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Summary. This paper is devoted to the imposition of Dirichlet type conditions within
the eXtended Finite Element Method. The X-FEM method allows one to easily model
surfaces of discontinuity or domain boundaries on a mesh not necessarily conforming
to these surfaces. Imposing Neumann type boundary condition on boundaries running
through the elements is straightforward. It is not the case for Dirichlet type boundary
conditions (or the limiting case of stiff boundary conditions). In this paper, we show that
the strong imposition of Dirichlet conditions inside elements leads to locking and suggest
a remedy.

1 INTRODUCTION

Imposing Dirichlet type boundary condition in the finite element framework is quite
straightforward. For instance, these can be imposed directly by L2 projection on the
boundary or by using Lagrange multipliers. The proper choice of the Lagrange multi-
plier space and subsequent integration of the bilinear form is well understood, see for
instance [1] or [2]. The key issue is the verification of the so-called LBB condition.

In the X-FEM, the difficulty arises from the fact that there is no unique way to impose
Dirichlet boundary conditions. To illustrate this fact on a simple case, consider the mesh
in figure 1. The domain of interest Ω and it’s Dirichlet boundary Γ are not matched by
the mesh. How can one impose a value, say zero, on Γ ? For instance, to have a zero
value at point C, values at nodes A and B simply need to be opposite (we assume that Γ
runs through the middle of the last layer of elements). A closer look shows that for the
interpolation to meet zero on Γ, the layer of nodes right above Γ must be set to the same
value and all the nodes below Γ must be set to the same opposite value. The normal flux
of the interpolation is thus constant along Γ which is not really satisfactory.

This simple example demonstrates, first, that there is no unique way to impose strongly
Dirichlet boundary conditions in the X-FEM and, second, that the normal flux of the
resulting interpolation is quite poor on the boundary (“boundary locking” occurs).
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Figure 1: A domain of interest Ω (shaded area) located on a mesh not matching the Dirichlet boundary
Γ of Ω.

The difficulty of choosing the proper Lagrange multiplier space to enforce interfacial
constraints in the X-FEM framework was already observed in [3]. The authors showed
that a naive construction of the Lagrange multiplier lead to oscillations.

To further illustrate the locking issue, we shall solve analytically the two-element scalar
problem shown in figure 2. The nodal forces F1 and F2 are supposed to model the action
of the upper elements. The Lagrange multiplier space is discretized over Γ by a linear
interpolation parametrized by the λ1, λ2 and λ3 coefficients. The inner space is discretized
with the four “displacements” ui, i = 1, . . . , 4. The Lagrange multipliers solution is

λ1 = F (1)

λ2 = F +
1

(1− e)
[F ] (2)

λ3 = F − 1

(1− e)2
[F ] (3)

where F = F1 + F2 and [F ] = F1 − F2. We observe that the second and third Lagrange
multiplier are blowing up when the interfaces reaches the bottom layer of elements. Es-
pecially λ3 whose support drops to zero as e tends to one. Moreover, oscillation occur :
the effect of [F ] is positive for λ2 and negative for λ3. The activation of three Lagrange
multipliers in the preceeding example corresponds to a strong imposition of the Dirichlet
condition and leads to locking. On the other hand, if we reduce the Lagrange multiplier
space by imposing λ2 = (1− e)λ1 + eλ3 (linear variation over Γ), we obtain

λ1 = F +

(
2e3 − 8e2 + 9e− 4

4e5 − 16e4 + 28e3 − 32e2 + 17e− 4

)
[F ] (4)

λ2 = (1− e)λ1 + eλ3 (5)

λ3 = F −
(

2e3 − 8e2 + 9e− 4

4e5 − 16e4 + 28e3 − 32e2 + 17e− 4

)
[F ] (6)
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and the oscillations are gone. From this simple analysis, a strategy is designed in [4] to
build a reduced Lagrange multiplier space in the general case. For instance, Figures 3
give the results for a sequence of non matching meshes on a scalar model problem already
treated in [5] (the two first meshes of this sequence are shown in Figure4). The inf-sup
parameter (numerical inf-sup test [6]) is given as well as the convergence of the errors (the
upper of the three curves is the energy error, the middle curve is the L2 error on the flux
and the bottom curve is the error on the imposed Dirichlet value). The inf-sup parameter
is stable denoting no locking. More general cases are treated in [4].

Figure 2: Analytical model of two elements.
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Figure 3: Results for the non matching (uniform) meshes case using of the reduced multiplier space :
convergence of the errors and inf-sup parameter.
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Figure 4: The first two meshes of a sequence of non matching structured meshes.
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