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Abstract

This paper couples bulk damage modeling and cohesive zone modeling to get the benefits of both.
Damage brings the directionality for the crack propagation as well as the possibility of crack branching
while cohesive zone modeling allows for an explicit discrete crack modeling. The coupling is made
easy through the Thick Level Set approach. The originality is that the coupling induces concurrent
development of bulk and interface degradation.
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1. Introduction

Models which allow the study of quasi-brittle failure are usually divided into two categories: con-
tinuous and discontinuous models. In the latter, macro-cracks are explicitly modeled by a discontinuity
of the displacement field. Cohesive forces [13, 1, 17] on the crack lips allow to recover the right amount
of dissipated energy and process zone length. For continuous models, micro-cracking is modeled by an
internal damage variable [19, 7], introducing a softening effect on the stiffness of the material. These
models do not explicitly represent the displacement discontinuity.

Both continuous and discontinuous models have been widely used to study quasi-brittle materials,
therefore their advantages and drawbacks are well-known. Cohesive zone models (CZM) are able to
capture macro-cracks openings, which is essential when studying permeability of structures for instance.
They are also particularly efficient to represent size effects [18]. However, the discontinuities of the
displacement field need to be taken into account by the finite element mesh, which makes crack paths
strongly dependent on finite elements orientation. Some particular numerical methods were developed
to introduce displacement jumps independently from the spatial discretization, a well-known example
being the eXtended Finite Element Method (X-FEM) [27, 26]. Propagation is another complicated
aspect, especially in case of branching and coalescence of cracks. Also, an efficient propagation criterion
needs to be provided. On the other hand, continuum damage models can easily deal with initiation and
complex damage patterns, but can not represent crack opening. Furthermore, local models suffer from
spurious mesh dependency [2], which requires some regularization methods. Among these numerous
methods we can cite the higher order gradient models [10, 8] or regularization of internal variables
[38, 16, 21, 35]. Based on the variational approach to fracture [14], the phase-field approach [20, 25]
uses a smoothed representation of the macro-cracks to get a process zone with a finite thickness, and
can deal with complex crack topologies.

Some approaches [34, 45, 42, 41] based on continuum damage mechanics propose to introduce a
traction-free discontinuity when the damage variable D becomes greater than a critical value Dc < 1,
avoiding conditioning problems when finite elements are fully damaged. However, the amount of energy
dissipated when D grows from Dc to 1 is not taken into account, and the crack orientation needs to
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Nomenclature

` Position of the damage front (1D case)
`c Characteristic length of the TLS
d Interfacial damage
f Traction-separation cohesive function
g Configurational force of the TLSV2
gc Critical value of the configurational force of the TLSV2
h Interfacial softening function
he Mesh element size
k Reference cohesive stiffness
t 1D cohesive traction
w 1D cohesive opening
wc Critical opening of the cohesive zone model
y Cohesive energy release rate
yc Critical cohesive energy release rate
D Bulk damage
E Young Modulus
H Bulk softening function
Y Bulk energy release rate
Yc Bulk critical energy release rate
C Order 4 Hooke elasticity tensor
λ Augmented Lagrange multiplier
ε 1D strain
λ, µ Lamé coefficients
φ Level set field
φ∗ Critical value of the TLSV2
φs Value of the level set field on the skeleton
ψ Free energy of the cohesive zone model
σ 1D stress
σc Critical stress of the cohesive zone model
u 1D displacement solution
Γs Skeleton of the level set field
Ψ Free energy of the bulk damage model
(•)1 Quantity related to pure CZM or TLSV1 model
CZM Cohesive zone model
TLSV1 Thick Level Set method, first version
TLSV2 Thick Level Set, second version
TLS Thick Level Set
(•)′ Derivative of the one variable function (•) with respect to its argument
(•)n Quantity (•) computed at computation step n
(•)I Quantity (•) computed at mode I
(•)ref Quantity (•) computed for the reference loading
[[•]] Jump of (•) field
˙(•) Increment of (•)

(•) Non local TLSV1 field associated to (•)
Bold letters Order 1 or 2 tensors
tr(•) Trace of tensor (•)
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be determined. In [15], a different way to proceed is proposed: a traction-free macro-crack is used to
compute the displacement solution at a large scale, then the phase field approach is used at the tip
scale to propagate this macro-crack. As many multi-scale approaches, the main drawback is that a
coupling method between the different scales needs to be provided.

The Thick Level Set method was introduced in [28] and [43] as a new way to regularize local damage
models. The implementation was further improved in [3] for quasi-static loading and time-independent
damage models, in [31] for dynamics and in [40] for 3D quasi-static problems. The TLS method allows
a diffuse progression of damage as well as opening of macro-cracks inside the diffuse zone. It does
gather the advantage of both diffuse and strong discontinuity approaches. The use of X-FEM allows to
have D = 1, and therefore to recover the right amount of dissipated energy, while the crack location is
given by a level set iso-curve. Note that the TLS approach was compared to the phase-field approach
mentioned before in [6].

In previous studies of the TLS, the displacement jump was introduced as a traction-free crack when
the material was fully damaged. This version of the TLS will be called TLSV1 in what follows. In
this paper, a generalization is proposed, called TLSV2, where we detail the possibility of introducing
a displacement jump in a cohesive manner prior to the material being fully damaged. It means that
both a cohesive zone and a bulk damaged zone coexist in the TLSV2 model (see figure 1). Equivalence
exists between CZM and damage models, see for instance [23, 24] where the behavior of a non-local
damage model is shown to converge toward a CZM when the characteristic length tends to zero in
1D, or [5] where a proper way do derive a CZM from a non-local damage model in a thermodynamic
framework was established. More recently, a TLS model was determined in [32] in order to have a
global behavior similar to a CZM in 1D. However, the TLS regularized damage model and the CZM
were not used in a concurrent manner.

Using bulk damage and CZM at the same time allows to overcome some of the difficulties encoun-
tered by both of these models. From the CZM point of view:

(a) The bulk damaged zone around the crack will bring the characteristics that are missing to the
classical CZM, like propagation criterion and the ability to branch and coalesce.

(b) Another weakness of the CZM is the prediction of cracking in scenarios where stress triaxiality
comes into play, for instance in splitting tests of concrete: these models need some improvements
to take into account stresses parallel to the crack plane, see for instance [39]. In our approach,
the bulk damage around the crack will bring the tensorial information.

From the continuous damage mechanics point of view:

(c) Inserting a cohesive zone before reachingD = 1 avoids the need to approximate very large strains,
while preserving the correct amount of dissipated energy.

(d) It also allows to introduce quite complex interfacial models (like frictional contact between the
crack lips), which would be quite tedious to introduce from a bulk modeling point of view.

This paper will demonstrate how the TLSV2 can deal with problems (b) and (c), the other ones
will be considered in a forthcoming paper.

Of course, the idea to introduce a cohesive zone inside a damaged zone is not new, see for instance
[9, 11, 44], where a cohesive crack is inserted when the damage variable reaches Dc. The traction-
separation relation is computed so that the cohesive crack dissipates the energy necessary for the
bulk damage to reach 1, which is more consistent from an energetic point of view compared to the
aforementioned approaches where traction-free cracks are introduced.

The originality of the present work is that the TLS permits a concurrent development of dissipation
in the bulk and on the interface, with a bulk damage and a cohesive damage coupled by mean of a
unique level set field.

The paper is organized as follows. In section 2, the general equations for the TLSV1 damage model,
the CZM and the proposed TLSV2 approach are presented on a 1D example. A particular choice for
these equations is considered in section 3. Then, the TLSV2 model is extended to 2D and 3D in section
4. Some numerical examples will illustrate the proposed approach in section 5. Finally, a discussion
concludes this paper in section 6.
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(a) CZM (b) TLSV1 (c) TLSV2

Figure 1: Comparison of the three models: cohesive zone model, TLS damage model (TLSV1), and new version of the
TLS model (TLSV2).

(a) (b) (c)

Figure 2: Displacement u in a 1D bar with strain localization at x = 0, modeled with three different models: CZM (a),
TLSV1 model (b) and TLSV2 model (c).

2. Model description: 1D case

Consider a bar of length 2L and Young modulus E under imposed displacement, leading to tension.
Localization is assumed to start at the middle of the bar (x = 0). Figure 2 depicts the displacement
field along the bar for 3 different models: a pure CZM, a pure TLSV1 damage model and a TLSV2
model, which is a mix between damage model and CZM. These models are detailed in section 2.1, 2.2
and 2.3 respectively. The last model is the target of the paper.

2.1. The cohesive zone model
We consider an extrinsic type model (infinite initial stiffness) with an energy given by:

ϕ(w, d) =
1

2
k

(
1

d
− 1

)
w2 (1)

where k is a reference cohesive stiffness, d the interfacial damage variable and w the displacement
jump. It leads to the state equations

t =
∂ϕ

∂w
= k

(
1

d
− 1

)
w, y = −∂ϕ

∂d
=

1

2
k

(
1

d

)2

w2 (2)

where t is the cohesive traction and y the cohesive energy release rate. The associated evolution
equations are:

ḋ ≥ 0, y − ych(d) ≤ 0, (y − ych(d))ḋ = 0 (3)

where yc is a constant and h a dimensionless, increasing function such that h(0) = 1. The model
parameters are thus k, yc and the function h.

Usually, a CZM is given as a function t = f(w), with f(0) = σc the tensile strength and f(wc) = 0,
where wc is the critical opening (see figure 3). It can be shown (see Appendix B) that yc and h can
be determined in order to obtain a model defined by the potential (1) and the evolution equations (3)
equivalent to a model defined by a traction-separation function t = f(w).
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Figure 3: Typical CZM model expressed in terms of a traction-separation function t = f(w), or using the damage variable
d.

2.2. TLSV1 approach

The local damage model is given by the free energy

Ψ(ε,D) =
1

2
(1−D)Eε2 (4)

where ε is the strain in the bar, and D the bulk damage variable. The corresponding state equations
are

σ =
∂Ψ

∂ε
= (1−D)Eε, Y = −∂Ψ

∂D
=

1

2
Eε2 (5)

where σ is the stress in the bar and Y the bulk energy release rate. The evolution equations are

Ḋ ≥ 0, Y − YcH(D) ≤ 0 (Y − YcH(D))Ḋ = 0 (6)

where Yc is a constant and H a dimensionless, increasing function such that H(0) = 1. The model
parameters are thus E, Yc and the function H. This model is purely local, and therefore needs some
regularization in order to avoid spurious localization. In the TLS approach a characteristic length `c
is introduced, by writing the damage variable as an increasing function D(φ) of the distance to the
damage front (the boundary between the sane and the damaged material) φ = ` − x, where ` is the
position of the damage front (see figure 2 (b)):

D(φ) = 0 if φ ≤ 0
0 < D(φ) < 1 if 0 < φ ≤ `c

D(φ) = 1 if `c < φ
(7)

An example of a parabolic damage profile is given in figure 4. This allows to define non-local
quantities:

Y =

∫ `
0 Y D

′ dx∫ `
0 D

′ dx
, H =

∫ `
0 H(D)D′ dx∫ `

0 D
′ dx

, Ḋ =

∫ `
0 Ḋ dx∫ `
0 dx

(8)

where D′(φ) is the derivative of D with respect to φ, and thefore to obtain the non-local version of the
evolution equations (6):

Ḋ ≥ 0, Y − YcH ≤ 0 (Y − YcH)Ḋ = 0 (9)

Note that the definition of Y and Ḋ ensures that the local and non-local dissipated energy are
equal: ∫ `

0
Y Ḋ dx =

∫ `

0
Y Ḋ dx (10)
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Figure 4: Example of a parabolic damage profile D(φ) = 2
(
φ
`c

)
−

(
φ
`c

)2

.

Figure 5: Illustration of a level set field in 1D, with a skeleton located at x = 0. The displacement field is represented
in dotted lines.

Equations (8) and (9) are the equations originally introduced in [28, 43]; they can also be rewritten
in an equivalent form which will be more suitable for what follows:

φ̇ ≥ 0, z =

∫ φs

0
(Y − YcH(D))D′ dφ ≤ 0 zφ̇ = 0 (11)

where φs = φ(xs), with xs the skeleton of the level set field. As illustrated in figure 5, this skeleton
corresponds to the point where the gradient of the level set field is discontinuous. In this 1D example
it is assumed that xs = 0. In what follows, the term “skeleton” will always refer to the skeleton of the
level set field. The skeleton is a line in 2D and a surface in 3D (see section 4).

2.3. TLSV2 approach

At this stage, the above two models are completely independent. The key idea in this paper is
to couple them by enforcing that both the damage in the bulk D and the interfacial damage d are
functions of φ, as depicted on figure 6. Having D depending on φ is classical in the TLS framework,
the originality here is to have also d depending on φ, and more precisely on φs. We write d as an
increasing function of φs: 

d(φs) = 0 if φs ≤ φ∗

0 < d(φs) < 1 if φ∗ < φs ≤ `c
d(φs) = 1 if `c < φs

(12)
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Figure 6: Dependence of the bulk damage D and interfacial damage d with respect to the level set value φ and the level
set value φs = φ(xs) on the skeleton.

Figure 7: Displacement solution at different loading stages.

where φ∗ < `c is a user defined parameter. The damage profile D(φ) defined by equation (7) is replaced
by a new damage profile D(φ), increasing function of φs, such that:

D(φ) = 0 if φ ≤ 0
0 < D(φ) < 1 if 0 < φ ≤ `c

D(φ) = D(`c) < 1 if `c < φ
(13)

Note that the essential difference with the TLSV1 damage profile defined by equation (7) is that
D(φ) no longer reaches one.

As φ goes from 0 to `c, D goes from 0 to D(`c) < 1 whereas d goes from 0 to 1 as φs goes from φ∗

to `c. Having values of D(φ) strictly inferior to 1 in the bulk prevents strains from going to infinity.
However, some energy still needs to be dissipated to get a fully damaged material; this is done through
the evolution of d.

Figure 7 depicts the displacement solution for different loading stages:

(a) When φs < φ∗, the TLSV2 is equivalent to the TLSV1 and there is no displacement jump at
x = 0.

(b) When φs > φ∗, the interfacial damage variable d starts to grow, and a displacement jump is
placed at x = 0.

(c) φs grows until φs = `c: the crack faces are traction-free. The displacement jump is equal to the
critical opening w = wc.

In the TLSV2, two model coexist. However, the evolution of these two models depends only on a
single level set field. The two evolution equations (3) and (9) which were driving the evolution of d
and D must now be replaced by a single evolution equation driving the evolution of φ.
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Figure 8: Parameters of the CZM, TLSV1 and TLSV2 models

The configurational force g governing the evolution of φ on each side of the skeleton is given by

g =

∫ φs

0
Y D′ dφ+

1

2
yd′
∣∣∣
φ=φs

(14)

where d′ is the derivative of d with respect to φs. A half value is needed in the above since the change
of the level set value on the skeleton is affected by the average of the level set velocity on each side of
the skeleton.

We choose the following expression for the critical value:

gc =

∫ φs

0
YcH(D)D′ dφ+

1

2
ych(d)d′

∣∣∣
φ=φs

(15)

The state equations for the damage and cohesive parts of the model are not modified but we replace
the individual evolution equations by the following common one:

φ̇ ≥ 0, g − gc ≤ 0, (g − gc)φ̇ = 0 (16)

3. Relationship between CZM, TLSV1 and TLSV2 models

The TLSV2 model introduced in the previous section depends on a certain number of parameters,
which come from both cohesive and TLSV1 models, as well as the interfacial damage profile d(φs).
Regarding notations, all the quantities related to the TLSV1 and CZM models are noted with a
subscript “1”, whereas the quantities related to TLSV2 are noted without subscript.

In this section, we focus on the relations between these three models, and in particular, how to
choose the different parameters in order to have 1D equivalence. This equivalence consists of having the
same displacement, energy and dissipation in the 1D example presented in section 2. The parameters of
the different models are summarized in figure 8. For instance, the TLSV2 has 9 parameters that need to
be determined. However, as we will see in what follows, only two equations (stiffness and dissipation
equivalence) need to be satisfied to achieve the 1D equivalence, which means that 7 of the TLSV2
parameters can be chosen independently. The equivalence between the CZM and the TLSV1 model
was established in [32]. In the next sections we will consider the particular cases of the equivalence
between TLSV1 and TLSV2, and between CZM and TLSV2. This equivalence is a way, from a known
TLSV1 or CZM model, to choose the parameters of the TLSV2. Other ways to choose directly the
parameters of the TLSV2 could be foreseen, but have not been investigated in this paper.

For the TLS model, V1 or V2, the damage profile in the bulk is chosen by the user in order to
fulfill equation (7) or (13). The characteristic length `c will determine the width of the damaged zone:
from a numerical point of view, it should be not too small in order to have enough finite elements per
`c when computing the integrals in equation (14) and (15). For the TLSV2, the value of φ∗ should of
course be chosen not too close to `c, otherwise the bulk damage D may become close to 1 before the
cohesive zone starts to develop.
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TLSV1 TLSV2
E E

`c `c: chosen
D1(φ) D(φ): built to fulfill equation (18)
Yc1 Yc = Yc1

H1(D1) H(D) = H1(D)

k = E/(2`c)

d(φs): computed from equation (21)
yc = 2`cYc

h(d): computed from equation (22)

Table 1: Determination of the TLSV2 parameters from a TLSV1 model.

3.1. From TLSV1 to TLSV2
Table 1 summarizes the parameters of the TLSV1 and TLSV2, and how the parameters of the

TLSV2 are determined from the TLSV1 parameters.
It is assumed that the TLSV1 model is given: Yc1 and H1(D) are known, and the TLSV1 damage

profile is:

D1(φ) = 2

(
φ

`c

)
−
(
φ

`c

)2

(17)

For the TLSV2, the damage profile in the bulk must satisfy:
D(φ) = D1(φ) if φ ≤ φ∗

D∗ < D(φ) < 1 if φ∗ < φ ≤ `c
D(φ) = D(`c) < 1 if `c < φ

(18)

where D∗ = D1(φ∗). The expression of D(φ) for φ > φ∗ will be derived in Appendix C. Regarding the
dissipation parameters H and Yc, we keep the ones coming from the TLSV1 model, namely H = H1

and Yc = Yc1.
Then, the parameters coming from the CZM need to be determined. Values of k and yc can be

chosen, without loss of generality, as:

k = E/(2`c) (19)

and
yc = 2`cYc (20)

At the same stress level, both models must have the same energy and dissipation. For φ < φ∗,
d = 0, H = H1 and D(φ) = D1(φ), therefore the TLSV1 and TLSV2 are exactly the same. For φ > φ∗,
stiffness equivalence implies

2

∫ φs

0

1

E

1

1−D
dx+

1

k

d

1− d

∣∣∣
φ=φs

= 2

∫ φs

0

1

E

1

1−D1
dx (21)

This relation gives the function d(φs) (see Appendix C for more details about the determination of
d(φs)). Note that since D(φ) = D1(φ) for φs ≤ φ∗, d(φs) = 0 for φs ≤ φ∗, which is in agreement with
equation (12).The three damage profiles D1, D and d are plotted on figure 9.

The next step is to compute h. Dissipation equivalence implies:

2

∫ φs

0
YcH(D)D′ dx+ ych(d)d′

∣∣∣
φ=φs

= 2

∫ φs

0
YcH(D1)D′1 dx (22)

which gives the expression of h (see Appendix C for more details about the determination of h).
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Figure 9: Dependence of the TLSV1 bulk damage D1(φ), TLSV2 bulk damage D(φ) and interface damage d(φs) with
respect to the level set value in the bulk φ and on the skeleton φs, for φ∗ = 0.5`c. The interface damage d(φs) was
obtained from (21).

CZM TLSV2
E E

k1 `c: chosen
yc1 D(φ): chosen
h1(d1) Yc = k−1

1 Eyc1

H(D): computed from equation (24) for φs < φ∗

k = E/(2`c)

d(φs): chosen to fulfill equation (12)
yc = 2`cYc

h(d): computed from equation (24) for φs > φ∗

Table 2: Determination of the TLSV2 parameters from a CZM.
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3.2. From CZM to TLSV2

Table 2 summarizes the parameters of the CZM and TLSV2, and how the parameters of the TLSV2
are determined from the CZM parameters. We keep for D, k and yc the same expressions which were
used in section 3.1 (equations (18), (19) and (20) respectively). The critical energy release rate Yc

is determined in order to have damage initiation triggered for the same critical stress for which the
cohesive crack starts to open in the CZM:

Yc = k−1
1 Eyc1 (23)

The cohesive damage profile d(φs) is chosen by the user to fulfill equation (12). The remaining
parameters to be determined are the functions H and h; they are given by the dissipation equivalence:

2

∫ φs

0
YcH(D)D′ dx+ ych(d)d′

∣∣∣
φ=φs

= yc1h1(d1)d′1

∣∣∣
φ=φs

(24)

where d1 is a function of φs given by the stiffness equivalence:

2

∫ φs

0

1

E

D

1−D
dx+

1

k

d

1− d

∣∣∣
φ=φs

=
1

k1

d1

1− d1

∣∣∣
φ=φs

(25)

The expression of H is given by equation (24) for φs < φ∗, and the expression of h is obtained
from the same equation for φs > φ∗. More details about the determination of H and h are given in
Appendix D.

4. Model description: 2D/3D case

In this section, the TLSV2 model is first extended to 2D/3D in subsection 4.1, then some details
about the implementation are given in subsection 4.2 and 4.3. For simplicity all the equations are
written for the 2D case, the extension to 3D being quite straightforward.

4.1. 2D/3D equations

We consider a domain Ω with scalar isotropic bulk damage D(φ) and damage on the skeleton d(φ).
The energy is:

W (u, φ) =

∫
Ω

Ψ(ε, D(φ)) dΩ +

∫
Γs(φ)

ϕ([[u]], d(φs)) dΓ (26)

with
Ψ (ε, D(φ)) =

1

2
(1−D) ε : C : ε (27)

where C is the Hooke order 4 elasticity tensor, and

ϕ ([[u]], d(φs)) =
1

2

(
1

d
− 1

)
[[u]] · k · [[u]] (28)

where k is the reference cohesive stiffness order 2 tensor.
In order to introduce an asymmetry between tension and compression, the potential (27) is modified

[3]:

Ψ(ε, D) = µ(1− αiD)ε2i +
λ

2
(1− αD)tr(ε)2 (29)

where µ and λ are the Lamé coefficients, εi the eigenvalues of the strain tensor and
αi = β if εi < 0

1 if εi ≥ 0
α = β if tr(ε) < 0

1 if tr(ε) ≥ 0

(30)
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(a) TLSV1

(b) TLSV2

Figure 10: Skeleton Γs (dashed line) of the level-set in the TLS.

with 0 ≤ β ≤ 1 a user defined parameter. State equations become:


σi = 2µ(1− αiD)εi + λ(1− αD)tr(ε)

Y = −µαiε2i − α
λ

2
tr(ε)2

(31)

(32)

If β = 1, the linear potential (27) is recovered. If β = 0, the material recovers its stiffness in compression
and damage can only grow in tension.

As explained in section 2.3, both bulk and interfacial models are governed by the unique variable φ,
which ranges from negative values (undamaged material), to values greater than `c which corresponds
to a traction free crack. It can be noticed that, contrary to classical damage approaches or the TLSV1
approach (cf. figure 10 (a)), there is no fully damaged zone since the bulk damage D(φ) never goes to
one. Instead, a cohesive crack is expected to appear on the skeleton Γs of the level set field φ, which
corresponds to the surface where ∇φ is discontinuous (cf. figure 10 (b)). Note that in the TLSV1, the
position of the macro-cracks is determined by the zone where φ > `c. The elements crossed the iso-`c
of the level-set field need some particular enrichment to introduce a discontinuity of the displacement
field, since the width of the zone φ > `c is not exactly zero, as explained by [3]. In the TLSV2,
the position of the macro-cracks is given by the surface Γs, therefore the displacement jump can be
modeled using a more classical Heaviside enrichment [27].

This paper will focus on symmetric problems across a line parallel to the y axis, with loading
conditions such that the position of the skeleton corresponds to the axis of symmetry (see figure 11).
In that case, no enrichment is needed since the discontinuity of the displacement field is explicitly
modeled. The non-symmetric case, with detection of the position and enrichment of the skeleton, will
be studied in a forthcoming paper. A simple interfacial behavior will be considered, with no cohesive
forces in the direction tangent to the crack faces; the reference cohesive stiffness k is assumed to have
the following form:
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Figure 11: Location of the skeleton in the TLSV2, for a symmetric problem across a plane parallel to the y axis.

[k](x,y) =

[
kn 0
0 0

]
(33)

where kn is a positive constant.
Figure 12 depicts the cohesive forces on the deformed configuration. For 0 < φs < φ∗, d = 0, the

displacement jump is null. Then for φ∗ < φs < `c, the displacement jump starts to increase, with
cohesive forces on the crack lips. Finally, for φs > `c, there are no cohesive forces anymore. Note that
in figures 10 and 12, the zone φs > `c was represented with a certain thickness for clarity; however in
practice the width of this zone is close to zero.

Within the TLS approach, the level set φ must fulfill the following condition [28]:

‖∇φ‖ = 1 (34)

The time derivative of (34) gives:

∇φ̇ ·∇φ = 0 (35)

meaning that φ̇ is constant along the gradient of φ. Therefore, the driving fields of φ̇ must belong to
the following space:

Y = {ȳ ∈ L2(Ω+), ∇ȳ ·∇φ = 0} (36)

where
Ω+ = {x ∈ Ω, φ(x) > 0} (37)

The space Y is the space of the fields constant along the gradient of φ in the damaged zone Ω+.
The computation of the configurational force g and the critical value gc has to be modified. These two
quantities, which belong to Y , are now obtained as solutions of the following variational problems:∫

Γ0

gY ∗dΓ =

∫
Ω
Y D′Y ∗ dΩ +

∫
Γs

1

2
yd′Y ∗ dΓ, ∀Y ∗ ∈ Y (38)

∫
Γ0

gcY
∗dΓ =

∫
Ω
YcH(D)D′Y ∗ dΩ +

∫
Γs

1

2
ych(d)d′Y ∗ dΓ, ∀Y ∗ ∈ Y (39)
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Figure 12: Illustration of the cohesive forces in the TLSV2, plotted on the deformed configuration.

These variational problems are solved using propagation modes as detailed in [30]. On top of the
classical TLS terms we have additional terms on the skeleton. Note that the difference of g on each side
of the crack will only depend on the bulk damage part. It is the difference of strain bulk distribution
which will decide the direction of the crack.

4.2. Non-local fields computation

The computation of g and gc from equation (38) and (39) involves bulk and interfacial contributions
defined on the skeleton. In order to have a more generic formalism, we introduce non-local fields
X ∈ Y , computed from volumic contributions X and lineic contributions x defined on Γs by solving
the following equation:∫

Γ0

XY ∗dΓ =

∫
Ω
XD′Y ∗ dΩ +

∫
Γs

xd′Y ∗ dΓ, ∀Y ∗ ∈ Y (40)

For instance, when computing g, X has to be replaced by g, X by Y and x by 1
2y in equation (40).

The space of the non-local fields Y is discretized using a basis of mode functions (Mi)i∈M (M
being the set of the modes), whose construction is detailed in [30]. Any non-local field X can then be
written in its discretized form as:

X
h
(x) =

∑
i∈M

XiMi(x) (41)

Each coefficient Xi is then computed by injecting expression (41) into equation (40) and lumping
the involved matrix:

Xi =

∫
ΩXD

′MidΩ +
∫

Γs
xd′Mi dΓ∫

Γ0
MidΩ

, ∀i ∈M (42)

In practice, equation (42) may be computed using a basic matrix-vector product. Indeed, the modes
Mi can be discretized over the basis (Lj)j∈N of the regular finite element interpolation functions:

Mi(x) =
∑
j∈N

MijLj(x), ∀i ∈M (43)

with N the set of the finite element interpolation functions. The computation of the coefficients
(Mij)i∈M

j∈N
is explained in [30]. By noting {X} = (Xi)i∈M and [M ] = (Mij)i∈M

j∈N
, coefficients Xi are

computed with the following matrix-vector product:
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{X} = ([M ]{A})./([M ]{B}) (44)

where ./ is the element-wise division, and

Ai =

∫
Ω
XLiD

′dΩ +

∫
Γs

xLid
′ dΓ, ∀i ∈ N (45)

Bi =

∫
Ω
LidΩ, ∀i ∈ N (46)

4.3. Equilibrium equations
The weak form of the equilibrium of the structure consists of finding u ∈ C such that:∫

Ω
(1−D)ε(u) : C : ε(u∗)dΩ +

∫
Γs

t([[u]], d) · [[u∗]]dΓ =

∫
Γd

Fd · u∗dΓ,∀u∗ ∈ C0 (47)

where Fd is the vector of the external loading, applied on the boundary Γd and:

C = {v ∈ H1(Ω \ Γs), v = ud on Γu} (48)

with ud a prescribed displacement on boundary Γu and

C0 = {v ∈ H1(Ω \ Γs), v = 0 on Γu} (49)

The cohesive part of the TLSV2 model, presented in section 2.1, has an infinite initial stiffness,
which leads to ill-conditioned problems in the framework of a displacement-based formulation like (47).
A first solution proposed by [4], called the Lagrangian formulation, allows to overcome this problem
by considering two unknown fields, the displacement field u and the cohesive traction field t:

∫
Ω

(1−D)ε(u) : C : ε(u∗)dΩ +

∫
Γs

t · [[u∗]]dΓ =

∫
Γd

Fd · u∗dΓ , ∀ u∗ ∈ C0∫
Γs

t∗ ·
(

[[u]]− d

1− d
k−1 · t

)
dΓ = 0 , ∀ t∗ ∈ A

(50)

where A is the space of the cohesive traction fields:

A = {t∗ ∈ R2, t∗ =

{
t∗n
0

}
, t∗n ∈ R} (51)

Here, k−1 is not the classical inverse matrix of k (which is not invertible), but is defined as:

[k−1](x,y) =

[
k−1
n 0
0 0

]
(52)

The main drawback of this formulation is that it requires to evaluate the compliance operator
d

1−dk
−1, which tends to infinity when d tends to 1. In order to overcome this issue, a modified

Lagrangian formulation is proposed in [4], by introducing an augmented cohesive traction λ:

λ = t+ k[[u]] = k
[[u]]

d
(53)

such that y becomes:

y =
1

2
λ · k−1 · λ (54)

The weak form of the equilibrium equation is now:


∫

Ω
(1−D)ε(u) : C : ε(u∗)dΩ−

∫
Γs

([[u]] · k · [[u∗]]− λ · [[u∗]]) dΓ =

∫
Γd

Fd · u∗dΓ , ∀ u∗ ∈ C0∫
Γs

λ∗ ·
(
[[u]]− dk−1 · λ

)
dΓ = 0 , ∀ λ∗ ∈ B

(55)
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where B is the space of the augmented cohesive traction fields:

B = {λ∗ ∈ R2,λ∗ = t∗ + k[[u∗]], t∗ ∈ A, u∗ ∈ C0} (56)

As the orientation of the λ field resulting from the resolution of (55) is arbitrary, the expression of y
given by equation (54) must be modified, in order to have the damage variable d evolving only when
the cohesive crack opens. Because of the particular form of k−1, the component λt of λ along the y
direction is null, which gives:

y =
1

2
k−1
n 〈λn〉

2
+ (57)

where λn is the component of λ along the x direction.
Since we do not need to evaluate any term tending to infinity, the formulation (55) is well-

conditioned. Note that we can also use it to solve a purely cohesive problem (which corresponds
to the case where the bulk damage variable D is equal to zero).

5. Numerical simulations

In this section, after a brief explanation on how the model parameters were chosen (section 5.1),
the different models presented so far are tested on numerical examples, in 1D (section 5.2) and in 2D
(sections 5.3 and 5.4).

5.1. Model parameters
The 1D example is used to compare the numerical accuracy of the TLSV1 and the TLSV2. The

TLSV2 model is chosen to be equivalent in 1D to the TLSV1 model, as explained in section 3.1.
The local behavior of the material is mainly determined by the choice of the softening function H.
Two different softening functions, represented on figure 14 with the corresponding local behavior, are
considered:

• A constant function H(D) = 1, which corresponds to the most abrupt case. In what follows we
will refer to this model as the “abrupt model”, referring to the form of the corresponding local
behavior.

• A function H which is computed in order to get a behavior in 1D of the TLSV1 equivalent to
a CZM, according to [32] (the expression of H is recalled in Appendix A). In what follows we
will refer to this model as the “gradual model”. The bilinear traction-separation law from [36],
represented on figure 13, is used as a starting point.

For the 2D example, we consider only the gradual model, which is the more realistic, for the TLSV1
and the TLSV2 approaches, with the asymmetric potential defined by expression (29) and β = 0. The
comparison is also done with the pure CZM. The numerical results for the TLSV1 and TLSV2 are
obtained by an explicit algorithm developed by [30] and briefly recalled in Appendix E. This algorithm
was adapted to the CZM case in Appendix F.

Damage profiles D1, D and d introduced in section 3.1 and plotted on figure 9, are used for the
different simulations. The critical energy release rate Yc is computed from equations (23) and (B.1).

5.2. 1D case
We consider the case of a 1D bar in tension, already introduced in section 2. Since the problem is

symmetric, only half of the bar is modeled. The length of the bar is L = 0.1 m, the characteristic length
`c = 0.025 m, and for the TLSV2 model, the critical value is φ∗ = 0.5`c. The material parameters are
given in table 3.

Figure 15 shows the local behaviors and cohesive laws corresponding to the abrupt and gradual
models. For the cohesive law equivalent to the abrupt model, the traction-separation law has the
following expression (as shown in [22]):

σ = σc

(
1−

√
w

wc

)
(58)
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Figure 13: Cohesive bilinear law
.

Figure 14: Hardening functions (left) and corresponding local behavior (right)
.

Elastic parameters E (MPa) 37200

Gradual model parameters

σc (MPa) 3,5
σk (MPa) 0,8
wc (mm) 0,46
w1 (mm) 0,0125

Table 3: 1D tensile test: material parameters.
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Figure 15: Cohesive laws (right) and corresponding local behavior (left)
.

The critical opening and stress wc and σc have the following expressions:

wc =
2σc`c
E

(59)

and

σc =

√
3EGF

2`c
(60)

with GF the fracture energy, corresponding to the area under the curve σ = f(w). The traction-
separation for the abrupt model plotted on figure 15 was determined for the same value of `c used for
the gradual model, σc and wc being computed in order to have the same area under both curves (same
energy). One can see that in order to keep the same fracture energy, the tensile strength of the abrupt
model must be higher.

The stress versus mean strain (ε̄ = u(x=L)
L ) curves for the solutions obtained numerically with the

TLSV1 and TLSV2 approaches are plotted on figure 16, for both the abrupt and gradual models. The
TLSV1 was tested for element sizes he ranging from `c

5 to `c
300 , and the TLSV2 with an element size

of `c
5 . Results are compared with the TLSV1 analytical solution. For simplicity, it is denoted “Exact

TLS solution” in the different figures, without specifying that it is for the version 1, since in 1D the
two versions of the TLS are supposed to be equivalent in terms of global behavior.

It can be observed that in all the cases, the TLSV2 allows to recover the analytical solution for
a relatively coarse mesh element size. On the contrary, for the abrupt model and coarse refinement,
the TLSV1 captures the analytical solution at the beginning of the computation (see figure 16 (a)),
but deviates from it at the end (see figure 16 (c)), that is to say when D → 1. When the mesh is
refined, the TLSV1 seems to converge non-uniformly toward the analytical solution, the convergence
being fast at the beginning of the stress-strain curve, and slow at the end. A similar problem can
be observed for the gradual model (see figure 16 (b) and (d)). As the softening function H has been
calculated to have a 1D global behavior of the TLS equivalent to a bilinear CZM, the analytical solution
is piecewise linear, with a first elastic branch, followed by two decreasing branches which correspond to
the traction-separation law depicted on figure 13. When the mesh is too coarse (figure 16 (b) and (d)
for he = `c/5, blue curve), the TLSV1 can not represent the change of slope of the analytical solution.
This can be explained by the form of the hardening function H of the gradual model (see figure 14),
which is discontinuous for a certain value Dk of the damage variable. This discontinuity stems from
the discontinuity of the derivative at w = wk of the traction-separation law. In the TLS approach,
it is necessary at some point to compute H (equation (8)), which requires to compute numerically
an integral where H appears, using a classical Gauss quadrature. With the parameters from table 3,
φk = 0.91 (where φk = D−1(Dk)), which means that the zone [φk, φs] has a width around `c/10. If
the mesh used is too coarse (for instance for an element size he = `c/5 in figure 16 (b) and (d)), there
may be no Gauss point in the zone [φk, φs] , leading to an underestimated value of H. For an element
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(a) (b)

(c) (d)

Figure 16: 1D tensile test: stress vs mean strain curves. Black thick lines correspond to the analytical solutions, other
curves are obtained numerically. (a) Abrupt model. (b) Gradual model. (c) Abrupt model, zoom on the end of the
computation. (d) Gradual model, zoom around the kink point of the curve. With both the abrupt and gradual model,
the analytical and numerical TLV2 solutions are superimposed, for a relatively coarse mesh element size.

size greater than he = `c/15, the mesh is fine enough to have at least one Gauss point in the zone
[φk, φs], therefore a change of slope of the solution in the numerical solution can be observed, even if
the numerical solution is still far from the analytical one. With the TLSV2, since φ∗ = 0.5 < φk, the
tedious part of the integration of H is taken into account by the cohesive contribution of the model,
therefore the numerical results are close to the analytical solution even with a relatively coarse mesh.

The results that have been presented so far show that the convergence of the TLSV1 is particularly
slow compared to the TLSV2. Whether it is for the abrupt or the gradual model, the finer the mesh
and the further is the point where the numerical solution deviates from the analytical one. However,
even for he = `c/300, the last point of the numerical curve is still far from the analytical one. Some
oscillations can also be noticed with the gradual model (see figure 16 (d)), which correspond to finite
elements passing into the zone [φk, φs].

The results presented on this 1D example reveal a non-uniform convergence of the TLSV1, the
convergence speed being very slow when the damage variable D tends to 1. This phenomenon stems
from numerical difficulties which arise when computing the averaged quantities Y and H in (8):

• The computation of Y involves the local quantity Y , which is proportional to the square of the
deformation ε, which tends to infinity when the bulk damage variable D tends to 1.

• The used softening function H may have a tedious behavior when D tends to 1, for instance it
may tend to infinity. This is the case with the gradual model used in this section.

These problems come when D → 1, and this is one of the reasons why the TLSV2 was introduced:
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Figure 17: 1D tensile test: displacement solutions for the gradual model, at two loading stages (from top to bottom),
for a finite element size of he = `c/5 (left) and he = `c/15 (right).
.

indeed, by restricting the bulk damage variable to values strictly smaller than 1 (see equation (13) and
figure 6), the first terms of g and gc in equations (14) and (15), which come from the TLSV1, can now
be integrated numerically with classical integration schemes, while the second terms, which come from
the cohesive part of the model, are finite quantities which are directly evaluated on the cohesive zone.

Displacement solutions at two loading stages for the gradual model (conclusions are similar for the
abrupt model), are plotted on figure 17. Around x = 0, the TLSV2 is of course different from the
TLSV1 analytical solution, since the kinematics of the two models differ. However, far enough from
x = 0, the TLSV2 is almost superimposed with the analytical solution, contrary to the TLSV1 which
is quite far. The differences between the TLSV1 and the analytical solution increase as φs tends to `c.

The displacement error for φs = 0.9999`c, defined as the relative error on the displacement u(x = L)
between the TLSV1/V2 and the analytical solution, is plotted as a function of the mesh element size
for both the abrupt and gradual model on figure 18. For both models, the TLSV2 exhibits much lower
error levels than the TLSV1. With the abrupt model (figure 18 (a)), the TLSV2 seems to have a better
convergence rate, the error curve being steeper than the one of the TLSV1. However, with the gradual
model (figure 18 (b)), the difference of slope between the error curves of TLSV1 and TLSV2 is not so
obvious. In order to understand this phenomenon, a few details about the implementation of the TLS
approach need to be recalled (more details can be found in Appendix E).

At each computation step n, the 1D problem is solved for a reference loading Fref (which can
be either an imposed displacement or loading), giving a reference displacement solution unref. Then
the actual displacement solution is obtained by multiplying this reference solution by a load factor,
computed as:

µn =

√
bn

an
(61)
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with {
an = Y

n
ref

bn = YcH
n
1

(62)

(63)

for the TLSV1 and {
an = gnref

bn = gnc

(64)
(65)

for the TLSV2.
Equation (61) shows that the load factor (and therefore, the displacement at the end of the bar) is

function of a ratio between:

• A configurational force at the denominator, which is computed by integrating a quantity depend-
ing on the strain ε

• A critical value numerator, which requires to compute the integral for the softening function H1

(for the TLSV1) or H (for the TLSV2)

It has been explained previously that these quantities are difficult to integrate with the TLSV1,
since they both involve quantities which tend to infinity when D tends to 1, and how the TLSV2
deals with this problem. For the abrupt model, with the TLSV1, since the hardening function H1 is
constant, the numerator bn in equation (61) is exactly computed, so the only source of error is the
computation of an. The displacement field being approximated with linear finite element, the quality
of the approximation of the strain field which tends to infinity when D tends to 1 is very poor. The
computation of bn is optimal and the computation of an does not converge, therefore the convergence
rate of the TLSV1 is close to zero. On the contrary, with the TLSV2, an is properly computed, so a
good convergence rate is recovered.

With the gradual model, the numerator bn also has to be computed numerically. However, although
it also involves quantities tending to infinity, these quantities are not approximated (contrary to the
strain field). This means that when the mesh is refined, the error on bn decreases, which is not the
case for an as it was shown with the abrupt model. Here the computation of an does not converge,
but the computation of bn slightly increases when the mesh is refined, this is why in figure 18 (b), the
error for the TLSV1 seems to decrease a bit more than in figure 18 (a).

Because of the dependence of the load factor to the ratio of two numerically difficult to integrate
quantities, it seems difficult to draw some conclusions on the convergence rate of the TLS approach.
However, it is evident that the TLSV2 allows to greatly decreases the error levels compared to the
TLSV1.

5.3. Three-points bending test
As explained in section 4, this paper will focus on symmetric examples. The notched beam from

[12] and the unnotched beam from [18] are considered. The dimensions of the notched beam are: length
L = 500 mm, distance between support D = 400 mm, height c = 100 mm, thickness e = 50 mm, notch
depth t = 20 mm. For the unnotched beam, L = 1088 mm, D = L, c = 500 mm and e = 40 mm.
The characteristic lengths come from [12] and [33]; `c = 8 mm for the notched beam was used by [12]
with a non-local integral Mazars damage model, and `c = 20 mm for the unnotched beam was used by
[33] with the TLSV1 to fit the experimental results from [18]. For the notched beam, the width of the
notch is `notch = 1 mm. The simulations are performed under plane strain assumption. The material
parameters used for the two tests are given in table 4. The fracture energy GF , computed as the area
under the curve t = f(w) is:

GF =
1

2
(σcwk + σkwc) =

1

2
(σcw1 + σk(wc − w1)) (66)

It is recalled that this paper focuses only on symmetric cases, where the position of the skeleton
corresponds to the axis of symmetry (see section 4.1). Since the considered examples are symmetric,
only half of the domain is modeled for each of them, using symmetry boundary conditions (see figure
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(a)

(b)

Figure 18: 1D tensile test: displacement convergence for the abrupt model (a) and for the gradual model (b) (α: slope
of the convergence curves).
.

Notched beam Unnotched beam

Elastic parameters E (MPa) 30000 37000
ν 0.24 0.21

Gradual model parameters

σc (MPa) 4.0 4.2
σk (MPa) 0,26 1,5
wc (mm) 0,03 0,04
w1 (mm) 0,021 0,0235

GF (N.m−1) 43,2 61,8

Table 4: Three-points bending tests: material parameters.
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Figure 19: Three-points bending test on notched beam: geometry.

TLSV1 CZM, TLSV2

Figure 20: Three-points bending test on notched beam: boundary conditions.
.

20). The loading is applied on a line on the upper boundary of the beam, and the vertical displacement
of a line on the lower boundary at the corner is locked. These two lines have the same width, which
is of a = 5 mm for the notched beam and a = 60 mm for the unnotched beam. Note that in the
case of the TLSV1, the displacement of the axis of symmetry is locked by fixing its displacement along
the x direction to zero (except for the parts were φ ≥ `c), whereas for the TLSV2 and the CZM,
the displacement along x of the axis of symmetry is handled via the modified Lagrangian formulation
presented in section 4.3.

The bulk and cohesive damage fields as well as the cohesive forces are plotted on figure 21. When
φ < 0, both D and d are null. Then, for 0 < φ < φ∗, D starts to grow whereas d is still equal to zero.
Finally for φ > φ∗, d starts to grow, while the traction forces start to decrease, until φ ≥ `c.

Figure 22 shows for both tests the force-CMOD curves obtained with the cohesive, the TLSV1
and the TLSV2 models, for a first mesh where the element size is he = `c/5. Note that the CMOD
is defined as twice (because of the symmetric boundary conditions) the horizontal displacement of a
point located at coordinates (−`notch, 0) for the notched beam, and (−81, 0) for the unnotched beam
(units are mm), assuming that the coordinates of the point located at the middle of the beam on the
bottom boundary are (0, 0).

The TLSV1 dissipates more energy than the other two models, and shows oscillations with a high
amplitude. On the contrary, the TLSV2 oscillates much less, and gives results which are very similar
to the CZM. This last point is quite interesting: indeed, the parameters of the three models were
computed in section 3 in order to have equivalent global behaviors in 1D, but there is a priori no
reasons that it is still the case in 2D. It was shown numerically in [32] that for `c → 0, the results of
the TLSV1 tends to the results obtained by the CZM, but this requires small values of `c and therefore,
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(a) (b)

(c) (d)

Figure 21: Three-points bending tests. The color map corresponds to the bulk damage field. (a) deformed configuration,
traction forces (arrows) (b) deformed configuration, zoom (c) initial configuration, cohesive damage (line with numeric
cohesive damage values on the right) (d) initial configuration, zoom. The black thick lines are the iso-zero and iso-φ∗ of
the level set field.
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Figure 22: Three-points bending tests on notched (left) and unnotched (right) beam: force CMOD curves, comparison
between the cohesive, the TLSV1 and the TLSV2 models, for a mesh where the element size is he = `c/5.
.

very fine meshes.
Figure 23 shows for both tests the force CMOD curves obtained with the TLSV1, for element sizes

of `c/5, `c/10 and `c/20. The amplitude of the oscillations decreases as the mesh is refined, while the
results seem to converge. However, this convergence is slow. It could be expected that the results of
the TLSV1 should converge toward the results of the TLSV2, however as shown in the 1D example
of section 5.2, it would require a huge number of elements in 2D. Note that in previous papers about
the TLS approach, apparently better results have been obtained with the TLSV1. However, it must
be emphasized that these results were obtained:

• For a constant softening function H = 1 [28, 3, 40], which removes the difficulty of computing
numerically H.

• For very fine meshes, with an element size of at least `c/20, as in [32].

On the contrary, the results obtained with the TLSV2 (figure 24) almost do not depend on the size
of the elements of the mesh. Some oscillations can be observed at the beginning of the computation as
the mesh is refined in the case of the notched beam. This is due to the explicit resolution algorithm,
which strongly depends on the mechanical fields at a local scale. Refining the mesh in the case of
the unnotched beam, which presents a stress singularity, tends to accentuate this effect, causing some
oscillations.

Table 5 summarizes the dissipated energy for the different computations for the notched beam
example. The reference value is computed as:

Wd = e(c− t)GF (67)

The numerical values are computed as the area under the applied load versus vertical displacement
curves. Note that this analysis could not be performed for the unnotched beam example, because of
the used boundary conditions. Indeed, for this example, a steel plate was used to apply the loading,
resulting in branching of the crack when it reaches the top of the beam. Therefore, the dissipated energy
which would be numerically computed would not correspond to the one which would be computed
analytically with equation (67) (which corresponds to the case where the crack cuts the beam in half,
straight through its section).

As expected, with the TLSV1 the dissipated energy is quite far from the reference value, and
converges very slowly. It is much closer with the TLSV2, even if it seems a bit smaller than the value
obtained with the CZM. As explained in section 5.1, the parameters of the TLSV1, TLSV2 and CZM
models were chosen in order to have equivalent behaviors, and in particular the same dissipation. This
is analytically true only in 1D, and has no reason to be true in 2D or 3D. A possible explanation is
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Figure 23: Three-points bending tests on notched (left) and unnotched (right) beam: force CMOD curves, obtained with
the TLSV1 method, for several meshes.

Figure 24: Three-points bending tests on notched (left) and unnotched (right) beam: force CMOD curves, obtained with
the TLSV2 method, for several meshes.

Mesh element size Dissipated energy

CZM
he = `c/5 156,76
he = `c/10 162,95
he = `c/20 170,95

TLSV1
he = `c/5 275,32
he = `c/10 239,14
he = `c/20 219,88

TLSV2
he = `c/5 154,99
he = `c/10 157,08
he = `c/20 163,99

Reference value 172,8

Table 5: Three-points bending tests (notched beam): dissipated energy (units are N.mm).
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Figure 25: 2D uniaxial tension along x axis
.

illustrated with the example of uniaxial tension along the x axis of figure 25. The stress tensor can be
written:

[σ] =

 σ 0 0
0 0 0
0 0 0

 (68)

The strain response is:

[ε] =
σ

E

 1 0 0
0 −ν 0
0 0 −ν

 (69)

Whether it is on the example of a 1D bar as studied in section 2 or on this 2D example, with the
CZM a crack is expected to appear when σ reaches the critical stress value σc:

σ = σc (70)

With the TLS approach (V1 or V2), damage starts to appear when the energy release rate Y
reaches the critical value Yc; in 1D it can be expressed in order to have equivalence with a CZM as a
function of σc with equations (23) and (B.1):

Y 1D
c =

1

2

σ2
c

E
(71)

This value of Y c1D ensures that, in 1D, cohesive crack initiation with the CZM or damage initiation
with the TLS model both start when the stress in the bar reaches the value σc. If we compute Y for
the uniaxial tension example of figure (25) for σ = σc, using the expression of Y given by equation
(32) (with β = 0 or β = 1) and the expression (69) of ε, we obtain:

Y (σ = σc) = γ(ν)
1

2

σ2
c

E
(72)

where γ(ν) 6= 1 is a function of ν which depends on whether the uniaxial tension test is studied under
plane stress, plane strain or 3D conditions. Equation (72) implies that damage will start to appear
for a value of σ which is different from σc. Therefore, the cohesive, TLSV1 and TLSV2 models are
not fully equivalent in 2D, which can explain why the values of the dissipated energy given in table 5
shows some differences between the CZM and the TLSV2 model (for the TLSV1, it was shown that
numerical issues are another source of error).

Figure 26 shows, for a mesh element size of he = `c/5, the influence of the critical value φ∗ in
the TLSV2. The value of φ∗ does not have a significant impact on the results. Only for the value of
φ∗ = 0.9`c, the results obtained seem to dissipate a bit more energy than for the other values of φ∗.
We have seen previously that the TLSV1 dissipates more energy than the TLSV2, and for φ∗ → `c,
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Figure 26: Three-points bending tests on notched (left) and unnotched (right) beam: force CMOD curves, TLSV2,
influence of the critical value φ∗.

R

P

B/2

e

Figure 27: Splitting test: geometry and boundary conditions.
.

the bulk damage variable D tends to 1, therefore the numerical problems evoked at the end of section
5.2 may start to reappear, and the TLSV2 is expected to tend to the TLSV1.

5.4. Splitting test

The objective of this example is to show the ability of the TLSV2 to handle stress triaxiality. The
radius of the specimen is R = 400 mm, the width of the loading bearing strips is B = 12 mm and their
thickness is e = 6 m (see figure 27). The CMOD is defined as twice (because of the symmetric boundary
conditions) the horizontal displacement of a point P located at coordinates (−B/2, 0), assuming that
the center of the cylinder is located at coordinates (0, 0). The characteristic length is `c = 5 mm, and
for the TLSV2 model, the critical value is φ∗ = 0.5`c. The simulations are performed under plane
stress assumption, with a mesh element size of he = `c/5 in the center part of the specimen, where the
crack is expected to propagate. The material parameters of the gradual model are given in table 6.

The bulk and cohesive damage at different computation steps are shown on figure 28. As observed
by other authors [37], the crack initiates at about 2R/3 from the center of the cylinder. Because of
the compressive zone under the loading bearing strips, the crack propagates toward the center of the
sample. Finally, the crack grows upward until it reaches the bearing strip. Note that while φ < φ∗

(figure 28 (a)), there is no cohesive damage (and therefore no displacement jump). Then φ increases
until φ > φ∗, cohesive damage starts to appear (figure 28 (b) and (c)). Finally, when φ > `c, the
cohesive damage reaches the value 1 (figure 28 (d). The maximum value of the cohesive damage d is
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Elastic parameters E (MPa) 37700
ν 0,2

Gradual model parameters

σc (MPa) 3,77
σk (MPa) 0,57
wc (mm) 0,04
w1 (mm) 0,002

Table 6: Splitting test: material parameters.

not exactly 1, because the width of the damage band is slightly lower than `c).
Figure 29 shows, for the first step of a computation done with the pure CZM, the positive part of

the xx component of the strain field and the cohesive energy release rate y which drives the evolution
of the cohesive damage variable field (computed by solving the modified Lagrangian formulation, see
equation (54)). The xx component of the strain field is the quantity which is expected to govern the
initiation and propagation of cracks, and as expected its maximum is about 2R/3 from the center of
the cylinder, where the damage initiates with the TLS approach (figure 28 (a)). On the contrary, y
reaches its maximum at the center of the cylinder, therefore the crack initiates at this point, and then
propagates toward the top of the cylinder.

Figure 30 shows the force-CMOD curves obtained with the cohesive, the TLSV1 and the TLSV2
models, for a mesh where the element size is he = `c/5. As expected, the CZM gives a very different
behavior; in particular, the cohesive crack starts to open for a loading which is superior the one which
is necessary for the damage to appear with the TLSV1 or V2 models.

6. Discussion

In this paper, a new method to combine damage mechanics and cohesive zone models has been
proposed, thanks to the Thick Level Set approach to fracture. The new approach (TLSV2) is charac-
terized by two damage variables, a bulk damage variable and a cohesive damage variable, both being
functions of the same level set field. In the TLSV2, the damage in the bulk is restricted to a value
strictly inferior to 1, preventing numerical issues which may occur with classical damage models when
damage tends to 1, like infinite strains for instance. A 1D equivalence was established with the first
version of the TLS (TLSV1) with only bulk damage and with the CZM.

The TLSV1 and V2, as well as the cohesive zone model, were compared on several examples, in 1D
and in 2D. It was shown that the convergence speed of the TLSV2 is much faster than the one of the
TLSV1, with results which almost do not depend on the size of the elements of the mesh, proving that
the aforementioned numerical issues of the TLSV1 are solved by the TLSV2. Even if a few differences
can be observed between both (especially on the dissipated energy), the TLSV2 gives results which
are very close to the cohesive zone model. It has also been shown that the TLSV2 can handle stress
triaxiality, which is not the the case of the pure CZM model. However, one of the essential aspects of
the TLSV2 is the use of the skeleton of the level set field. Assuming that it coincides with the axis of
symmetry in symmetric examples allowed to get some first interesting results, but the localization of
the skeleton in any situation is necessary in order to fully illustrate the potential of the TLSV2. Indeed,
contrary to existing approaches where the cohesive crack location needs to be determined, it should be
automatically given here as the skeleton of the level set, that is to say the surface where its gradient
is discontinuous. Also, compared to a pure CZM model, the bulk part of the TLSV2 is expected to
provide a natural propagation criterion, as well as the possibility for cracks to branch and coalesce.
Another point is the capacity of the TLSV2 to apply interfacial behaviors (like frictional contact for
instance) on the crack lips. From a numerical point of view, this is not simple with the TLSV1 for at
least two reasons. The first one is that the crack is represented by two surfaces (the two sides of the
iso-`c), which requires to relate each point of a crack lip with its counterpart on the other lip. The
second reason is that with the TLSV1, the bulk material is very soft around the macro-crack because
of the bulk damage variable tending to 1. These two problems should disappear with the TLSV2,
since the geometry of the macro crack is a surface corresponding to the skeleton, and the bulk damage
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(a) (b)

(c) (d)

Figure 28: Splitting test, TLSV2 model: bulk damage field (color map) and cohesive damage (black line) at different
computation steps. The black thick lines are the iso-zero and iso-φ∗ of the level set field.
.
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Figure 29: Splitting test, CZM: xx strain field component (color map: only the positive values are plotted for clarity)
and cohesive energy release rate y field (line on the right) for the first computation step.
.

Figure 30: Splitting test: force CMOD curves, comparison between the CZM, the TLSV1 and the TLSV2 models.
.
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variable strictly inferior to 1. These aspects will be illustrated in a forthcoming contribution, where
we will also deal with non symmetric crack growth for which the skeleton extraction and enrichment
will be needed. Finally, the parameters of the TLSV2 were chosen using a 1D equivalence with the
TLSV1 of the CZM model. However a more general method to determine them directly, without using
another model as a starting point, should be investigated.

Note that in this paper we focused on softening only damage models, but damage models exhibiting
first a hardening behavior may also be analyzed with the TLS [29, 30].
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Appendix A. From TLSV1 to CZM [32]

This section is a reminder from [32], where a softening function H is deduced in order to have a
global behavior of the TLSV1 model equivalent to a bilinear CZM (cf. figure 13). In order to simplify
the notations, the subscript “1” indicating the TLSV1 quantities are removed in this subsection.

The following dimensionless quantities are introduced:

ŵ1 = w1/wc, ŵk = wk/wc, σ̂k = σk/σc, λ =
2σc`c
Ewc

(A.1)

The function H̃(D), defined as

H̃(D) =

∫ D

0
H(D) dD (A.2)

is given, for the parabolic damage profile (17), by:

H̃(D) =
D

1−D
1

(1 + λCI(D))2
(A.3)

with C a constant depending on the value of φ̂ = φ/`c:

C =

{
λ/ŵ1 if φ̂ < φ̂k
λσ̂k

1−ŵk if φ̂ > φ̂k
(A.4)

where
φ̂k =

a

2
(
√

1 + 4/a− 1) (A.5)

and
I(D) =

2−D√
1−D

− 2 (A.6)

The critical value φ̂k corresponds to the kink point in the traction-separation law t = f(w). The
primitive H̃ of the hardening function is continuous, but not its derivative, which explains the discon-
tinuity of H (see figure 14). We can also write H̃ as a function of φ̂:

H̃(φ̂) = B
2φ̂− φ̂2

(1− φ̂+ λCφ̂2)2
(A.7)

with B another constant depending on the value of φ̂.

B =

 1 if φ̂ < φ̂k(
σ̂k

1−ŵk

)2
if φ̂ > φ̂k

(A.8)
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Appendix B. Cohesive zone model

Cohesive zone models are usually given by a traction-separation relation t = f(w). In order to fully
determine a pure CZM using the formalism introduced in section 2.1, one needs to compute yc and h
(In order to simplify the notations, the subscript “1” indicating the CZM quantities are removed in this
subsection). Having d = 0 corresponds to t = σc and w = 0, so by substituting w

d in the expression of
t in (2), and using the fact that y = ych(0) = yc when d starts to grow, the expression of yc is:

yc =
σ2
c

2k
(B.1)

When ḋ > 0, the criterion in (3) becomes an equality, leading to:

ych(d) = y =
1

2
k
(w
d

)2
(B.2)

Using the first equation of the state equations (2) and the relation t = f(w), w can be expressed
as a function of d, leading to the expression of h(d). It can be noticed that whatever the value of k in
equation (B.2), the same traction-separation law t = f(w) is recovered.

For instance, in the case of the bilinear law [36] depicted in figure 13, and written:

t = a− bw (B.3)

where {
a = σc , b = σc

w1
, if 0 ≤ w ≤ wk

a = σkwc
wc−wk , b = σk

wc−wk , if wk ≤ w
(B.4)

the expression of ych(d) is:

ych(d) =
k

2

(
a

k(1− d) + bd

)2

(B.5)

Appendix C. From TLSV1 to TLSV2

To determine the cohesive damage profile d(φs), one has to start from the stiffness equivalence (21).
Then, using the expression of k given by (19) we obtain:

d

1− d

∣∣∣
φ=φs

=
1

`c

(∫ φs

φ∗

1

1−D1
− 1

1−D
dx

)
(C.1)

For φ > φ∗ we choose D(φ) such that:

1

1−D(φ)
= S(φ∗) + S′(φ∗)(φ− φ∗) (C.2)

where
S(φ) =

1

1−D1(φ)
(C.3)

The use of this function S allows to compute easily the integrals in (C.1), as well as to ensure the C1

continuity of D(φ) at φ = φ∗. From (C.1) we can finally deduce d(φs):

d(φs) =
R(φs)

1 +R(φs)
(C.4)

with

R(φ) =
1√

1−D1(φ)
− 1√

1−D∗
− 1

`c

(
S(φ∗)(φ− φ∗) +

S′(φ∗)

2
(φ− φ∗)2

)
(C.5)
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From equation (22) and expression (20) for yc, the expression of h(d) is obtained:

h(d(φs)) =
H̃(D1(φs))− H̃(D(φs))

`cd′(φs)
(C.6)

where H̃ is given by equation (A.2).

Appendix D. From CZM to TLSV2

In the framework of the equivalence between CZM and TLSV2, the softening functionH is obtained
from the dissipation equivalence (24), which reduces, for φs < φ∗, to:

2

∫ φs

0
YcH(D)D′ dx = yc1h1(d1)d′1

∣∣∣
φ=φs

(D.1)

with d1 given by:

2

∫ φs

0

1

E

D

1−D
dx =

1

k1

d1

1− d1

∣∣∣
φ=φs

(D.2)

It can be noticed that for φ < φ∗, the cohesive part of the TLSV2 is not active. Therefore, the
function H that will be obtained from equations (D.1) and (D.2) will be the same as the one obtained
by [32], where a TLSV1 model was derived from a CZM.

The function h is then obtained from equations (24) and (25), for φs > φ∗. Equation (24) has two
unknowns h and H, which gives a certain freedom. We can either choose an expression for h and have
H be determined by (24), or choose the expression of H and have the expression of h imposed by (24).
The former, where we choose for H(D) with D > D(φ∗) the same expression than for D < D(φ∗),
seems to be the easiest and most reasonable choice, as it ensures the C1 continuity of H(D(φ)) at
φs = φ∗. However, as all the computations done in this paper where performed with a TLSV2 model
derived from a TLSV1 model, the best choice to determine H and h for φs > φ∗ could still be discussed.

Appendix E. Explicit algorithm

We present in this section a summary of the explicit algorithm developed in [30] used to solve a
problem with the Thick Level Set approach, whether it is the TLSV1 or the TLSV2.

General flowchart
First of all, the loading F (which can be prescribed forces or Dirichlet boundary conditions) is

written as:

F = µFref (E.1)

where Fref is an arbitrary loading and µ is a load factor, which is supposed to be an unknown of the
problem. Therefore, the following quantities need to be determined at each computation step:

• The displacement field u

• The level set field φ

• The load factor µ

These quantities are computed using and explicit algorithm made of three steps; assuming that
(un, φn, µn) at computation step n are known:

1. A displacement solution un+1
ref is computed from φn, for the reference load Fref. Since φn is fixed,

the problem is linear with respect to the displacement unknown, unless the asymmetric potential
(29) is used; in that case a Newton-Raphson algorithm is used.

2. The load factor µn+1 is computed (see equation (E.8)).

3. Finally, the increment of level-set field ∆φ is computed from un+1
ref and µn+1, and the level-set

field is updated: φn+1 = φn + ∆φ.
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Level set update
Let fnI denote the evolution criterion for a given time step n and for a given mode I ∈M :

fnI = (µn)2anI − bnI (E.2)

with {
anI = Y

n
ref,I , ∀I ∈M

bnI = YcH
n
I , ∀I ∈M

(E.3)

(E.4)

for the TLSV1 and {
anI = gnref,I , ∀I ∈M
bnI = gnc,I , ∀I ∈M

(E.5)

(E.6)

for the TLSV2.
The load factor µn at step n is computed in order to have:

max
I∈M

(fnI ) = 0 (E.7)

Which gives:

µn = min
I∈M

√
bnI
anI

(E.8)

The increment of φ at each mode ∆φI is computed using a prediction fpred
I of the criterion:

fpred
I ≤ 0, ∀I ∈M
∆φI ≥ 0, ∀I ∈M

fpred
I ∆φI = 0, ∀I ∈M

(E.9)
(E.10)

(E.11)

where ∆φI is computed such that
max
I∈M

∆φI = ∆φmax (E.12)

The prediction of the evolution criterion is computed as

fpred
I = fnI + αnI∆µpred − βnI ∆φI (E.13)

where 
αnI = 2µnY

n
ref,I , ∀I ∈M

βnI =

∫
Ω YcH

′(D1)D′1
2MIdΩ∫

ΩD
′
1MIdΩ

, ∀I ∈M

(E.14)

(E.15)

for the TLSV1 and
αnI = 2µngnref,I , ∀I ∈M

βnI =

∫
Ω
YcH

′(D)D′2MIdΩ +

∫
Γs

1

2
ych
′(d)d′2MI dΓ, ∀I ∈M

(E.16)

(E.17)

for the TLSV2.
The value of ∆µpred which verifies (E.12) is

∆µpred = min
I∈M

βnI ∆φmax − fnI
αnI

(E.18)

Finally ∆φI is computed as

∆φI = max

(
0,
fnI + ∆µpredαnI

βnI

)
, ∀I ∈M (E.19)

In all the computations presented in this paper, a value of ∆φmax = 0.25h is chosen (h being the
size of the elements of the mesh).
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Spatial diffusion
In order to reduce spatial oscillations of the non-local fields, the variational formulation (40) used

to compute X is modified by adding a numerical diffusion term to the left-hand side:

∫
Γ0

XX
∗dΩ +

∫
Γ0

(βh)2∇X ·∇X
∗

dΓ =

∫
Ω
XD′X

∗
dΩ +

∫
Γs

xd′X
∗

dΓ, ∀X∗ ∈ Y (E.20)

where β is a user defined parameter and h the characteristic finite element size. We obtained the new
matricial system which needs to be solved to compute the coefficients XI :

[K]{X} = [M ]{A} (E.21)

where
[K] = [M ][KN ][M ]> (E.22)

and
KN
ij =

∫
Ω
LID

′LjdΩ +

∫
Γ0

(βh)2∇LI ·∇Lj dΓ, ∀i, j ∈ N (E.23)

Appendix F. Explicit algorithm; adaptation to the CZM

The explicit algorithm which was presented in the precedent section can also be used to solve a
CZM problem, with the following modifications:

• In CZM, the damage variable d (by ignoring the subscript “1” indicating the CZM quantities in
this subsection) does not depend on an auxiliary level set field, therefore the unknown φ in the
algorithm of section Appendix F must be replaced by d

• In equation (E.2), the expressions of aI and bI are:

{
anI = ynref,I , ∀I ∈M
bnI = ych

n
I , ∀I ∈M

(F.1)

(F.2)

Note that this arises the question of the nature ofM in the CZM case. In the TLS framework,M
was the set of propagation modes, related to the concept of non-locality, which does not exist in
our CZM approach. Therefore, for the CZM the set M is simply a set of nodes corresponding to
a discretization of the crack path. The notation xnI corresponds to the quantity x at computation
step n, evaluated at node I.

• In equation (E.13), the expression of αnI and βnI are:

{
αnI = 2µnynref,I , ∀I ∈M
βnI = ych

′n
I , ∀I ∈M

(F.3)

(F.4)

• The user defined parameter ∆φmax, maximum increment of φ, becomes ∆dmax, a maximum
increment of d

Numerical diffusion is introduced directly into the expression of fpred
I through a numerical param-

eter α;

fpred
I = fnI + αnI∆µpred −

(
1 +

αheµ
1

∆µpred

)
βnI ∆dI (F.5)

where he is the finite element size and µ1 is the load factor for the first computation step. Introducing
it in equation (F.5) allows to obtain an algorithm independent from the reference loading. The value
of ∆µpred which verifies (E.12) is now solution of a second order polynomial, which can be written as:

∆µpred = min
I∈M

FI (F.6)
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where

FI =
1

2

(βnI ∆dmax − fnI )

αnI

(
1 +

√
1 +

4αheαnI β
n
I ∆dmax(

fnI − βnI ∆dmax
)2
)

(F.7)

Finally ∆φI is computed as

∆dI = max

0,
fnI + ∆µpredαnI(
1 + αheµ1

∆µpred

)
βnI

 , ∀I ∈M (F.8)

Appendix G. Dissipation

With the TLSV2 approach, the power dissipated is equal to:

δWd =

∫
Γt

F · u̇ dΓ− d

dt
W (u, φ) (G.1)

=

∫
Ω
σ : ε(u̇) dΩ +

∫
Γs(φ)

t · [u̇] dΓ− d

dt
W (u, φ) (G.2)

=

∫
Ω

(σ −Ψ,ε) : ε(u̇)−Ψ,DḊ dΩ +

∫
Γs(φ)

(t− ϕ
,[[u]]) · [u̇]− ϕ,dḋ dΓ (G.3)

=

∫
Ω
YcH(D)Ḋ dΩ +

∫
Γs(φ)

ych(d)ḋ dΓ (G.4)

The last equality is valid if the model is so called associated (the stress are the derivative of the
energy and the derivative of the energy with respect to damage drives the damage evolution). The
total work dissipated during a period [0; t] is:

Wd =

∫ t

0
δWd (G.5)

=

∫
Ω

(∫ t

0
YcH(D)Ḋ dt

)
dΩ +

∫
Γs(φ)

(∫ t

0
ych(d)ḋ dt

)
dΓ (G.6)

=

∫
Ω
YcH̃(D) dΩ +

∫
Γs(φ)

ych̃(d) dΓ (G.7)

We consider the particular case of a straight crack of figure G.31, and compute the energy dissipated
between two positions where the macro-crack has already appeared. Then

Wd,1−2 =

∫
Ωc2\Ωc1

YcH̃(D) dΩ +

∫
Γs2(φ)\Γs1(φ)

ych̃(d) dΓ (G.8)

=

∫ `c

−`c

∫ y2

y1

YcH̃(D) dy dx+

∫ y2

y1

ych̃(d) dy (G.9)

= 2Yc(y2 − y1)

∫ `c

0
H̃(D) dx+ yc(y2 − y1)h̃(1) (G.10)

= 2Yc`c(y2 − y1)

(∫ D(`c)

0

H̃(D)

G(D)
dD + h̃(1)

)
(G.11)

(G.12)

where
G(D) = D′(D−1(D)) (G.13)

Applying the same reasoning for the TLSV1 approach, the total energy dissipated is:
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Figure G.31: Computation of the energy dissipated by the propagation of a straight damaged zone, between two positions
y1 and y2
.

Wd,1−2 = 2Yc`c(y2 − y1)

∫ 1

0

H̃(D1)

G(D1)
dD1 (G.14)

By taking equation (22) and integrating it over time, we obtain the equality between the TLSV1
dissipation (G.14) and the TLSV2 dissipation (G.11).
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