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Introduction	

Non-invasive	Brain-Computer	Interfaces	(BCIs)	are	largely	used	to	produce	thought-provoked	
action,	by	exploiting	the	ability	of	subjects	to	voluntary	modulate	their	brain	activity	through	
mental	 imagery.	Despite	 its	clinical	applications	 [Jin,	2012;	Prasad,	2010],	 controlling	a	BCI	
appears	to	be	a	learned	skill.	Several	weeks	or	even	months	are	needed	to	reach	relatively	
high-performance	in	BCI	control,	without	being	sufficient	for	15	to	30	%	of	the	users	[Allison,	
2010;	 Vidaurre,	 2010].	 This	 gap	 has	 motivated	 a	 deeper	 understanding	 of	 mechanisms	
associated	with	motor	 imagery	 (MI)	 tasks	 [Kaiser,	2014;	Perdikis,	2014].	 If	similarities	have	
been	shown	between	MI-based	BCI	learning	and	motor	sequence	learning	[McDougle,	2016;	
Wander,	2013],	our	understanding	of	the	involved	processes	is	still	 incomplete.	Among	the	
advanced	reasons	are	the	lacks	of	longitudinal	studies	long	enough	to	observe	consolidation	
effects	 associated	 with	 learning	 process,	 and	 of	 proper	 learning	 metrics	 based	 on	 the	
neurophysiology	[Perdikis,	2018].	Here,	we	expected	that	MI-BCI	learning	is	associated	with	
the	recruitment	of	areas	distributed	across	the	cortex	beyond	those	targeted	by	the	BCI.	We	
also	 hypothesized	 that	 the	 associated	 properties,	 in	 terms	 of	 activations	 and	 functional	
connectivity,	predict	the	learning	success.	
	
	
Methods	

We	recorded	brain	signals	electroencephalography	(EEG)	while	subjects	performed	a	BCI	task	
twice	in	a	week	during	two	weeks.	It	consisted	of	modulating	their	brain	activity	in	the	α-β	
band	to	control	the	vertical	position	of	a	moving	cursor	displayed	on	a	screen.	To	go	up,	the	
subjects	imagined	a	grasping	movement	with	the	right	hand	and	to	go	down,	they	remained	
at	rest.	
Twenty	BCI-naive	subjects	(aged	27.45±4.01	years,	12	men),	all	right-handed,	participated	in	
the	study.	After	having	removed	the	electrophysiological	artifacts	by	using	the	Independent	
Component	 analysis	method	 [Bell,	 1995],	we	performed	 the	 source	 reconstruction	on	 the	



epoched	data	via	the	Boundary	Element	Method	followed	by	the	weighted	Minimum	Norm	
Estimate.	We	performed	a	paired	t-test	on	power	spectra	obtained	from	the	MI	and	the	Rest	
conditions.	Statistics	were	corrected	for	multiple	comparisons	using	the	cluster	approach	by	
using	the	sum	of	the	t-values	within	every	cluster.	
The	functional	connectivity	analysis	was	performed	through	the	computation	of	the	imaginary	
coherence	between	each	pair	of	region	of	 interest	based	on	[Sekihara,	2011].	Finally,	node	
strength	was	obtained	by	summing	the	values	of	the	associated	row	in	the	connectivity	matrix.	
	
	
Results	

In	both	α	and	β	 ranges,	we	 found	a	progressive	 involvement	of	distributed	 sources	 in	 the	
cortical	 hemisphere	 contralateral	 to	 the	 movement	 corresponding	 to	 a	 significant	 power	
decrease	 (p<0.025),	 more	 pronounced	 in	 the	 primary	 somatosensory	 cortex,	 the	 primary	
motor	cortex,	the	frontal,	the	prefrontal,	the	temporal	and	the	parietal	areas.	The	observed	
decreases	tended	to	focus	more	on	the	contralateral	pre-and	postcentral	gyri	at	the	end	of	
the	training.	We	found	a	progressive	decrease	of	task-related	connectivity	 in	both	α	and	β	
ranges	across	sessions.	Significant	across-session	decreases	were	spatially	diffused	involving	
bilaterally	 frontal,	 temporal	and	occipital	areas	 in	α	ranges,	while	they	were	more	focused	
over	 the	 left	 primary	 motor	 cortex,	 the	 left	 central	 and	 parietal	 areas	 in	 the	 β	 ranges	
(p	<	0.025).	
Power	changes	in	α	and	β	ranges	significantly	predicted	the	BCI	accuracy	in	the	subsequent	
session	(p	<	0.005	in	α2).	The	connectivity	decrease	in	the	frontal	and	the	temporal	areas	was	
associated	with	a	better	future	performance	in	α2	(Figure).	
	
	
Conclusion	

We	found	cortical	changes	associated	with	a	dynamic	brain	reorganization	during	BCI	training.	
They	were	characterized	by	a	local	increase	of	sensorimotor	activation	which	was	paralleled	
by	 a	 global	 decrease	 of	 functional	 connectivity.	 Notably,	 these	 changes	 could	 predict	 the	
future	BCI	performance.	
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Figure. Contrast between motor imagery and rest conditions within the !2 band. On the first row, we displayed the contrast maps between the
conditions, in terms of activations. Cluster-based permutation results computed from the group analysis performed across the 20 subjects within the MNI
template. Here, we plotted the obtained p-values multiplied by the sign of the t-values resulting from the paired t-test. On the second row, we displayed the
cortical connectivity changes in BCI training. Results are represented on a circular graph where nodes correspond to different regions of interest (ROIs) and
links code the statistical values resulting from the paired t-test performed between the conditions (p<0.005).The color of each node, corresponds to a specific
macro-area as provided by the Brainstorm software; "unassigned'' labels mean that the ROI cannot be properly attributed to a specific macro-area.


