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Introduction

Due to the limited rated power capacity by device of the
present WEC technologies, it is nowadays well-accepted
that commercial exploitation of wave energy involves the
installation of a large number of wave energy converters
(WECs) in an array. Hydrodynamic interactions can af-
fect the efforts on the devices and modify their total en-
ergy production in different ways depending on the lay-
out. Forces due to wave radiation and scattering events
are well represented by the linear first-order radiation and
excitation force coefficients. However, their direct compu-
tation for large arrays of bodies (O ∼ 100) is beyond the
capabilities of widely available standard BEM codes.

The interaction theory (IT) developed by [1] enables
one to circumvent such limitation. It is based on knowing
how an individual isolated device scatters and radiates
waves. For this, two hydrodynamic operators known as
Diffraction Transfer Matrix (DTM) and Radiation Char-
acteristics (RC) need to be computed. The methodology
to calculate them for axisymmetric bodies was provided
by [1] and its generalization for arbitrary geometries was
derived by [2]. The IT by [1] has been used to study multi-
moduled floating offshore structures [3, 4], large fields of
ice floes [5], very large floating structures [6] and, recently,
wave energy converter arrays [7].

This paper presents a comparison of the hydrodynamic
operators DTM and RC of a cylinder computed with the
BEM solver NEMOH1, in which the methodology of [2]
has been implemented, and the ones obtained with the
alternative approach developed and validated by [7]. In
addition, a comparison of the wavefield of a small array
of 4 freely floating cylinders computed using both the in-
teraction theory and with a direct NEMOH calculation is
shown.

Interaction Theory

In a large array, waves emanating from each body (due to
scattering and radiation) will propagate and interact with
its neighbours. This will lead to a succession of scattering
events which are referred to as multiple-scattering prob-

lem [8]. In this context, the different forms of the velocity
potential (incident, scattered and radiated) are expressed
in the cylindrical reference system local to each body j of
the array by means of a superposition of partial cylindrical
waves:
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where AS
j , A

I
j and Rk

j are the complex scattered, inci-
dent and radiated vectors of partial waves coefficients re-
spectively. Even though they are theoretically infinitely
long, for practical computations they need to be trun-
cated. Summations go from m = −M to M and from
n = 0 to N for outgoing waves indices, and from q = −Q

to Q and l = 0 to L for incident wave indices. H
(1)
m is

the Hankel function of the first kind of order m, Iq and
Km are the modified Bessel functions of the first and the
second kind of orders q and m respectively and Jq is the
Bessel function of the first kind of order q.

(a) m = 0, n = 0 (b) |m| = 1, n = 0 (c) |m| = 2, n = 0

(d) m = 0, n = 1 (e) |m| = 1, n = 1 (f) |m| = 2, n = 1

Figure 1: Partial waves modes. Progressive term

Re{H
(1)
m (r)} (a, b, c); evanescent term Re{Km(r)} (d,

e, f)

One of the key aspects of the interaction theory by
[1] is that the study of the wave scattering on the whole
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array composed of Nb bodies is undertaken by focusing
on one body at a time. If this body is referred to as j
and its neighbours as i, the total incident potential to j is
expressed as:

φIj =
(

aTj +

Nb
∑

i=1
i 6=j

AT
i Tij

)

ψS
j (4)

where aj are the cylindrical coefficients of either an ambi-
ent plane wave (diffraction problem) or the radiated wave
by a body i of the array undergoing motion in a degree of
freedom k (radiation problem) expressed as aj = T

T
ijR

k
i ,

Ai are unknown scattered coefficients and Tij represents
the transformation matrix which depends on the relative
position between bodies j and i. The latter enables one
to express scattered (or radiated) waves from a body i as
incident to body j in its local reference system.

The incident and scattered partial waves coefficients
by an isolated body can be related as AS

j = BjA
I
j by

means of a linear operator known as Diffraction Transfer
Matrix

(

Bj

)

. Substitution of the partial wave coefficients
in (4) into the definition of the DTM leads to a system of
equations to solve for the unknown scattered coefficients:
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The Diffraction Transfer Matrix (DTM) and the Radia-
tion Characteristics (RC) are calculated with the body in
isolation. Two methodologies to compute them are avail-
able in the literature [2, 7]. Results obtained with the
former, which has been implemented in NEMOH, are pre-
sented and compared with the values computed using the
latter.

Validations

Diffraction Transfer Matrix

The methodology developed by [2] to find the elements
(Bj)

mq

nl
of the DTM consists of two steps. First, the solu-

tion to a diffraction problem where the incident wave is a
cylindrical partial wave

(

ψI
j

)

lq
is found. Then, the scat-

tered potential represented by the source strengths σlqj is
expressed in the base of partial wave functions by means of
the Green’s function in cylindrical coordinates developed
by [9] leading to:
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with SHj the wetted surface of the body and C0 and Cn

constant coefficients.
The main aim of the alternative procedure derived by

[7] is to compute the elements of the DTM using only
plane incident waves. As long as a large enough number of
pairs of scattered/incident vectors of coefficients is known
in advance, the definition of the DTM (AS

j = BjA
I
j ) can

be transformed into a system of equations to solve for its
elements. The vectors of incident partial waves are known
from an analytical expression [2] whereas the elements of
the associated vectors of the scattered coefficients can be
derived by means of a Fourier Transform of the scattered
potential on the body circumscribing cylinder of radius r0:
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Even if evanescent terms from the scattered potential can
be identified using (9), the use of only plane progressive
incident waves (with no evanescent components) prevents
the calculation of the DTM terms relating incident and
scattered evanescent partial waves using this procedure.
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Figure 2: Real part of the DTM progressive terms for a
truncated vertical cylinder of 3m radius (a), 6m draft in
a 10m water depth. Markers +, � indicate results from
NEMOH using method [2] for two different integration
schemes.

The DTM elements computed with both methodolo-
gies, which make use of different notation conventions and
a different scaling of the partial wave coefficients, are re-
lated by:

(−1)−m

(−1)−q
(B∗)

Method [2]
−m,−q = (B)

Method [7]
m,q (10)
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Figure 2 shows a comparison of the progressive terms
of the DTM computed using both methodologies and with
the semi-analytical solution by [10]. A very good agree-
ment of results is observed. The only non-zero DTM terms
correspond to pairs of equal incident (q) and outgoing (m)
angular modes. This is a particular feature of axisymmet-
ric geometries such as a truncated vertical cylinder.The
numerical singularity observed at a ka of approximately
2.3 corresponds to an irregular frequency. The mathemat-
ical problem being ill-posed for a discete set of frequen-
cies, the numerical scheme does not convergence towards
the physical solution, and gives erroneous results, locally.
The new release of the BEM solver NEMOH will enable
their removal.

Radiation Characteristics

The same principle applied for the calculation of the DTM
with both methodologies can be used to obtain the RC
vector. With respect to [2], the radiation problem associ-
ated with a motion mode k of the body under considera-
tion is solved first. Then, the source strength distribution
σjk is used in conjunction with the Green’s function in
cylindrical coordinates to express the radiated potential
in the base of partial waves leading to expressions (11)
and (12) for the RC:
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With regard to [7], the same formulas (8) and (9) are
used to express the radiated potential in terms of par-
tial cylindrical wave functions. In this base, the coef-
ficients are known as Radiation Characteristics. Apart
from different notation conventions and a different scaling
of the partial wave coefficients, the use of two different
BEM solvers (methodology by [2] has been imlemented in
NEMOH whereas WAMIT2 has been used in conjunction
with [7]) results in the following relationship between the
Radiation Characteristics:

(−1)−m g

ω2

[

(aR−mk)
]∗

= Rmk (13)

where aR−mk are the RC in the notation of [7] and Rmk in
the notation of [2].

Figure 3 shows a comparison of the progressive terms
of the surge RC computed using both methodologies and
with the semi-analytical solution by [10]. A very good
agreement of results is observed. For this mode of motion,
it can be observed that only modesm = 1 andm = −1 are

non-zero. This is explained as the wave generated by the
motion of a cylinder in surge corresponds to the partial
wave shown in Figure 1b.
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Figure 3: Real part of the Radiation Characteristics pro-
gressive terms for a truncated vertical cylinder of 3m ra-
dius (a), 6m draft in a 10m water depth. Markers +, �
indicate results from NEMOH using method [2] for two
different integration schemes.

Interaction Theory

The free surface elevation for a small array of 4 truncated
vertical cylinders has been computed by means of the in-
teraction theory and compared with direct calculations
using NEMOH (Figure 4) for a regular wave of propaga-
tion direction β = 0 and wavelength λ/a = 10 with a
the radius of the cylinders. A very good agreement be-
tween results can be observed in the whole domain when
no evanescent modes are used with the highest differences
being located at the vicinity of the bodies. The use of a
higher evanescent modes truncation reduces the error at
these regions and convergence with the direct computa-
tion results from NEMOH is achieved.

Conclusion

The calculation of the Diffraction Transfer Matrix and
the Radiation Characteristics has been implemented in
the open source BEM solver NEMOH using the method-
ology of [2]. Results of the hydrodynamic operators of
a truncated vertical cylinder have been contrasted with
the methodology developed by [7] and with the semi-
analytical solution by [10] and a very good match has
been obtained.

Wave fields computed with the interaction theory by
[1] for a small array of 4 truncated vertical cylinders have
been compared to direct computations using NEMOH and
a very good agreement has been observed. A decrease of
the error at the vicinity of the bodies when the number of
evanescent modes is increased has been found.

2http://www.wamit.com/
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Figure 4: Magnitude of surface elevation for an array of 4 cylinders of 3m radius, 6m draft in a 50m water depth with
a separation distance of 12m. Plots c, d, e, f show the percentage difference between the wave fields computed with the
interaction theory (IT ) and the direct calculation using NEMOH (N) as a function of the evanescent modes truncation
L. Results are normalized by the amplitude of the incident wave (A). Propagation direction is defined from left to right.
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