transformation components Eq(1): 

 (1) 

Habit planes between austenite and martensite variants are defined by the unit normal to the habit plane ! and the 

unit direction of transformation ! with an amplitude g. The transformation strain of each n variant is: 

 
(2) 

 Free energy for the whole grain is expressed in Eq(3). 

 
(3) 

σg and T are the applied stress and temperature at the grain scale, B, , and T0 are respectively the sensitivity 

parameter to chemical energy evolution, the compliance tensor and the reference temperature. 

The transformation starts when the thermodynamic force  associated with the internal variable fn 

reaches a critical value  that is characteristic of the material. 

 

(4) 

The evolution of fraction dfn in Eq(4) is obtained from energy derivation and application of consistency 
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condition ( ). 

3.2 Single crystal model: [Maynadier, 2011] 

 
The model is based on the comparison of the Gibbs free energy densities	 of each martensite variant n and 

austenite phase a1. The same hypothesis of homogeneous stress σg than for Siredey’s model is applied at the 

variant scale, resulting in Gibbs free energy density expression reported in Eq(5) where index i indicates n 

variants + a phase. The transformation strain is the same as in Eq(2) except for austenite whose transformation 

deformation is null (as reference deformation). 

 

 

(5) 

hi, si	and  are enthalpy density, entropy density, and compliance tensor of the martensite variant or austenite 

phase. σg denotes the stress at the grain scale.  

A probabilistic estimation of each variant or austenite phase (denoted as variant n+1) volume fraction is made 

using a Boltzmann distribution (see Eq(6)). Interactions at the interfaces are not taken into account. The 

modeling uses one numerical parameter, As, which drives interfacial effects. This parameter can be related to the 

Boltzmann constant and temperature via a statistical volume. 

 

 

(6) 

 This formulation allows the term  in Eq(5) to be removed since it does not change from one variant to 

another. 

In this approach, the microstructure is defined as a distribution and fractions are obtained by direct comparison 

between Gibbs free energy density levels of the constituents. This strategy is completely different from the 

strategy used by [Siredey, 1999]. The latter is a threshold model with a fixed critical value for martensite 

nucleation and an evolution of the fractions derived from the consistency condition. 

This model of [Maynadier, 2011] has been recently extended to chemo-magneto-mechanical couplings in magnetic 

shape memory alloys accounting for thermal exchanges [Fall, 2016]. 

We can point out similarities between the free energy expressions from Siredey and Maynadier. 

 

                                                             
1 The so-called R-phase of equi-atomic NiTi can be considered in this modeling in addition to 
martensite and austenite phases. 
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The Gibbs free energy density in Eq(5) can be written at the grain scale: 

 

 

(7) 

With f n the volume fraction of martensite variant n, and   the Gibbs free energy density of austenite phase. 

Since stress and compliance are considered homogeneous, one gets from Eq(7): 

 
 

(8) 

The energy is known for a constant. We fix:  where T0 is a reference temperature. 

We get so:  

This can be introduced in the Gibbs free energy density in Eq(8): 

 

 

(9) 

All martensite variants are assumed to exhibit the same entropy: sn		=		sma 

To get from Eq(9) the Siredey expression in Eq(3), we have to consider: 

• B constant is introduced corresponding to the variation of entropy density between austenite and 

martensite : 

• The interaction between variants that increases the free energy density:  

• a Legendre Transformation (or complementary energy expression):  

so that :  

It is interesting to notice that the Gibbs free energy expression in Eq(5) concerns each variant in the volume of 

the grain while expression in Eq(3) is the Helmholtz expression for the whole grain (possibly a mix of austenite 

and martensite).  

3.3. Scale transition rules: from grain to polycrystal 

Both models are based on thermodynamics and involve transitions from variant to grain then from grain to 

polycrystalline scale. The macroscopic behavior of the polycrystalline SMA is estimated by averaging the 

behavior of single grains using the self-consistent scale transition scheme. The latter is relevant to describe 

aggregates of crystals. The effective tensor Ce f f is expressed as: Ce f f =< Cg : [(Cg + C�)�1 : (Ce f f + C�)]> 

with the Hill constraint tensor C�. This implicit expression needs a numerical resolution. 
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4. Application to titanium - niobium polycrystalline alloy 

Titanium - niobium alloys undergo a cubic (a0=0. 328nm) to orthorhombic phase transition (a = 0.318nm; 

b=0.4818nm; c=0.464nm). The values of cell parameters are taken from measurements made by [Elmay, 2013]. 

We focus on TiNb26%at. composition, which leads to a martensitic structure at ambient temperature (Ms=265K 

and Af =296K). The representative volume element (RVE) is defined by a set of 100grains with random orientations to 

obtain an isotropic crystallographic texture.  Homogeneous isotropic elasticity such as Eaust. = Emart. = E = 22 

GPa and ν	= 0.33 is assumed.  

Parameters used in both modeling are listed in Table 1. 

Crystallographic theory of martensite is used to estimate the possible interfaces. This theory is based on the 

assumption of an invariant plane separating austenite and martensite phases. Based on this theory, we found 2x6 

(12) austenite / single martensite habit planes variants (Table 2) and 24 habit planes between austenite and 

twinned martensite pairs. The 2x6 habit planes variants are denoted V1+,  V2+,  V3+,  V4+,  V5+,  V6+ and V1�,  V2�,  

V3�,  V4�,  V 5�,  V 6�.  Twinned pairs are formed between variant I and variant J with respective size ratios λ and 

(1-λ). In our calculations, λ value is close to 1 (λ=0.999), which means that configuration is close to a single 

variant one. Indeed, simulations considering either single variants or twinned variants give similar results. We 

only present the results considering the set of 12 possible austenite/single martensite variants in Table 2. 

Hnm is simplified considering only two terms H1=40MPa and H2=400MPa respectively for compatible and 

incompatible combinations (Table 3).  B value is identified from tensile test measurements: B = 0.08 MPa/K. 

As = 1.4.10�5m3.J�1 is obtained from a differential scanning calorimetry (DSC) measurement (the 

identification process is explained in [Fall, 2016]).   

Figure 2 illustrates a comparison between both modeling during superelastic tensile loading, considering the set of 

12 possible austenite / single martensite variants. The simulations are compared with experimental results from 

[Kim, 2006]. Both models lead to a very similar global stress-strain curve (stress gap less than 4 MPa) until a 

strain value E11=1% (fmartensite around 13%). Above this value, the gap between the two curves remains low but 

increases with the loading: for fmartensite =50%, the stress gap is 14MPa; for fmartensite =90%, the gap reaches 

23MPa. 

One advantage of the micromechanical models over macroscopic phenomenological ones is that they give access 
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to the local quantities evolution during the loading process. 

We choose to plot in Figure 3 the local stress-strain behavior of some specific grains inside the RVE denoted 

grain22, grain17 and grain2 where stress axis is close to < 111 >, < 001 > and < 011 > crystallographic 

directions respectively. Both modeling give similar phase transformation kinetic (Figure 3). The values of local 

stresses are however smaller for [Maynadier, 2011]. The evolution of variants volume fractions as function of stress is 

plotted in Figure (4) for the three grains. The variants selection for both approaches is very similar especially regarding 

the main variants.  More variants are selected in [Maynadier, 2011]. In fact, if we look at grain17, couples of 

variants (V1+, V1), (V2+, V2-), (V5+, V5-) and (V6+, V6-) are selected while only variants V1-, V2+, V5-, V6+ 

nucleate in [Siredey, 1999]. These couples of variants have very close thresholds and lead to the same strain 

levels. But, in [Siredey, 1999], the hardening effect leads to a unique selection of the best oriented pair of 

variants. 

Figure 4 shows that the local stresses level in each variant is lower for [Maynadier, 2011] than for [Siredey, 

1999]. Indeed, the incompatibilities due to heterogeneous variants’ selection are not accounted for in this 

approach. We can notice that the local stresses remain in the same magnitudes for both models (very close values 

are obtained for grain17 and grain22). Grains with orientations close to < 011 > are the first to transform. 

Grain2 belongs to this category. In addition, we also made a comparison of the transformation thresholds under 

biaxial stress condition. Results are reported in figure 5. The shape of the transformation surfaces predicted by 

both models is very similar..  

All these similarities between the numerical predictions provided by both models can be understood considering 

that the two formulations differ mainly by the interaction term. As a Gibbs formulation, Eq(5) ensures a 

minimum energy principle and can consequently be used in a Boltzmann probability function. This formulation 

allows an expression of incremental martensite fraction to be derived at the threshold (Eq(10)), very close to the 

estimation given in Eq(4) from Siredey’s approach, showing that  parameter can be related to terms of  

matrix. 

 
 

(10) 

Consequently [Siredey, 1999] and [Maynadier, 2011] models are expected to give comparable results if 

parameters are appropriately identified. 

5. Discussion 

The way the microstructure of the grain is described by both models is very different: distribution of variants 
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without interfaces for [Maynadier, 2011], martensite domains separated by interfaces and presenting invariant 

habit planes with austenite for [Siredey, 1999]. 

As expected, the model from [Maynadier, 2011] presents a smaller stress-strain slope in Figure 2 due to 

homogeneous stress assumption at the grain scale. Indeed, when we look at the behavior of individual variants in 

Figure 3, we can notice that slopes are lower for [Maynadier, 2011]. This result is consistent. As expected, the 

appearance of new variants inside a grain does not lead to any hardening effect. 

The selection of incompatible variants leads to higher levels of internal stresses for [Siredey, 1999] (through H2 

value from interaction matrix). This fact explains the higher slopes in the stress-strain variants behavior (Figure 

4). The distribution of volume fractions of variants is such that transformation strains at the grain scale are very 

close from one modeling to another (Figure 3). Local stresses at the grain scale are the same for both models due 

to homogeneous stress hypothesis.  

6. Limitations of the models 

The main limitation of Siredey model is its inability to predict shape memory effects. Indeed, concomitant 

appearance of all martensite variants during a cooling leads to unrealistic values of internal stresses. DSC curves 

cannot be modeled properly. On the contrary, [Maynadier, 2011] is able to predict a DSC curve as shown in 

Figure 6. [Siredey, 1999] is limited for martensite nucleation and reorientation aspects during a mechanical 

loading.  

[Maynadier, 2011] is able to predict shape memory effects too. We illustrate the case of Grain 17 pre-loaded at 

T=-20°C<Af in Figure 7. The martensite variants are accommodated at the initial stage exhibiting equivalent 

volume fractions (fn=1/12). A mechanical loading is applied next. During this loading, the best oriented variants 

are selected among the others whose volume fraction decreases.                             

Above all, [Maynadier, 2011] presents limitations linked to the reversible framework of the formulation. The 

introduction of an additional constant Lg in the energy expression is a possible solution to model the 

mechanical (and DSC) hysteresis (see Fig. 6). Enthalpy density is expressed considering an extra constant 

+Lg or –Lg respectively for direct and reverse transformation. This simplified formulation of hysteresis, is 

only relevant if initial and final stages are single phased (100% austenite or 100% martensite). Hence, 

[Siredey, 1999] appears more accurate for non-monotonic and non proportional loadings. An example of 

cyclic loading applied to Grain17 is shown in figure 8. With [Siredey, 1999], we can perform inner loops 

because the effect of loading history is considered. When we try to perform the inner loop with [Maynadier, 
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2011], the curve directly joints the major cycle. There is no history effect. Moreover a given stress state 

always leads to the same distribution of variants, no matter the loading path.   

 

 

7. Conclusion 
 
In this work, we performed comparisons between two multiscale models: [Siredey, 1999] proposed a plasticity-

based model, and [Maynadier, 2011] a statistics based one. We used crystallographic theory of martensite for 

calculation of possible habit planes and identification of groups of compatible and incompatible variants for TiNb. 

Despite some strong differences highlighted in section 5, both modelings lead to similar martensitic 

transformation kinetics and similar selection of variants for both uniaxial and biaxial loadings. The local 

mechanical behavior (considering isothermal conditions) of some specific grains predicted by both models give 

similar results. The transformation surfaces for proportional biaxial tension - compression loadings are also 

similar. Similar results have been obtained when both approaches have been applied to another titanium-niobium 

alloy with a different composition (TiNb24%at.). Moreover models have been tested in anisothermal conditions  

(accounting for heat exchanges – not presented in the paper) leading to a super-elastic behavior very close to 

each other. 

 Considering computational aspects, [Siredey, 1999] uses 30 input parameters and is implemented in C++ language 

while [Maynadier, 2011], in MATLAB, needs 29 input parameters. The calculation times are quite similar (~10 

minutes for a loading until 250MPa with step=0.01MPa) but it is hard to draw a conclusion from this information 

because the way the two models are implemented is very different. 

Acknowledgment: The authors gratefully acknowledge the financial support of the Conseil Régional du Grand 

Est, France. 
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Figure 1 Characteristic microstructural scales considered in multiscale models 
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Figure 2 Simulation of superelastic tensile behavior (T=300K > Af) for TiNb26%at. Alloys 

 

 

 

Figure 3 Local behaviors of specific grains inside the volume 
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Figure 4 Selection of variants for specific grains inside the volume        

 

 

 
Figure 5 �Biaxial transformation surfaces 
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Figure 6  Experimental and simulated DSC for TiNb24%at. : ∆s=0.11MPa/K, T0=392.5K, 

Lg=0.29E+6 J.m3 

 
 

   

Figure 7  Reorientation process in Grain 17 (close to <001> direction) during an uniaxial loading at T=-20°C 
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Figure 8 Cycling tests on Grain 17 (close to <001> direction) at T=27°C (loading steps including a minor 
cycle: σ11 (MPa)= [0!250 250!15 15!250 250!0] 

 
 

[Siredey, 1999] [Maynadier, 2011] 
Transformation temperatures: Ms=265K, Af=296K 

Cell parameters: a0= 0.328nm; a = 0.318nm; b=0.4818nm; c=0.464nm 
Elastic constants: E=22GPa, ν=0.33 
Habit planes 12x(n,m,g)-→Table 2 

Interaction H1=40MPa, H2=400MPa 
 

B =sa	–	sma =0.08 MPa/K 
 

As = 1.4.10�5m3.J�1 
Entropy ∆s=sa	–	sma=0.08 MPa/K 

 

Table 1 List of modeling parameters 

 

 

n1 n2 n3 m1 m2 m3
V1+ -0.658 0.533 0.533 0.683 0.517 0.517
V2+ -0.658 -0.533 0.533 0.683 -0.517 0.517
V3+ 0.533 0.658 0.533 0.517 -0.683 0.517
V4+ -0.533 -0.658 0.533 -0.517 0.683 0.517
V5+ 0.533 0.533 -0.658 0.517 0.517 0.683
V6+ -0.533 0.533 -0.658 -0.517 0.517 0.683
V1- -0.658 -0.533 -0.533 0.683 -0.517 -0.517
V2- -0.658 0.533 -0.533 0.683 0.517 -0.517
V3- -0.533 0.658 -0.533 -0.517 -0.683 -0.517
V4- 0.533 -0.658 -0.533 0.517 0.683 -0.517
V5- -0.533 -0.533 -0.658 -0.517 -0.517 0.683
V6- 0.533 -0.533 -0.658 0.517 -0.517 0.683
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Table 2 Possible austenite/single martensite variant interfaces (g = 0.055) 

 

 

 V1+ V2+ V3+ V4+ V5+ V6+ V1- V2- V3- V4- V5- V6- 

V1+ C C I I I I I C I I I I 

V2+ C C I I I I C I I I I I 

V3+ I I C C I I I I I C I I 

V4+ I I C C I I I I C I I I 

V5+ I I I I C C I I I I I C 

V6+ I I I I C C I I I I C I 

V1- I C I I I I C C I I I I 

V2- C I I I I I C C I I I I 

V3- I I I C I I I I C C I I 

V4- I I C I I I I I C C I I 

V5- I I I I I C I I I I C C 

V6- I I I I C I I I I I C C 

Table 3 Shape of the interaction matrix (C=Compatible I=Incompatible) 


