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Abstract

This paper introduces a new acoustic modeling method
called Gaussian Dynamic Warping (GDW). It is
targeting real world applications such as voice-based
entrance door security systems, the example presented
in this paper. The proposed approach uses a hierarchical
statistical framework with three levels of specialization
for the acoustic modeling. The highest level of
specialization is in addition responsible for the
modeling of the temporal constraints via a specific
Temporal Structure Information (TSI) component.
The preliminary results show the ability of the GDW
method to elegantly take into account the acoustic
variability of speech while capturing important temporal
constraints.

1. Introduction
Two main classes of techniques based on either DTW or
HMM [3][4][9] are typically used in isolated word
recognition or text-dependent speaker recognition.
Dynamic Time Warping (DTW) systems are well suited
when the amount of enrollment data is small and have
the ability to precisely model time constraints. In
addition, they can easily be adapted to support the
spotting of target events at a reduced computational cost.
A target event can represents a word or phrase alone or a
word or phrase along with the speaker’s identity. The
DTW approach lacks however the generalization power
available with HMM and GMM (Gaussian Mixture
Models) approaches to deal with the variability inherent
to the speaker or to the environment. Another drawback
is also their inefficiency at taking advantage of larger
amount of training or adaptation data.
In contrast, HMM-based techniques allow for a good
estimation of the target events’ acoustic space and
provide a solid framework for score normalization and
model adaptation. However, HMM modeling requires a
large amount of training data and can be expensive in
terms of resources. GMMs [2], which are single-state
HMMs, address some of these issues and achieve
reasonable performance especially in the case of text-
independent speaker recognition with lower
requirements in training material. However the main
disadvantage of GMM systems and – to a lesser
extent - HMM systems resides in their inefficiency at
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rving and modeling the temporal aspects of speech
, strongly limiting their performance in the case of
duration phrases especially when word-spotting is

ired feature.

ions for combining statistical modeling and TSI
raints have been proposed. In [5], the TSI aspects

bedded in the GMM components. In [6], the TSI
en into account by a trajectory model.

der to model the TSI of speech while achieving
modeling performance, low cost decoding and
ing an efficient spotting mode, we propose a new
 event modeling approach that is based on both
tical acoustic space modeling and TSI constraints
ling. The proposed approach [1] called Gaussian
mic Warping (GDW) provides a highly flexible
work that combines together the advantages found

th HMM/GMM-based and DTW-based systems.

paper presents the GDW approach (see Section 2)
d to a speaker detection and verification task.
n 3 shows preliminary experiments realized with
’s voice entrance door system and Section 4
arizes the benefit of the approach and presents
 work directions.

2. The GDW approach
GDW approach mixes statistical modeling and
oral Structure Information (TSI) modeling. A
 model is a hierarchical statistical model with three

alization levels. All the components of the GDW
l are statistically trained. Each statistical node can
GMM or an HMM component. Those nodes (as
ined later) can share means, variances, weights and
ogy information.
SI constraints are used by a DTW-based module

an either perform endpoint-based matching during
raining phase or perform phrase-spotting during
nition/verification phase.
core subsystem proposes the high level

ionality, like enrolment and recognition.

DW Hierarchical Statistical Modeling

tical modeling is at the core of the GDW approach.
ased on statistical modeling with an original three
 hierarchical structure shown Figure 1.



Figure 1: Overview of the GDW model

In the current experiments, GMM modeling was chosen
and each GMM statistical node have the same dimension
in terms of the number of Gaussian components.
The top layer is the layer with the least specialization
and is represented as a classical Background Model
denoted BM that is trained using EM/ML [7].
The middle layer captures the speaker-specific spaces.
Each speaker-specific model (denoted X) is derived
from the background model BM using a MAP approach
[8].  All the acoustic data available for a given speaker is
used during this phase. It represents an important
difference when compared to the classical approach for
which the adaptation is done independently phrase by
phrase. In effect, only a limited number of Gaussians
need to be adapted from the background model and
mean adaptation alone can be performed.
The bottom level captures for each speaker the phrase-
specific time-dependent sub-spaces. A TSI frame-
dependent statistical node is trained/derived for each
time frame (e.g. 10 ms speech segments) of the word or
phrase using a specific MAP algorithm. In order to
reduce the computational cost, it was found that weight
adaptation of the N-best Gaussians alone is sufficient to
provide good performance.

Figure 2: Comparison between GDW and DTW modeling

Figure 2 illustrates the basic difference between a DTW
approach and a GDW approach. It shows that a DTW
approach essentially lacks the generalization and
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arative power brought by the GDW approach via
yered statistical modeling since phrase models are

and recognized independently of each other.
rding the GDW approach, it also shows that the
e of specialization attached to a frame-dependent
l is not fixed but is on the contrary highly
table, from a single frame-independent model
alent (i.e. a same GMM for all the password
s) up to a hyper-specialized model (i.e. DTW-like
.

emporal Structure Information Processing

he GDW approach, the Temporal Structure
ation (TSI) is represented as a set of connected

-dependent states. Each state represents a piece of
ation that is both specific to the phrase and to the

er at this instant in time. Each TSI state is currently
led as a GMM structure and is derived from the
sponding level-two model (the speaker model). The
e of specialization of TSI states can be adjusted at
ng time. This frame-dependent state adaptation
e enables a smoothing and optimization of the

sentation based both on the quantity and quality of
ng data available and on the ratio between local

ation and a priori ratio between generalization
pecialization. Depending of this ratio, the state
ls are moved from the speaker model (all the state
ls are equal) to a frame-based representation (a
model corresponds mainly to the current frame).

emporal Structure Information is preliminary used
etecting the target event in the incoming audio
. A Dynamic Time Warping-based algorithm is

to spot the target events in real-time. The spotting
le generates a list of hypotheses (possibly an empty
t each time instant. Each hypothesis (described by
ction score and an alignment path) is then checked

e verification module. The detection module uses a
 alignment penalties for insertions and deletions.

( ) ( )
( ) 




















=

Xyl

Xyl
NormDistXyLocalDist n

n log,

ation 1: y is the input frame, Xn is the frame model, X
global event model. NormDist() is a normalization
tion used to transform a log likelihood ratio into a
] “distance”.

TW algorithm uses a statistical local distance to
ure the degree of similarity between an input frame
 frame-dependent GMM. The local distance is

ed from a log likelihood ratio. The numerator of the
is the likelihood of the frame given the TSI frame-
dent model, denoted Xn and the denominator is the

hood of the frame given the speaker model X
tion 1).
etection score computed by TSI spotting module is
m of the local distances augmented by the DTW-
enalties along the path normalized by the number
ut frames in the path.



2.3. Training of a GDW Target Event Model

The training of a GDW target event model requires the
training of a speaker model (denoted X) and the training
of TSI state-dependent models. The TSI state-dependent
models are trained by adaptation of the X model. Figure
3 gives an overview of the training process.

Figure 3: Overview of GDW model training process

The training of the speaker model is accomplished by
using all the training speech data available for that
speaker, thus it is not limited at using only the speech
data corresponding to the phrase to be modeled.

The training of the TSI state-dependent models is done
as follows:
� First, a GDW model is built independently for each

enrollment repetition available. In this case, the
number of TSI state-dependent models correspond to
the number of frames and each state-model is set using
only the corresponding frame.

� Secondly, the cross-matching distance matrix
between all the enrollment repetitions of the phrase is
computed. The phrase providing the minimum average
distortion is selected as “central” repetition and is used
as seed for the next step.

� Thirdly, the enrollment repetitions are aligned with
the central model and the central model is adapted.
This step is iterated several times until a convergence
criterion (based on the minimum total distortion) has
been reached.

The adaptation of a TSI state model is done using all the
frames (from the different enrolment utterances) aligned
with it. In order to save memory and computational
resource, only the weight of a subset of the components
are adapted using a specific MAP interpolation function
defined by equation 2. The components with the larger
weights are selected.
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� is the final (adapted) weight of the i

ponent, nX
iŵ is the weight computed using the

tation data, X
iw the a priori weight (from X) and

 the adaptation factor.

Target Event Detection and Verification

ecognition of a target event is achieved as a two-
 process:
irstly, as explained earlier, the spotting module
erates a list of possible speaker-phrase hypotheses
ach time instant. The hypotheses having a detection
re that is better than the detection threshold are
sed to the next stage.
econdly, a speaker verification score is computed
 compared to a decision threshold.

peaker verification score is obtained as the average
all the frames in the spotted path of the local

etric score called BioScore, given by equation 3. It
se to the traditional log likelihood ratio used in
er recognition.
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ation 3: y denotes the input frame, Xn the frame-based
ker model, X the speaker model, BM the background
el and local, a weight used for local/global tuning.

local biometric score measures the degree of
rity between an input frame and the target event’s
d GMM component. It is normalized by the BM
l, in order to minimize the influence of non-
ative frames (non-speech frames for example) and

 frames. The weight of the frame-dependent TSI
l compared to the global speaker model is given by
cal parameter. Usually, the local parameter is set

 to 1 in order to give a greater control to the frame-
dent models.

3. Preliminary Experiments
plemented and tested the GDW approach with the

h data collected by a proprietary vocal entrance
system developed and installed at PSTL. The data
rrespond to natural spontaneous speech collected
several weeks. With that system, each user had
led the password of his/her choice. Most passwords
fairly short and ranged from 0.6 to 1.4 seconds in
ion with a 0.8 second average. In this application,
led users could simply come near the biometric box
ay their password to unlock the door. With that
, no control over the environmental noise (it is an

e door) was made and speakers were found to
ss the system from a variable distance ranging from
 7 inches up to 10 feet.



3.1. Data Set and Experimental Protocol

The preliminary experiments were conduced using a
PSTL’s proprietary data set described above. That
database contains speech data collected at 8KHz for a
total of 27 users. At least five repetitions of a user-
selected password were used for enrollment. The test set
was composed of 242 client tests and 311 impostor tests.
For all the impostors tests, knowledge of the correct
password by the impostor was assumed.
A third data set was dedicated to the training of the
background model. The vocabulary used during the third
set recordings includes the client passwords and some
speech from the enrolled speakers were included.

3.2. Results

The number of components in the GMM background
model (the top level of GDW model hierarchy) was
fixed to 512 components. The speaker models (second
layer of the GDW approach) were derived from the
background model by adapting 256 components. The
TSI frame models were adapted by changing only 16
component weights.

local/global ratio BM weight HTER min (%)
0 0.1 5.4

0.5 0.1 3.5
1 0.01 3.1
1 0.1 2.8
1 0.5 2.8
1 0.75 3.2

Table 1: HTER obtained with the GDW method, based on
different values for the contribution ratio between local
and global models in bioscore computation and the weight
of BM model used during local (TSI) models MAP
adaptation.

The table 1 presents a synthetic view of a small set of
experiments. It shows clearly that the TSI constraints
used by GDW method contribute to a significant
reduction of the errors (from 5.4% to 2.8% of half total
error rate) when the biometric score computation uses
local TSI models (with local=1) as opposed to a global
speaker model (with local=0).
This table shows also that the tuning of TSI models
weight adaptation factor (alpha) is not critical for GDW.
It shows that – thanks to the specific MAP formula - the
GDW models converge for all the ratio
specialization/globalization.

4. Conclusions and Future Work
In this paper, we presented a new acoustic modeling
method called Gaussian Dynamic Warping (GDW). Its
main originality is to elegantly combine the power of
statistical modeling with Temporal Structure
Information (TSI) constraints modeling traditionally
used in DTW-based systems. The GDW approach can
efficiently model target events with a limited amount of
training data. The GDW modeling technique provides a
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le and tunable framework that can accommodate a
y of recognition and verification tasks.
paper described the first implementation of GDW
ach with an evaluation on a natural and
aneous speech database. These preliminary
iments show the interesting potential of the
ach. Further research directions will include an
ation of the method on larger databases for both
er verification and speech recognition tasks.
ularly, a comparison of GDW approach with
cal DTW, GMM and HMM systems will be
rmed.
daptation of GDW models to new environments
lso be explored, by moving only the upper level of
erarchy.
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