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Abstract. A methodology for treating non-planar three-dimensional cracks with geometries
that are independent of the mesh is summarized. The method is based on the extended finite
element method, in which the crack discontinuity is introduced as a Heaviside step function via
a partition of unity. In addition, branch functions are introduced for all elements containing
the crack front. The crack geometry is described by two signed distance functions (level sets),
which in turn can be defined by nodal values. Consequently, no explicit representation of the
crack is needed. A Hamilton-Jacobi equation is used to update the level sets as the crack grows.
Numerical experiments show the robustness of the method in treating cracks with significant
changes in topology. The method is readily extendable to inelastic fracture problems.
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1 Introduction

Three dimensional fractureanalysis of engineering problem by standard finite element meth-
ods is still quite difficult because of the need to construct a mesh which conforms to both the
crack surfaces and the surfaces of the component. If the crack surface is not aligned with the
element boundaries, the displacement discontinuity and the traction conditions on the crack sur-
face cannot be treated by standard finite element methods. Furthermore, for standard elements,
the mesh must be designed so that it is substantially more refined around the crack than in the
remainder of the model. The difficulties are further amplified when considering the growth of
cracks, because then the model must be remeshed in the vicinity of the crack. In addition to
this, it must be borne in mind that initial cracks in many locations of the component must be
considered for a complete engineering analysis.

This paper summarizes a method presented in [1] and [2], in which a three dimensional
version of the extended finite element method is developed and applied. The extended finite
element method alleviates much of the burden associated with mesh generation for objects
with cracks by not requiring the finite elements to conform to the crack surface. Moreover, it
provides a convenient way for incorporating near-tip asymptotic fields, so that good accuracy
can be obtained for elastic fracture with relatively coarse meshes around the crack.

The essential idea in X-FEM is to use a displacement field approximation that can model an
arbitrary discontinuity and the near-tip asymptotic crack fields. As a consequence it is often not
necessary to modify the mesh to consider a specific crack; at most, moderate refinement must
be introduced around the crack to achieve engineering accuracy in elastic fracture mechanics.

The methodology was first presented in [3, 4, 5]. It was shown that discontinuous functions
can be used to enrich finite element approximations via the partition of unity concept intro-
duced by [6]. The resulting approximation can treat cracks that are arbitrarily aligned in the
finite element mesh with great accuracy. The concept was generalized in [7] and in [8], which
described the application of the concept to arbitrary discontinuities. [9] illustrated the potential
of combining the extended finite element method with level sets by solving several problems
involving inclusions and holes. In [10], the extended finite element methodology was combined
with a level set method to provide a general method for growing cracks. All of the preceding
papers dealt with two dimensional problems.

The first application of the extended finite element method to three-dimensional cracks
was [11], who solved several planar crack mode I problems and showed that the method com-
pared well with analytical and benchmark solutions. Subsequently [12] coupled the method
with the fast marching method to solve several planar crack growth problems in three dimen-
sions.

In this paper, the methodology is extended and modified so that it can handle arbitrary cracks
in three dimensions. A key development that facilitates treatment of cracks in three dimensions
is the description of crack geometry in terms of two signed distance functions. The displacement
field is also described in terms of these signed distance functions. This enables us to construct a
near-tip asymptotic field with a discontinuity that conforms to the crack even when it is curved
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or kinked near a tip. Furthermore, it eliminates the need for a surface model of the crack. As a
consequence, no explicit representation of the crack is needed and the crack is entirely described
by nodal data. Although the method will here be described for elastic fracture, it is not limited
to linear problems and can easily be extended to nonlinear problems.

We cannot list references to all of the competing methods, but we list some recent papers
in the following. The remeshing approach appears to be the most advanced for problems of an
industrial type; recent accounts are given by [13] and [14]. Methods which rely on boundary
element formulations combined with finite elements are given in [15], [16] and [17]. [18]
used the partition of unity concept with the visibility criterion to develop methods for dynamic
three dimensional crack growth. Three dimensional dynamic crack growth by the element free
Galerkin method has been reported by [19]. The crack surface was represented by a set of
triangular elements in 3D, which would be very awkward in a finite element method. The use
of finite elements with embedded discontinuities also makes it possible to grow cracks in 2D
without remeshing, see [20] and [21] for recent works on the topic.

The methodology for treating arbitrary three dimensional cracks and their evolution by X-
FEM are described in this and a companion paper. This paper focuses on the description of
cracks in three dimensions in terms of level sets, the computation of the elastic solution and the
stress intensity factors (SIFs), whereas the companion paper deals with the update of the level
sets needed to model crack growth.

The outline of the paper is as follows. In section 2, the methods for defining the crack
geometry and the displacement fields are described. The level sets update scheme is given in
Section 3. Section 4 reports the numerical experiments of a lens-shaped crack and a penny-
shaped crack under tension.

2 Crack and displacement field description

We consider a bodyΩ with an outer surfaceΓ and interior crack surfacesΓcr. The crack
can be treated as a single surface or as two surfaces:Γ+

cr andΓ−cr. In the latter case, the initial
crack surfaces are considered coincident and the outward normals to the surface of the crack are
denoted byn+ andn−, respectively.

[10] described a crack geometry in 2D by two signed distance functions. We also use two
signed distance functions to describe a crack in 3D as shown in Fig. 1. Note that the definition
of the two level set functions is only needed in a neighborhood of the crack. The signed distance
functionφ(x) defines the surface of the crack. It is given by

φ(x) = min
x∈Γext

cr

‖x− x‖sign
(
n+ · (x− x)

)
(1)

wherex = [x, y, z] andsign(·) is the sign functionsign(x) = +1 if x > 0 and−1 if x < 0.
We also need a smooth extension of the crack surfaceΓcr, denoted byΓext

cr , which includes the
entire crack surface, i.e.Γcr ⊂ Γext

cr . The distance function (1) gives the shortest distance of any
pointx to the extension of the crack surfaceΓext

cr . This corresponds to the orthogonal projection
of x onΓext

cr .
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Figure 1: The two iso-zero level
sets defining thecrack location.

Figure 2: A nodeI whose support iscom-
pletely and partially cut by the crack; the
support is the volume of the elements con-
nected to nodeI as shown.

Since the crack surfaceΓcr is a bounded surface with a crack front, it is also necessary
to define the crack front. This is accomplished by using a second signed distance function,
ψ(x), which is approximately orthogonal toφ(x) so that∇φ · ∇ψ ∼ 0. The intersection of the
surfacesψ(x) = 0 andφ(x) = 0 gives the crack front; we define the sign ofψ so thatφ(x) = 0,
ψ(x) < 0 gives the crack surfaceΓcr.

The signed distance functions in this paper are approximated by the same shape functions as
the displacement field. Therefore, in the computations the signed distance functions are given
by

φ =
∑
I

NI(x)φI (2)

ψ =
∑
I

NI(x)ψI (3)

whereNI are the finite element shape functions andφI andψI are the nodal values of the
distance function. This enables the crack shape to be described entirely in terms of nodal values.

The displacement fieldu(x) for the body is decomposed into the continuous and discontin-
uous parts by

u = ucont + udis (4)

whereucont is continuous inΩ, whereasudis may have several surfaces of discontinuity inΩ.
The locations of the discontinuities inudis are assumed to coincide withΓcr.

A standard finite element approximation is used forucont, i.e.

ucont =
∑
I∈N

NI(x)uI (5)

whereN is the set of all nodes in the mesh,NI are the classicalC0 shape functions anduI are
displacement nodal degrees of freedom.
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For the purpose of constructing the discontinuous field, the nodes are subdivided into three
sets :

• I ∈ Ncut : the set of nodes whose support (union of the elements connected to the node)
are completely cut into two, i.e. bisected by the crack surfaceΓcr. An example of such a
node is shown Figure 2.

• I ∈ Nbranch : the set of nodes whose support are partially cut by the crack surfaceΓcr,
see Figure 2 for an example of such a node.

• I ∈ N −Ncut −Ncut : the remaining nodes.

The discontinuous displacement fields are given as follows

udis =
∑
I∈Ncut

NI(x)H(φ(x))aI +
∑

I∈Nbranch

∑
α

NI(x)Bα(φ(x), ψ(x))aIα (6)

In the above,H(·) if the Heaviside step function,Bα(., .) are branch functions, andaI and
aIα are additional degrees of freedom for the displacement field. The branch functions are
constructed in terms of the level sets functions

[Bα] = [
√
r sin

θ

2
,
√
r cos

θ

2
,
√
r sin

θ

2
sin θ,

√
r cos

θ

2
sin θ] (7)

where

r =
√
φ2 + ψ2, θ = tan−1(

φ

ψ
) (8)

Note that thebranch functions have been expressed in terms of the level set functions. By
expressing the branch functionsBα in terms of the level set functions, it is guaranteed that
the discontinuity always corresponds toφ = 0 andψ < 0, i.e. to the surface of the crack.
The resulting field will not contain the exact basis of the asymptotic near field, but it is more
important to construct the discontinuity in the correct place than to match the exact near-tip
asymptotic field.

Only the first of the functions in Eq. (7) is discontinuous acrossφ = 0. The others were
added to improve the accuracy in elastic fracture problems. The above functions span the near-
tip asymptotic solution for an elastic crack in two dimensions. In this study and previous stud-
ies, see [11], we have also found this basis to be quite accurate for three-dimensional cracks,
although we have only considered smooth crack fronts.

This technique of adding asymptotic solutions through the partition of unity in finite ele-
ments can be considered an asymptotic matching technique. The displacement fields in the
other elements provide the far-field, whereas the elements with the branch functions (7) provide
the near field. The finite element procedure then matches these fields so that equilibrium is
approximately satisfied.
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1- extendVψ to the domain

∂Vψ
∂τ

+ sign(ψ)
∇ψ
‖∇ψ‖

· ∇Vψ = 0
∂Vψ
∂τ

+ sign(φ)
∇φ
‖∇φ‖

· ∇Vψ = 0 (9)

2- extendVφ to the domain

∂Vφ
∂τ

+ sign(φ)
∇φ
‖∇φ‖

· ∇Vφ = 0
∂Vφ
∂τ

+ sign(ψ)
∇ψ
‖∇ψ‖

· ∇Vφ = 0 (10)

3- adjustment to prevent modification of previous crack surface

V φ = H(ψ)
Vφψ

Vψ∆t
(11)

4- update andreinitialize theφ level set

∂φ

∂t
+ V φ‖∇φ‖ = 0

∂φ

∂τ
+ sign(φ)(‖∇φ‖ −1) = 0 (12)

5- update theψ level set
∂ψ

∂t
+ V ψ‖∇ψ‖ = 0 (13)

6- orthogonalizeand reinitialize theψ level set

∂ψ

∂t
+ sign(φ)

∇φ
‖∇φ‖

· ∇Vψ = 0
∂ψ

∂τ
+ sign(ψ)(‖∇ψ‖ − 1) = 0 (14)

Table 1: Scheme for level set update.
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3 Level sets update

The initial level sets representing the crack location are given as data. For many cracks, level
set functions which are not signed distance functions can easily be constructed. Then, they may
transformed into true signed distance function through a process called initialization, see [2].
The crack velocity on the crack front is given by

V = Vψnψ + Vφnφ, nψ =
∇ψ
‖∇ψ‖

, nφ =
∇φ
‖∇φ‖

(15)

wherenψ andnφ are the unitnormal vectors to the crack front and the crack surface, respec-
tively. The computation of the velocity on the crack front is detailed in the next section. Table
1 summarizes the scheme for the level sets update. In steps 1 and 2, the crack front velocity is
extended to all the nodes around the crack front. This extension procedure is classical in the
level set method ([22]). Theτ indicates a dummy time-like variable whereas thet symbol in
the other steps of Table 1 indicates the true time. Equations (9) and (10) are solved in the ”τ”
time untilVψ andVφ are stationary, i.e. their derivatives with respect toτ is zero. The steps in
Table 1 are explained in more details in [2].

The equations in Table 1 are Hamilton-Jacobi equations of the form

∂f

∂t
+H(∇f,x, t) = 0, f(x, 0) = f0(x) (16)

whereH is the Hamiltonian. In order to solve these equations they must be discretized in space
and time. The level sets are approximated by finite elements:

φ(x, t) =
∑
I

NI(x)φI(t), ψ(x, t) =
∑
I

NI(x)ψI(t) (17)

The velocities are approximated by the same shape function:

Vφ(x, t) =
∑
I

NI(x)VφI(t), Vψ(x, t) =
∑
I

NI(x)VψI(t) (18)

The level set method has previously been applied to unstructured meshes by [23], and we used
the same procedures.

4 Numerical experiment

Two numerical experiments are performed for the growth of a lens-shaped and a penny-
shaped crack in a cube under tension. The material properties are elastic and isotropic with
Young’s modulusE = 280Gpa and Poisson’s ratioν = 0.3. We consider fatigue crack growth
governed by the Paris law, which gives the rate of crack growth in mode I in terms of load cycles
N by

da

dN
= CGm (19)
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whereC is a constant to fit experimental results andG is themaximum energy release rate. We
consider the cyclesN a time-like variable so the expression for the crack front velocity is

V = CGm(cos θcnψ + sin θcnφ) (20)

whereθc, the angle of the velocity to the plane tangent to the crack (ornφ), is obtained by

θc = 2arctan
1

4

 KI

KII

− sign(KII)

√(
KI

KII

)2

+ 8

 (21)

Thus,the crack growth direction depends on modeI andII stress intensity factors, whereas
the crack speed on all three through the energy release rateG. In the numerical study, we chose
m = 1 andC = 1.

As a first example, we consider a cube with a cusp crack subjected to hydrostatic tension
as shown in Figure 3. The crack geometry is characterized by the radiusR and the azimuthal
angleα. A simulation of the evolution of the crack in a cube ofh = 0.01m and an initial crack
defined byR = 0.005m andα = 45o is considered. The mesh used is unstructured with 1767
nodes and 8895 tetrahedrons. It is not conforming to the crack and is the same throughout the
simulation. From 55 to 67 points were used on the front to compute the crack front velocity and
the stress intensity factors. Figure 4 shows the crack after 15 time steps. Note that the initial
front has involved into four subfronts in each corner. Furthermore, in this example, one can
notice that the convexity of the front has changed : this may be due to the faster growth of the
crack near the boundary of the cube.

As a second example, we consider the problem in Figure 5: a cube with an inclined penny-
shaped crack subjected to a tensile loading withh = 0.02m and an initial crack defined by
a = b = 0.005m andα = 45o. The mesh consists of 1747 nodes and 8847 tetrahedrons. Again,
the mesh does not conform to the crack geometry, and the same mesh is used throughout the
simulation. Figure 6 shows the evolution of the crack after 17 time steps. From 46 to 58 points
were used on the front to compute the stress intensity factors. At the end of the computation,
the box is completely cut by the crack. Furthermore, one can notice that the crack front has
a complex path. Like the previous problem, at the beginning the front is one entity, then four
entities, until the structure is completely cut by the crack.

5 Conclusions

A level set method for arbitrary non-planar cracks in three-dimensional bodies has been
presented. The level set technique couples naturally to the extended finite element method,
wherein the discontinuous and near-tip asymptotic fields are constructed through a partition of
unity. The resulting combined method requires no explicit representation of the crack except in
its visualization. Instead, the crack and its growth are described entirely in forms of nodal data.
This simplifies the structure of the software and leads to great versatility in treating complex
problems in crack growth.
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Figure 3: Initial cusp crack subjected to hydrostatic ten-
sion.

Figure 4: Crack after 15 times steps.

Figure 5: A cube with an inclined penny-
shaped cracksubjected to a tensile loading.

Figure 6: Evolution of the crack after 17 time steps for
the inclined penny-shaped crack.
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