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Abstract 

Although high levels of dissolved arsenic were detected in surface and ground waters of Nhecolândia, a sub-

region of the vast Pantanal wetlands in Brazil, the possible sources have not been clearly identified and the 
potential release from the wetland to the draining rivers has not been investigated. In this study we measured 

the dissolved As content in all the rivers and small streams that supply the southern Pantanal region, as well 

as in the two main rivers draining  the wetland, i.e., the Cuiaba and Paraguay rivers and tributaries. In addition, 
Arsenic in surface waters, perched water-table, soils and sediments from 3 experimental sites located in the 

heart of Nhecolândia were compared. On the one hand, the results show the absence of As contamination in 

rivers that supply the Pantanal floodplain, as well as a lack of significant release from the floodplain to the 
main drains. The As contents in the rivers are less than 2 μg L-1, with variations that depend on the lithology 

and on the geomorphology at the collection point (uplands or floodplain). On the other hand, they confirm the 

regional extension of As contamination in Nhecolândia’s alkaline waters with some values above 3 mg L-1. 

Arsenic is mainly in the arsenate form, and increases with the evaporation process estimated from sodium ion 
concentrations. The pH of soil solution and surface water increases rapidly during evapo-concentration up to 

values above 9 or 10, preventing adsorption processes on oxides and clay minerals and promoting the retention 

of dissolved arsenic in solution. Solutions from organic soil horizons show higher As contents in relation to 
Na, attributed to the formation of ternary complex As-(Fe/Al)-OM. In this alkaline pH range, despite high 

levels of dissolved As, soil horizons and lake sediments in contact with these waters show As values that 

correspond to uncontaminated environments. 
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Dissolved arsenic in the upper Paraguay River basin and Pantanal wetlands 
 

  

1 Introduction 
Arsenic (As) is known to be a serious health risk, a toxic and carcinogenic chemical element. In addition to 

naturally occurring arsenic, its presence also depends on anthropogenic, mining, industrial or agricultural 

activities. It is present in the environment under four oxidation states (- 3, 0, + 3, and + 5) and different organic 

and inorganic species. The amounts and relative proportion of oxidation states and chemical species of As in 
water are the result of a complex reactivity including oxidation / reduction, complexation, 

adsorption/desorption, precipitation and biological transformations (Bhattacharya et al., 2006; Hasegawa et 

al., 2010; Redman et al., 2002; Sharma and Sohn, 2009; Welch and Lico, 1998). Average arsenic 
concentrations of surface water are around 0.1 – 2 μg L-1 in river and lake waters (Gaillardet et al., 2014; 

Rahman and Hasegawa, 2012), although concentrations may be higher (up to 12 mg L-1) in areas containing 

natural As sources (WHO, 2018). Guidelines are usually set at the limit of 10 μg L-1 for drinking water (Brazil, 
2011; EPA, 1991; WHO, 2008) and for the protection of aquatic life in freshwaters (CCME, 2001; CONAMA, 

2011; EPA, 1991).  

 

High arsenic contents in surface and groundwater in Latin America have only recently been reported 
(Bundschuh et al., 2012a). In addition to pollution and contamination related to human activities (mainly 

mining), high levels of naturally occurring arsenic in water have been detected in Mexico (Armienta and 

Segovia, 2008; Castro de Esparza, 2010), Nicaragua (Mcclintock et al., 2012), Uruguay (Guérèquiz et al., 
2009), Argentina (Bundschuh et al., 2004; Nicolli et al., 2012), Chile (Arriaza et al., 2010). In most of these 

cases, high contents result from weathering products in the Andean volcanic chain and geothermal surface 

manifestations (López et al., 2012). Although high arsenic levels have been reported in the Pantanal of 

Nhecolandia in Brazil, with values approaching 3 mg L-1 (Barbiero et al., 2007), this area has not been 
mentioned in recent research on arsenic occurrence (Bundschuh et al., 2012b). 

The Upper Paraguay River Basin (UPRB) can be divided into the plateaus (or uplands) and the enormous 

Pantanal floodplain, considered the world’s largest wetland (Por, 1995). The floodplain is drained by the 
Paraguay River on its western side and is supplied by about 90 rivers or small watercourses arising from the 

Brazilian craton that consists of a variety of rocks, i.e. potential sources of arsenic. On the one hand, very few 

data are available on the chemistry of the rivers that supply the Pantanal, although recent studies have shown 
that extensive agricultural activities on the highlands are affecting the major ion composition of some rivers 

down to the floodplain (Rezende Filho et al., 2015, 2012). On the other hand, despite the presence of high 

arsenic content in the shallow perched water-table and the surface water of Nhecolândia, the most alkaline 

region of the Pantanal, no study has been directed towards a possible release of arsenic from the wetland 
towards the main draining rivers. The potential release mainly depends on both, the fate of As during the 

reduction and trapping mechanisms that favor As stabilization in the wetland (Guénet et al., 2017), and the 

behavior of arsenic during the re-oxidation process occurring at the wetland-river interface (Pédrot et al., 
2015).  

In this framework, the objective of this study  is double: first, to identify, among the rivers on the uplands, the 

possible sources for the high arsenic contents observed in the floodplain and to verify if the floodplain is 
releasing arsenic to the nearby river network, according to the hydrological connectivity between the wetland 

and the main draining rivers; second, to verify whether arsenic occurrence detected in an alkaline soil system 

of Nhecolândia is related to local or regional processes and to identify the factors responsible for these high 

arsenic contents. 
 

2 Regional setting 

The Upper Paraguay River Basin: being around 2.8 × 106 km2, the Upper Plata River drainage system is the 
second largest basin in South America after the Amazonian basin. Its upstream section consists of two basins 

of similar size, namely the Parana and Paraguay basins. The major difference between these tributaries is the 

presence of the vast Pantanal floodplain located in the Paraguay headwaters (Fig. 1). The Pantanal (about 0.2 

× 106 km2) is a biodiversity hotspot classified as UNESCO Natural World Heritage site, and a priority region 
for environmental conservation (Olson and Dinerstein, 2002). Unlike the upper Parana basin, whose river 

chemistry is clearly impacted by the Brazilian megacities, the upper Paraguay basin is still relatively preserved, 

although some alterations in the water chemical profile have already been detected in downstream areas with 
extensive cropping (Rezende Filho et al., 2015). 
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Figure 1: Map of the Upper Paraguay basin and Pantanal wetland: geological framework and river water 

sampling and location of the Nhecolândia sub-region and of the 3 studied sites Nhumirím, São Roque and 

Centenário farms 
 

The population density in the UPRB is quite low on the uplands (<4 people km-2 in Mato Grosso state and <7 

people km-2 in South Mato Grosso state, (IBGE, n.d.), and it is low in the Pantanal with less than 0.5 inhabitant 
km-2. In addition to extensive livestock ranching, two kinds of crop systems are cultivated on the uplands: 

sugar cane and a simple system of rotation of cotton, soybeans and corn. The Pantanal is essentially privately 

owned and the main land use activity is livestock reproduction and extensive ranching.  
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The climate is classified as tropical humid with short dry season (July to October), i.e. “Aw” type in Köppen 

classification. Climate patterns are controlled by the seasonal migration of the Intertropical Convergence Zone 

(ITCZ). The mean annual temperature is about 25°C, from 21°C to 32°C during dry winters and wet summers, 
respectively. Mean precipitation is about 1100 mm, whereas evapotranspiration is about 1400 mm, resulting 

in an annual hydrological deficit of about 300 mm. The flood pulse in the floodplain occurs from November 

in the northern part, to March in the southern part of the Pantanal (Junk and Nunes de Cunha, 2005). 
Figure 1 shows the UPRB geological context, with calcareous formations located in the north (Serra das 

Araras) and in the south (Serra da Bodoquena), basalts of the Serra Geral formation mainly in the upper part 

of the Aquidauana and Miranda watersheds, sandstone formations on the eastern part of the basin, and some 

crystalline rocks interspersed in the eastern, north-western and the narrow southern part of the wetland. The 
floodplain, covered by quaternary sediments, consists of several sub-regions with their own specificities 

regarding the date and duration of the flooding (Por, 1995), the transport, deposition, and mineralogy of the 

sediments (Bergier, 2013) and the water chemical composition (Rezende Filho et al., 2012). It is made up of 
several alluvial fans (Assine et al., 2015), including one formed by the Taquari River, referred to as one of the 

largest alluvial fans of the world (Buehler et al., 2011).  

Nhecolândia sub-region: Nhecolândia lies in the floodplain on the southern half of the Taquari fan (Fig. 1). It 

comprises an area of approximately 24,000 km2, delimited in the north by the Taquari River, in the south by 
the Negro River, in the west by a portion of the Paraguay River, and in the east by the Maracajú Plateau, which 

corresponds to the southeastern edge of the Pantanal wetland. Aside from these rivers, the region has a 

relatively closed drainage with little connection to the major river system, and the water usually flows below 
the surface within sandy soils and along drainage fields called “vazantes”. The peculiarity of this region is the 

presence of about 15,000 lakes, including about 500 saline-alkaline ones (Furian et al., 2013). While freshwater 

lakes supply the regional water-table during almost all seasons (Freitas et al., 2019), saline alkaline lakes are 
disconnected by low permeability soil horizons, and supply the aquifer only fleetingly during strong rainy 

events (Barbiero et al., 2008; Furian et al., 2013). Previous studies have shown that the alkaline lakes may be 

classified within 3 different types, depending on their biogeochemical functioning (Andreote et al., 2018, 2014; 

Barbiero et al., 2018; Martins, 2012; Vaz et al., 2015), i.e. green, black and crystalline water lakes. Their 
electrical conductivity ranges usually from 1500 to 15,000 µS cm-1, with exceptional values recorded up to 

80,000 µS cm-1 at the end of the dry season. In parallel, the pH oscillates from 8.9 to 10.7. High pH and EC 

result from cumulative evaporation over years of water supplied near the surface from the vazantes and/or 
freshwater lakes towards the saline lakes (Barbiero et al., 2008; Furian et al., 2013). Soils around alkaline lakes 

have a standard organization of which a simplified model is shown in Figure 2 (adapted from Barbiero et al., 

2016). It mainly consists of 5 contrasting horizons. Close to the lake, a grey-brown topsoil loamy sand horizon 
(1) is observed usually with numerous calcareous precipitations. The occurrence of this horizon is limited to 

the oscillation zone of the lakeshore between the wet and dry seasons. Below, there is a light brown sandy 

material (2) with less than 1% clay. Within horizon 2, high water pH conditions favor large dissolved organic 

carbon contents, which precipitate into blackish volumes at the base of this material and defines horizon (3). 
Subjacent to this, there is a massive (single grain), greyish loamy sand material (horizon 4) with about 15% 

clay. The top of this horizon (4) is wavy. Further below lies a loamy sand, olive to light olive-grey colored 

horizon (5), with 15–20% clay, massive structure (coherent and cemented) and locally extremely firm 
consistency. 
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Figure 2: Centenário study site showing a representative landscape, and a standard soil sequence around 

saline alkaline lakes; see text for soil horizons description.  denotes the location of the lysimeters in the 

perched water table.  

3 Materials and Methods 

3.1 Sampling and Database 
3.1.1 Regional UPRB study: For the study at the UPRB scale, we used 4 datasets. Dataset 1, 2 and 3 consists 

of 56 river samples each, collected in December 2012, March 2013 and May 2013, respectively, i.e. at the 

beginning, middle and end of the wet season. The collection took place on the uplands, at the south-eastern 
and southern border of the Pantanal from the cities of Coxím to Porto Murtinho (Fig. 1). Datasets 4 was 

collected from November 2010 to January 2011 along the main drainage axis of the floodplain, that is, the 

Paraguay (21 samples) and Cuiaba (nine samples) Rivers, and a few kilometers upstream the confluence with 

their major tributaries (88 samples). All samples were collected at approximately 0.3-m depth in the middle of 
the river section. The sampling procedure as well as the major ion chemistry were detailed in Rezende Filho 

et al., (2015, Supplemental Material S1 and S2). All samples for trace element determination were filtered 

(0.45µm cellulose acetate) in the field and acidified with ultrapure HNO3.  
 

3.1.2  Local study at Nhecolândia : Water, sediment and soil collection was carried out in two sites of 

Nhecolândia (São Roque and Centenário farms) and compared with previous results obtained at Nhumirím 
farm in 2 alkaline lakes and surrounding piezometers (Barbiero et al., 2007). These three sites, located in the 

central and southern part of Nhecolândia, cover complementary geographical positions intersecting the 

regional drainage oriented east northeast – west southwest (Fig. 2). At São Roque farm, water samples were 

collected in extreme dry (September and October 2017) and wet conditions (August and September 2018) in 
6 saline lakes (referred to as SR06 with black water, SR01, SR04, SR05, SR08 and SR09 with green water, 

and SR07 with crystalline water) and three freshwater lakes (BSR03, BSR04, BSR05). Lake sediments were 

collected in 2017. At the Centenário farm, sampling was carried out in 3 saline lakes (referred as CN01 with 
green water, CN02 with black water and CN03 with crystalline water), 1 vazante and 1 fresh water lake. 

Samples were collected during the dry season (September 2015 and 2016, and October 2017) and at the 

beginning (November 2015) and the end of the wet season (June 2016 and August 2018). Lake sediments (0-
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20 cm) were sampled in 2016. In addition, water samples were also taken in the perched shallow water-table 

of the soil systems surrounding the lakes at Centenário site. For this, fifteen water-table samplers (lysimeters) 

consisting of pierced polyethylene containers (Maître, 1991) were installed in the water-table through auger 
holes (7cm in diam.). They are further referred to as (G01S, G02S and G01 to G13). The 120-ml containers 

were wrapped with a synthetic tissue to prevent clogging by soil particles. Two capillary tubes (1 mm inner 

diam.), inserted into the container, reach the soil surface. The first one ends at the upper part of the container 
just below the cap and is used for injecting N2 gas. The second one, down to the lower part of the container, is 

used to collect the groundwater sample by depression. After installing the samplers, the holes were filled with 

the initial material preserving the order of the different layers up to the soil surface. The sampling device 

prevents contact between the water-table and the atmosphere and thus preserves the redox conditions of the 
water-table within the sampler. The samples were collected from the lysimeters with a hand-held vacuum 

pump by gentle pumping while injecting N2 flow at a maximum pressure of 0.05 atm, in order to avoid 

turbulences and to prevent drastic changes in redox conditions in the sampler. The samples first reached a 
closed Erlenmeyer previously filled with N2 to avoid rapid oxidation. The first drops were driven toward the 

sensitive part of the potential Pt-probe (ref HI3620D) and the lowest value (usually after ~5 seconds) was 

noted. A value of +203 mV was added to the measured potential for its conversion into redox potential Eh, 

assuming that the temperature was almost constant close to 30 °C. Then the samples were stored into 120 ml 
acid washed HDPE container filled up and closed without air bubbles. All samples were preserved in a cold 

and dark place until filtration. Temperature (T), electrical conductivity (EC) and pH were determined in the 

field in aliquots. Soil horizons in contact with the lysimeters were also collected for arsenic contents 
determination.  

 

3.2 Analytical Methods and data treatment 
 

In the laboratory, triplicates of each water sample were centrifuged (12,500 g for 30 min) and filtered 

through a 0.22-µm membrane (Milipore Millex-GV) before analyses. During centrifugation and filtration very 

low amount of suspended material was obtained and therefore this fraction was not analyzed. Sediment and 
soil samples were dried at room temperature and ground (< 100 mesh) with a ball mill (Minutem MLW KM1).  

 

3.2.1 Total arsenic: Due to the extension of the study period (2010 to 2018) determination of total As 
concentration (AsTot) was performed in different laboratories and with different analytical methods. Samples 

collected from 2010 to 2013 were analyzed by an inductively-coupled plasma mass spectrometer (7500ce ICP-

MS, Agilent Technology, USA) at the Géosciences Environnement Toulouse laboratory (France). AsTot was 
determined together with other trace element concentrations. Indium (In) and Rhenium (Re) were used as 

internal standards to correct instrumental drift. Accuracy (% of certified concentration) and precision (relative 

standard deviation of three replicates) were assessed by analyzing the certified reference material (CRM) NRC-

NRCC SLRS-4 (Trace elements in natural river water) and reached 104% and 4%. For samples collected from 
2015 to 2016, AsTot was determined by ICP-MS (ELAN, Perkin Elmer®) at the Institute of Chemistry from 

the University of Campinas (UNICAMP, Brazil). Accuracy and precision assessed by analyzing the CRM 

NIST 1640a (Trace elements in water) reached 91% and 1.6%, respectively. AsTot in water samples from 
2017 to 2018 were also measured at UNICAMP but by hydride generation atomic fluorescence spectrometer 

(HG-AFS) (Millennium Excalibur 10.055, PS Analytical). Accuracy (105 %) and precision (4.5%) were also 

assessed by analyzing the CRM NIST 1640a.  In all cases, limits of detection (LOD) and quantification (LOQ) 

were calculated as LOD = 3σ/S and LOQ = 10σ/S where σ is the standard deviation of blank replicates and S 
is the angular coefficient of the calibration curve. LOD and LOQ were generally lower than 0.05 and 0.15 µg 

L-1, respectively. All the samples were analyzed in triplicate and relative standard deviation was typically lower 

than 5%.  
Two decomposition methods were used to determine AsTot in soil and sediment samples. Both methods used 

microwave radiation to enhance decomposition but different volumes of acids/oxidants and different CRM for 

methods validation. For 2016 sediment samples, 250 mg of sediment sample were decomposed with 10 mL 
sub-distilled HNO3, then analyses were performed by ICP-MS as described for 2015-2016 water samples. 

LOD and LOQ were 0.02 and 0.08 µg L-1, respectively. Accuracy (96%) and precision (4.3%) were checked 

by analyzing certified marine sediment NRCC PACS-2. For soil and sediment collected in 2017 and 2018, 

200-250 mg of sample were decomposed with 4 mL HNO3, 2 mL HF, 1 mL HCl and 0.5 mL H2O2. Boric acid 
was added post decomposition to avoid HF excess. Analyses were performed by Hydride Generation Atomic 

Fluorescence Spectrometer (HG-AFS) (PSAnalytical 10.055 Millenium Excalibur System).  LOD and LOQ 

were always below 0.04 and 0.14 µg L-1, respectively. Accuracy (96% and 103%) and precision (6% and 2%) 
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were checked by analyzing CRM NIST 2702 (Inorganics in Marine Sediment) and CRM BCR 320 (River 

Sediment), respectively.  

 
 

3.2.2 As speciation analyses: For water samples collected from 2015 to 2016 (Centenário farm) Speciation 

analysis was performed by High Performance Liquid Chromatographer (HPLC) coupled to the ICP-MS 
(ELAN, Perkin Elmer®). Five arsenic species were determined: AsB (Arsenobetaine), MMA 

(Monomethylarsenate), DMA (Dimethylarsenate) and the ions As (III) (Arsenite, NaAsO2) and As (V) 

(Arsenate, Na3AsO4). Separation was carried out with an anion exchange column (Hamilton PRP-X100 (10 

µm, 250 mm x 4.1 mm). The chromatographic method was adapted from Watts et al., (2008), with 4 and 60 
mmol L-1 NH4NO3 solutions as mobile phases in a concentration gradient pumping program. The pH of both 

solutions was adjusted at 8.7, the chromatographic run was 12.5 minutes, with an injection volume of 150 µL. 

Daily calibration curves were drawn in the 5-40 µg L-1 linear range for all five species. All standards and 

reagents used (Merck and Sigma-Aldrich) have high purity for trace metal analyses. LOD and LOQ (g L-1) 

were 2.7 and 8.9 for AsB, 4.4 and 14.6 for As(III), 2.4 and 8.1 for DMA, 2.6 and 8.7 for MMA, and 2.8 and 
9.0 for As(V).  

For samples collected in 2018 on the SR farm, speciation analysis was also performed through HPLC-HG-

AFS (Millennium Excalibur 10.055, PS Analytical). The separation of only four As species, As(III), DMA, 
MMA and As(V) was carried out with an anion exchange column (Hamilton PRP-X100 (10 µm, 250 mm x 

4.1 mm). A chromatographic method was adapted from PSAnalytical Application Note APP 160, using 

Na2HPO4 and NaH2PO4 20 mmol L-1 (Sigma-Aldrich reagents with purity ≥ 99%) as a mobile phase at pH 6.2 
in isocratic mode. The chromatographic run was 13 minutes with an injection volume of 200 µL. LOD and 

LOQ (g L-1) for each species were 0.46 and 1.38 for As(III), 0.31and 0.93 for DMA, 1.31 and 3.92 for MMA, 
and 1.12 and 3.35 for As(V). Some As organic species do not produce a hydride. Therefore, for each sample, 

a qualitative analysis was performed to confirm the absence of these species. The method was adapted from 

Ma et al., (2014), including a UV digestion step. The chromatographic separation used the same anion 
exchange column and a mobile phases, (A): 4 mmol L-1 NaHCO3 and (B): 4/40 mmol L-1 NaHCO3/NaNO3 

solutions at pH 9.5. The chromatographic run time was 15 minutes with the following gradient elution 

program: 100 % A, 3 min.; 50 % A and 50% B 4 min.; 100 % B 5 min. and 100 % A 3 min.  

 
3.2.3 Other chemical analyses: Alkalinity was determined by acid 10-1 or 10-2 mol L-1 HCl titration, other 

major elements (anions and cations) by ion chromatography, and DOC by combustion (TOC Analyser, 

Shimadzu). 
 

3.2.4 As relative mobility: The abundance of arsenic in rivers depends both on its abundance in the continental 
upper crust and its mobility during weathering and transport. The As mobility in the UPRB in relation to Na 

was estimated using the dissolved As/Na ratio normalized to the As/Na ratio in the upper crust as reference 

(Li, 2000). 
EAs/Na = (As/Na)sample/(As/Naj)reference (1) 

The results were compared to relative As chemical mobility during weathering and transport processes from 

the world compilation presented by Gaillardet et al., (2014). 

 
3.2.5 Statistical analysis: For samples collected at Centenário site (70 samples), a covariance analysis 

(ANCOVA) was conducted in order to test the effect of several parameters, and the location in the soil cover, 

on dissolved arsenic. The analysis was performed using Xlstat software (AddInSoft) with a 95% reliability 
threshold. In a first step, the analysis was carried out using quantitative variables representing the evapo-

concentration process (sodium and alkalinity (Furian et al., 2013)) and the effect of organic matter (DOC). In 

a second step, qualitative variables reflecting 4 different origins of the collected sample were added, either 

from surface (S) waters (lakes and vazantes), or from the lysimeters installed in the soil cover in the organic 
horizons (Org), in the deep and more clay horizons (Cly) or in the sandy horizons of the higher grounds (Hig) 

(Fig. 2).  

 

4 Results 

4.1 As concentration in the rivers from the UPRB  

Descriptive statistics of water samples collected in the highlands (datasets 1, 2 and 3) are shown in Figure 3 
and Supplementary Material S1, in which the sampling points were classified according to the lithology. The 

lithology does not necessarily refer to the type of rock present at the sampling point, but to the type of rock 
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that has a dominant influence on the river geochemistry (Rezende Filho et al., 2015). The total dissolved 

arsenic ranged from 0.05 to 1.69 g L-1, i.e. in a ratio of 34.  
On the plateau, the contents were relatively similar for each river during the 3 field campaigns, which suggests 

good stability of dissolved As values during the rainy season (Fig. 3a and b), and probably throughout the year. 

It appears that dissolved As mainly depends on the lithology (Fig. 3c). The rivers draining sandstone areas 

showed the lowest values, generally close to 0.26 g L-1 (ranging from 0.05 to 0.54 g L-1), except for “Rio do 

Peixe” with a value close to 1 g L-1 throughout the 3 campaigns (1.15, 0.86 and 1.13 g L-1, respectively). 

These contents increased slightly (~ 0.36 g L-1) for rivers draining basaltic formations in their upstream part, 
as it is the case for example for the rivers Taquarussu, Aquidauana, Cachoeirão (Fig. 1). The streams flowing 
on the calcareous rocks of the Bodoquena region (e.g. rivers Salobra, Betione, Chapena) have higher values, 

generally ranging between 0.32 and 0.86 g L-1, with an average concentration of 0.48 g L-1, whereas in the 

5 rivers draining crystalline rocks, the values were between 0.26 and 0.69 g L-1, with an average concentration 

of 0.50 g L-1. The few rivers collected before and after their entry into the Pantanal systematically showed an 

increase in the order of 20% to 60% of dissolved As values in the floodplain (not shown). When these rivers 
separate into several channels in the alluvial plain (Negro and Taboco rivers, for example), we observed that 

the secondary channels, with much lower discharge, showed As contents approximately 20 to 30% higher than 

the main stream (not shown). Finally, among all the rivers collected in datasets 1, 2 and 3, the Nabileque River, 
the only one with headwaters in the alluvial plain and not in the surrounding uplands, showed the highest As 

contents (1.01, 1.69 and 1.37 g L-1 during the 3 campaigns, respectively, Fig. 3c).  
 

 
Figure 3: Total dissolved As contents (a and b), mean value and standard deviation (c) in rivers on the highlands 

and alluvial plain (Nabileque River) during 3 campaigns in 2012-2013. 

 
Regarding the Cuiaba and Paraguay rivers (dataset 4), which are the two main draining rivers of the floodplain, 

there was a trend of increasing As levels towards downstream (Fig. 4). Arsenic values in the Cuiaba River 

(Fig. 4a) gradually increased from 0.25 g L-1 just downstream the city of Cuiaba to 0.65 g L-1 at its 

confluence with the Paraguay River. The first increase to a value of about 0.35 g L-1 occurred after the mixing 

with the waters of “Baia do Agapito” (1.02 g L-1) and the confluence with River Urutubinha (0.37 to 0.49 g 

L-1). The second increase (0.40 g L-1) occurred after the contribution of the Muquem River (0.64 g L-1). The 

confluence with São Lourenço River (0.73 and 1.04 g L-1) and its secondary channels (0.93 to 1.8 g L-1) 

caused an increase in As content up to 0.52 g L-1, then a final contribution of the Piquiri River (0.76 g L-1) 

stabilized the value at about 0.65 g L-1 down to the Cuiaba-Paraguay confluence. Throughout the upper stretch 
of the Paraguay (from Caceres to “Baia do Tamengo” close to the city of Corumba) (Fig. 4b), As water contents 

were rather stable ranging from 0.21 to 0.32 g L-1. This stability can be attributed to two characteristics: on 
the one hand the high Paraguay River flow compared to that of its tributaries (from field estimate, no 
quantitative data are available), and on the other hand the moderate As levels in the tributaries that ranged from 

0.17 to 0.56 g L-1 (0.35 ± 0.12 g L-1), with the only exceptions of two tributaries (“Boca inferior da Baia 

Branca” and “Boca do Tuiuiu”) in which the As concentrations were 0.70 and 0.80 g L-1, respectively. 
Downriver from Corumba city, As concentration in the Paraguay water kept increasing gradually, first up to 

0.43 g L-1 after the confluence with Taquari (0.48 to 0.58 g L-1) and Negro Rivers (0.91 g L-1), then 0.50, 

0.60, and 0.65 g L-1 after receiving the water from the Abobral (0.53 g L-1), Miranda (0.41 to 0.62 g L-1), 

and Nabileque (1.88 g L-1) Rivers, respectively.  
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Figure 4: Upstream-downstream As concentration throughout the (a) Cuiaba and tributaries, and (b) Paraguay 

and tributaries. Note the gradual increase in As concentration throughout both, Cuiaba and Paraguay rivers. 
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The histogram drawn in Figure 5 shows the distribution of the log-normal transformation for As mobility in 

relation to Na (EAs/Na) in the UPRB. On the highlands (Fig. 5a), Log(EAs/Na) had a bimodal distribution with a 
first mode focused on 0.2 (EAs/Na~2) and most of these samples matched with rivers flowing from crystalline 

bedrock in the southern part of the basin (e.g. rivers Naitaca, Terere, Branco) where dissolved Na is higher 

than in the rest of the sampling (Rezende Filho et al., 2012). The second mode focused on the value 1.1 
(EAs/Na~13) and corresponded to the rivers coming from the sandstone formations mainly on the eastern part 

of the basin. For these rivers with very low mineral charge, both the dissolved As and Na contents are close to 

the limit of detection, which confers a high uncertainty on the calculation of EAs/Na value. A bimodal 

distribution was also observed for the samples collected in the floodplain (Fig. 5b, dataset 4) with a strong 
mode centered on 0.6 (EAs/Na~4), which corresponds to the general trend in As mobility, and a second one of 

1.2 (EAs/Na~20), which corresponded to some rivers at effluence of the wetland (São Lourenço and Piquiri 

Rivers and secondary channels) just before their confluence with the Cuiaba River.  
 

 
Figure 5: Frequency distribution of log(EAs/Na) a) on the highlands and b) in the floodplain of the UPRB. 

 

 

4.2 Arsenic concentrations in the Nhecolândia region. 

4.2.1 Concentration ranges in waters 

Arsenic concentration in vazante at the end of the dry period and in a freshwater lake at the end of the wet 

season were 3.47 and <0.04 g L-1, respectively (Table 1).  
 

Table 1: As concentrations in sediment (mg kg-1) and water (g L-1) of green, black and crystalline alkaline 

lakes and freshwater environments at Centenario (CN) and São Roque (SR) farms, compared with values from 
Nhumirim (NH) farm (Barbiero et al., 2007). 

 

[Insert Table 1 here] 
 

By contrast, dissolved arsenic contents in alkaline lakes were much higher, ranging from 28.8 to 2,916 g L-1 

(Table 1), and fluctuate depending of the season and year of collection. This effect is particularly clear when 

comparing the concentrations in samples collected from the same lakes at the CN site in October 2017 (atypical 

dry season with very low water level and high concentrations) and in August 2018 (atypical dry season with 
high water level and low concentrations). The lowest concentrations were always found in the crystalline water 

lakes (CN03 and SR07), whereas the highest ones were observed in the green and black water lakes. The As 

concentrations reported for the two lakes of the Nhumirím Farm, collected during a particularly dry episode, 
were of the same order of magnitude (Table 1). In water-table, samples collected from lysimeters at the CN 

site, arsenic concentrations ranged from 0.8 to 3581.5 g L-1 (Table 2). Low values were observed in deep 
samples collected on higher grounds (G03, G05 and G12), whereas the highest concentrations were found in 

samples collected within organic horizons (G01S, G02S and G13) around the alkaline lakes. In comparison, 

dissolved As in groundwater around the lakes on the Nhumirím farm (collected from piezometers) ranged from 
0.14 to 266 μg L-1.  
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Table 2: As concentrations (g L-1) in shallow water-table samples collected from lysimeters at Centenário 
farm around the three alkaline lakes (type of environment G, B and C) and As contents in the soil horizon (µg 

g-1) at the contact with the lysimeter. 

 

[Insert Table 2 here] 

 

4.2.2 As and major elements 

 
The concentration diagrams based on Na contents (São Roque, Centenário and Nhumirím farms) are presented 

in Figure 6. A similar increase in alkalinity was observed for the three sites, and the values were in agreement 

with the Alk-Na relationship established by Furian et al. (2013) from a regional sampling (147 samples). 
Although the plots were scattered, dissolved arsenic concentrations increased in proportion to Na at the 

Nhumirím and São Roque sites. At the Centenário site, a similar trend was observed for surface waters (S), 

deep waters of the higher grounds (Hig), and waters collected in the clay (Cly) horizons. Nevertheless, samples 

taken from organic horizons (Org) slightly departed from this trend, showing values about 5 to 10 times higher 
compared to Na.  

 

 
 

Figure 6: Arsenic and carbonate alkalinity in concentration diagrams based on Na contents (Centenário, São 
Roque and Nhumirím farms). The solid line denotes the regional Alk-Na relationship established by Furian et 

al. (2013) from 147 samples of surface water.  

 
The results of the ANCOVA are presented in Table 3. The results show a clear relationship between total 

dissolved arsenic and alkalinity, sodium and DOC (Step 1). By including the origin of the water samples 

according to the pedological system (step 2), it appears that the parameters DOC and the origin of an organic 
horizon (Org) have significant influence on the total As contents. 

 

4.2.3 Arsenic speciation in alkaline lakes and perched shallow water-table around the alkaline lakes 

The samples collected from the lysimeters and surface waters on the CN site are plotted in the Pourbaix 
diagram in Figure 7, showing that for the main part of the samples, As(V) may be expected. Only a few samples 

from deep down and more clayey horizons could show a predominance of As(III). Analytical results from 

water sampled at CN (Fig. 8) and SR sites (not shown) confirmed that As(V) was the main species detected in 
the waters from both shallow perched water-table and alkaline lakes, accounting for more than 95% of the total 

As concentration. Although MMA and DMA appeared in some chromatograms, their concentrations were 

below the limit of quantification, with the exception of SR04 and SR08 samples collected in September 2018, 
for which DMA concentrations were 1.43 and 1.47 μg L-1, respectively. As(III) was not detected.  
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Figure 7: Arsenic Pourbaix diagram showing the As speciation expected for the watertable samples collected 

in surface water (S) and soil horizons (Hig, Cly or Org) at Centenário farm (see Table 1 for the corresponding 

total As concentrations). Both, pH and Eh were measured in the field, under N2 flux.   
 

 
Figure 8: Concentration of As(V) vs Total As in water samples from Centenário farm: S (surface water), Cly 

(water from clay horizons), Org (water from organic horizons). In water samples from the higher grounds 

(Hig),  As(V) contents were below the limit of quantification. 
 

 

4.2.4 As in lake sediments and soil horizons 
Arsenic contents in soil horizons at the contact with the lysimeters were low, ranging from values below the 

limit of quantitation (0.23 µg g-1) up to 7.4 µg g-1 (Mean = 2.2 µg g-1 and SD = 1.65 µg g-1). Values were 

slightly higher in lake sediments, ranging from 1.7 to 8.2 µg g-1. The highest values were observed in sediments 

from crystalline water alkaline lakes (CN01 and SR07) (Table 1).  
 

5 Discussion 

The uplands and floodplain data indicate standard levels (0.1 - 1.7 µg L-1) of dissolved arsenic in UPRB rivers, 
i.e. in the range of non-As-contaminated rivers. The waters draining the uplands show a dissolved As 

variability depending on the type of rock that controls the chemistry of the major ions on each watershed 

(Rezende Filho et al., 2015, 2012). These variations are in agreement with the As contents in rocks, reported 
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in the literature, with the following order: Sandstone (0.5 – 1 mg kg-1) <basalts and granites (~0.7 mg kg-1) 

<limestone (1.0 – 1.5 mg kg-1) (Matschullat, 2000). It confirms that dissolved As in rivers supplying the 

floodplain is mainly controlled by the lithology of the uplands. Although a slightly higher arsenic relative 
mobility was observed with respect to Na in UPRB (~ 5) (Fig. 5) than the world average (close to 2, Gaillardet 

et al., 2014), these data clearly show that the waters that supply the floodplain are not contaminated with As. 

A gradual upstream-downstream increase in dissolved As concentrations was observed in the Cuiaba and 
Paraguay waters suggesting that arsenic concentrations may be explained by the simple hydrological mixing 

with the tributaries that usually have higher As concentration and lower flow than the main rivers (Fig. 4b). 

This is the opposite of what was reported for trace-elements in other hydro-systems such as in the Mississippi 

basin (Shiller, 1997; Shim et al., 2016) or Amazon basin (Seyler and Boaventura, 2003) where a decrease of 
trace-element concentration downstream was observed and attributed to a dilution effect from the upstream 

source. Notwithstanding this trend of a slight increase in dissolved arsenic, the values recorded in dataset 4 

indicate a lack of high dissolved arsenic transfer from the floodplain to the Cuiaba and Paraguay rivers. Some 
rivers at the exit of the wetland have arsenic levels significantly (p <0.05) higher than the dataset mean value, 

as well as higher mobilities (EAs/Na ~ 20). This is particularly the case of the São Lourenço and Piquiri rivers 

and their secondary channels just upstream of their confluence with the Cuiabá River. A previous study 

conducted on the same dataset showed that the major ion chemistry of these rivers is impacted by extensive 
agricultural activities on the uplands (Rezende Filho et al., 2015), particularly by an increase in sulfate and 

ammonium contents together with a slight increase in alkalinity. Such alteration of the chemical profile was 

detected at the entry of these rivers in the Pantanal. It has been attributed to the fertilization practices together 
with field liming on the uplands, and it is detectable until the confluence with the river Cuiabá. Therefore, 

slightly higher dissolved As levels at the confluence of these rivers with the Cuiaba may also be a consequence 

of these activities. Unfortunately, we do not have the dissolved As content of these waters as they enter the 

floodplain, which does not allow further discussion. The highest As concentrations (1.36±0.34 g L-1) were 

found in the Nabileque river, the only one that has its source in the alluvial plain. In this environment, during 
the high water levels, anaerobic conditions favor the reductive dissolution of wetland-soil Fe-oxihydroxides 

and associated elements, such as arsenic and organic matter (Guénet et al., 2017). Such a process could be 

responsible for the slightly higher As concentration observed in the Nabileque river.    
On the other hand, the results are much more contrasting in the Nhecolândia floodplain. At all three 

studied sites, elevated As levels are noted, indicating that its occurrence is a consequence of processes that 

operate on a regional scale. In addition, the similar behavior of arsenic with respect to sodium confirms that 

the same processes are at work in these three sites. Huge As variations are observed over short distances, i.e. 
a few hundred meters that separate the vazantes and freshwater lakes from the alkaline lakes, as well as the 

few tens of meters that separate the higher grounds at the top of the beaches from the border of the alkaline 

lakes. The results of the speciation carried out at Centenário site show that As mainly occurs as arsenate (Fig. 
8). The As contents variability must be related to the hydrological and hydrochemical functioning of this 

system of lakes. The vazantes are the water supplying areas (Furian et al., 2013). In the short term, they mainly 

receive water from the seasonal rains, but over the long term, they are also supplied by the overflows of the 
Taquari River. Therefore, this river arising from sandstone area imposes its chemical characteristics, in 

particular the low arsenic contents (Table 1) and a positive calcite residual alkalinity (RAcalcite) (Oliveira Junior 

et al., 2019; Rezende Filho et al., 2012). During the wet season, while freshwater lakes are generally supplied 

by overflow during the flood pulse, alkaline saline lakes receive a reduced amount of freshwater through sub-
surface flows from the vazantes. During the dry season, waters concentrate under the effect of evaporation, 

not only in the alkaline lakes but also in the perched water-table and of surrounding beaches. In the 

geochemical context of positive RAcalcite (Barbiero et al., 2002), alkalinity increases with increasing evapo-
concentration while calcium levels remain very low due to calcite precipitation. The solution pH increases, 

mainly controlled by carbonate species. Close to alkaline lakeshores, the solutions are more concentrated due 

to higher evaporation by wicking in the sandy material (Barbiero et al., 2016). Magnesium silicates precipitate 
(in horizon 1, see Fig. 2), controlling dissolved Mg at a low level, while alkalinity keep increasing (Furquim 

et al., 2008). Finally, the mineralization of dissolved organic matter a few tens of meters from the lake shore 

releases iron and aluminum allowing the synthesis of Fe-micas (in horizons 4 and 5, Barbiero et al., 2016; 

Furquim et al., 2010). This succession of saline precipitations (calcite, Mg-silicate, Fe-micas) is standard in 
alkaline environments (Barbiero et al., 2004).  

Dissolved As is usually controlled by adsorption processes that can take place in three main different 

adsorbents, namely metallic (Al, Fe and Mn) oxides and hydroxides, clay minerals and organic matter. 
However, in this alkaline geochemical framework, three factors favor the maintenance of arsenic in solution. 

First, from the beginning of the evapo-concentration, arsenic concentrates together with other dissolved species 
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such as carbonates and secondarily fluorides (Barbiero et al., 2008), and to a lesser extent chlorides and 

sulfates. Competitive adsorption between As and those ions prevents As fixation onto any adsorbent 

(Goldberg, 2002). Second, increasing dissolved As contents occur simultaneously with increasing pH (Fig. 9) 
and therefore a decrease in its adsorption affinities. Indeed, arsenate adsorption on oxides and clays is highest 

at low pH and strongly decreases with increasing pH, namely, above pH 9 for Al oxide, pH 7 for Fe oxide or 

hydroxide, illite and kaolinite (Cornu et al., 1999; Goldberg, 2002).  
 

 
Figure 9. Dissolved As concentration vs pH in lysimeters, lakes and vazante at Centenário farm. 

 

Third, high Fe and Al concentrations (Barbiero et al., 2016) likely favor the formation of ternary 
complexes As-Fe/Al-humic acids. As can be seen in Table 2, the solutions sampled in organic horizons (G01S, 

G02S, G13) have the highest As concentrations, suggesting that some of the As does not migrate in free 

dissolved form, but likely complexes with aquatic humic substances (AHS). AHS represent one of the main 
parts of the organic matter (Mariot et al., 2007) and act as complexing agents increasing As mobility (Sharma 

et al., 2011; Warwick et al., 2005). As(V) is present in anionic forms (H2AsO4
− and HAsO4

2−, Fig. 7), which 

results in repulsion forces between As and negatively charged AHS at high pH. However, the presence of 

dissolved Fe and Al, as mentioned in Barbiero et al. (2016), leads to the formation of ternary complexes (As-
Fe/Al-AHS) (Oliveira et al., 2016). This behavior could be at the origin of the results of the ANCOVA, 

emphasizing that the evaporation, but also the DOC content and the origin of the samples coming from the 

organic horizons have a significant influence on dissolved As (Table 3) (Ghosh et al., 2015; Mariot et al., 
2007) . In summary, the solid phase does not act as a factor controlling dissolved As, which appears to be 

mainly regulated by the evapo-concentration process. Such a behavior os As in alkaline and/or evaporative 

environment have already been mentioned by Bhattacharya et al. (2006) and Welch and Lico (1998). Changes 
in the concentration of As first results from its conservative behavior during seasonal evaporation and dilution 

as shown by the increase in proportion to Na (slope close to 1, Fig. 6). For water samples arising from organic 

horizons and with high DOC contents, an additional fraction of arsenic is maintained in the solution likely 

through the formation of ternary As-metals-AHS complexes. Then dissolved As increase in a factor of 5 to 10 
compared to sodium. This behavior of arsenic in this alkaline environment is also demonstrated by the low 

levels of arsenic measured in soils. Despite high levels of As in the solutions, soils in contact, including organic 

horizons, have low As levels (Table 2), in the range of non-As-contaminated soils (Matschullat, 2000). The 
same is observed for lake sediments. By way of comparison with the work of Caumette et al. (2011), although 

dissolved As contents in Canadian lakes were much lower (250±100 g L-1) than in alkaline lakes of 

Nhecolândia (up to 3 mg L-1), these authors reported As values in sediments ranging from 34 g g-1 in an 

uncontaminated freshwater lake to 698 g g-1 in a highly contaminated lake. Nevertheless, in these lakes, the 

pH ranging from 7.6 to 7.9 is more favorable to As adsorption on particulate matter, as mentioned above. The 
values reported in Table 1 for alkaline lakes in the Pantanal are much lower, in the range of uncontaminated 

soils and sediments. These low As concentrations in soils and sediments confirm that an alkaline environment 

favors the maintenance of arsenic in solution and that the solid phase acts as a non-reactive matrix. Arsenic 
accumulates in alkaline lake waters and surrounding water-table from year to year as do sodium ions (Fig. 6). 
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6 Conclusion 

The behavior of arsenic in alkaline environments is little documented and still poorly understood. A previous 

study reported high levels of dissolved arsenic in the waters of the Pantanal, the largest wetland on the planet, 
and more specifically in the vast sub region "Nhecolândia". On the one hand, our data collected at the level of 

the UPRB show that the rivers that supply the alluvial plain of the Pantanal have low As contents. All 

concentrations are below 2 μg L-1, that is to say in the range for non-arsenic-contaminated river waters. The 
relative mobility of arsenic in relation to sodium is slightly higher than the global average, but remains 

moderate. In addition to the absence of noticeable As source on the plateaus upstream of the alluvial plain, the 

data show a lack of significant As release from the alluvial plain towards the main draining rivers, namely the 

Cuiaba and Paraguay rivers. On the other hand, the study confirms the high dissolved As levels in the alkaline 
waters of Nhecolândia. The relations between As and the major ions are similar in the 3 sites studied, which 

confirms that As responds to the same control processes throughout the region. The chemical speciation 

indicates that it mainly occurs in the form of As(V). In surface water, the proportions are substantially the same 
in the 3 sites and increase with the sodium amount, itself resulting from long-term cumulative evaporation 

over many years. In the soil solution, the As levels in the surface aquifer depend on the type of saturated soil 

horizon, the organic horizons having As/Na ratio 5 to 10 times higher, compared to the trend in the rest of the 

samples. Future studies should therefore focus on details of arsenic dynamics within the alkaline lake and 
associated soil system. 
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Table 1: Total Arsenic concentrations in sediment (µg g-1) and water (g L-1) of green, black, and crystalline alkaline lakes and freshwater environments at Centenario 
(CN) and São Roque (SR) farms, compared with values from Nhumirim (NH) farm (Barbiero et al., 2007). 

 

Lake type 
Sample 

code 
09/2015 11/2015 09/2016 09/2017 10/2017 08/2018 09/2018 

Barbiero et al. 

2007 

  Water Water Water Sedimenta Water Water Sedimentb Water  Water  

Green 

CN01 174.12 473.40 215.66 10.2±4.7  923.65 - 67.83 - - 

SR01 - - - - 765.93 2916.24 14.2±2.0 - 67.71  

SR04 - - - - 474.30 929.88 3.8±0.8 - 102.86 - 

SR05 - - - - 224.40 821.49 5.1±0.6  - 25.66 - 

SR08 - - - - - 1721.69 5.7±0.8  - 35.31 - 

SR09 - - - - - 1209.67 5.3±1.1 - - - 

NH1 - - - - - - - - - 619 

NH2 - - - - - - - - - 3680 

            

Black 
CN02 129.28 214.40 157.30 1.7±1.8 - 575.33 - 56.74 - - 

SR06 - - - - 383.15 1323.54 11.4±1.3 - 39.47 - 

            

Crystalline CN03 28.83 36.27 37.00 17.0±4.4 42.25 134.16 - 31.11 - - 

 SR07 - - - - - 53.17 18.2±1.8 - 9.24 - 

Freshwater  CN - 3.47c - - - - - <0.04d - - 

Freshwater BSR03 - - - - 0.90 - 0.16±0.01 - - - 

 BSR04 - - - - 0.44 - 0.38±0.04 - <0.04 - 

 BSR05 - - - - 0.56 - - - - - 
a: mean ± standard deviation of two sampling points; b: mean ± standard deviation of three sampling points; c: vazante; d: freshwater lake  
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Table 2: As concentrations (g L-1) in perched water-table samples collected from lysimeters at Centenário 
farm around the three alkaline lakes (type of environment G, B and C) and As contents in the soil horizon (µg 

g-1) at the contact with the lysimeter. 

 

type of 
environment 

Lysim
. 

Horizon 09/2015 11/2015 06/2016 09/2016 10/2017 08/2018 Soil 

Green (G) 

G08 Cly - 69.3 35.9 22.6 - 19.6 1.3 

G09 Cly - 231.1 201.0 210.8 - 137.6 - 

G10 Cly - - 259.4 152.0 310.8 70.5 4.1 

G11 Cly 348.1 502.2 313.4 377.5 307.1 208.2 7.4 

G12 Hig - - 4.0 1.7 - 0.8 1.1 

G13 Org 2505.1 1138.5 590.5 2265.7 - 2255.1 - 

          

Black (B) 

G04 Cly - 815.6 545.5 494.5 - 313.3 2.9 

G05 Hig - 11.9 5.7 2.8 - 3.4 0.4 

G06 Cly - 52.8 25.2 48.2 28.5 23.7 1.2 

G07 Cly - 271.1 61.0 92.2 76.7 42.7 2.7 

          

Crystalline 

(C) 

G01 Cly 29.6 58.8 29.8 27.7 79.4 84.9 4.7 

G01S Org 1144.1 1444.4 680.7 951.1 1060.0 - 1.0 

G02 Cly 157.5 104.6 110.3 111.4 - 231 1.3 

G02S Org 2083.1 3581.5 917.5 670.0 - 1746.9 0.9 

G03 Hig - 4.8 2.1 2.4 - 1.5 0.6 

 

 

 
 

Table 3: Results of the ANCOVA carried out with quantitative (step 1) and taking into account the origin of 

the samples (step 2). 

Standardized coefficients (Astot): 

Step 1 Step 2 

Source Value Stand. error t Pr > |t| Value Stand. error t Pr > |t| 

Alk 1.497 0.571 2.622 0.011 0.276 0.739 0.373 0.710 

Na -1.672 0.428 -3.906 0.000 -0.774 0.547 -1.417 0.162 

CE 0.573 0.496 1.156 0.252 0.783 0.525 1.492 0.141 

DOC 0.384 0.132 2.903 0.005 0.306 0.138 2.213 0.031 

Hor. Cly     0.001 0.087 0.011 0.991 

Hor. Hig     -0.009 0.116 -0.079 0.937 

Hor. Org     -0.011 0.079 -0.139 0.890 

S     0.314 0.141 2.230 0.029 

 

 

 

 


