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We study the kernel function of the operator u → L µ u = -∆u

4 is a constant. We show the existence of a Poisson kernel vanishing at 0 and a singular kernel with a singularity at 0. We prove the existence and uniqueness of weak solutions of L µ u = 0 in Ω with boundary data ν + kδ 0 , where ν is a Radon measure on ∂Ω \ {0}, k ∈ R and show that this boundary data corresponds in a unique way to the boundary trace of positive solution of L µ u = 0 in Ω.

Introduction

We denote by L µ the Schrödinger operator defined in a domain Ω ⊂ R N by

L µ u := -∆u + µ |x| 2 u,
where µ is a real constant and N ≥ 2. This operator which is associated to the Hardy inequality has been thoroughly studied in the last thirty years. When the singular point 0 belongs to Ω, it appears a critical value

µ 0 = - N -2 2 
2
and the range of the parameter µ in which the operator is bounded from below is [µ 0 , ∞). This is linked to the Hardy inequality

Ω |∇ζ| 2 + µ 0 Ω ζ 2 |x| 2 dx ≥ 0 for all ζ ∈ C ∞ 0 (Ω).
Furthermore this inequality is never achieved if Ω is bounded, in which case a remainder was shown to exist by Brézis and Vázquez [START_REF] Brezis | Blow-up solutions of some nonlinear elliptic equations[END_REF]. When λ is a Radon measure in Ω, the associated Dirichlet problem

L µ u = λ in Ω, u = 0
on ∂Ω is studied in its full generality in [START_REF] Chen | On nonhomogeneous elliptic equations with the Hardy-Leray potentials[END_REF] and [START_REF] Chen | Weak solutions of semilinear elliptic equations with Leray-Hardy potential and measure data[END_REF] thanks to the introduction of a notion of very weak solution associated to some specific weight. Thanks to this new formulation an extensive treatment of the associated semilinear problem

L µ u + g(u) = λ in Ω, u = 0 on ∂Ω,
where g : R → R is a continuous nondecreasing function, is developed in [START_REF] Chen | Weak solutions of semilinear elliptic equations with Leray-Hardy potential and measure data[END_REF].

In this article we assume that the singular point of the potential lies on the boundary of the domain Ω, and we are mainly interested in the two problems: 1-To define a notion of very weak solution for the problem

L µ u = 0 in Ω, u = ν on ∂Ω, (1.1) 
where ν is a Radon measure on ∂Ω, and more generaly on ∂Ω \ {0}; 2-To prove the existence of a boundary trace for any positive L µ -harmonic function, i.e. solution of L µ u = 0 in Ω and to connect it to the problem (1.1).

The model example is Ω = R N + := {x = (x , x N ) ∈ R N -1 × R : x N > 0} although it is not a bounded domain. There exists a critical value

µ ≥ µ 1 := - N 2 4 . (1.2)
This value is fundamental for the operator L µ to be bounded from below since there holds,

R N + |∇ζ| 2 + µ 1 R N + ζ 2 |x| 2 dx ≥ 0 for all ζ ∈ C ∞ 0 (R N + ). (1.
3)

The analysis of the model case is explicit. Let (r, σ) ∈ R + × S N -1 + be the spherical coordinates in R N + , then, if (1.2) is satisfied, there exist two different types of positive L µ -harmonic functions vanishing on ∂R N + \ {0}, γ µ (r, σ) = r α + ψ 1 (σ) and φ µ (r, σ) =

r α -ψ 1 (σ) if µ > µ 1 , r -N -2 2 ln(r -1 )ψ 1 (σ) if µ = µ 1 , (1.4) 
where ψ 1 (σ) = x N |x| generates ker(-∆ + (N -1)I) in H 1 0 (S N -1

+

), and where

α + := α + (µ) = 2 -N 2 + µ + N 2 4 and α -:= α -(µ) = 2 -N 2 -µ + N 2 4 . (1.5) 
Put dγ µ (x) = γ µ (x)dx. We define the γ µ -dual operator L * µ of L µ by

L * µ ζ = -∆ζ - 2 γ µ ∇γ µ , ∇ζ for all ζ ∈ C 2 (R N + ), (1.6) 
and we prove that φ µ is, in some sense, the fundamental solution of

L µ u = 0 in R N + , u = δ 0 on ∂R N + , since it satisfies R N + φ µ L * µ ζdγ µ (x) = c µ ζ(0) for all ζ ∈ C c (R N + ) ∩ C 1,1 (R N + ) such that ρL * µ ζ ∈ L ∞ (R N + )
, where c µ > 0 is a normalized constant and ρ(x) = dist(x, ∂Ω). Here ρ(x) = x N when Ω = R N + . When R N + is replaced by a bounded domain Ω satisfying the condition (C-1) 0 ∈ ∂Ω , Ω ⊂ R N + and x, n = O(|x| 2 ) for all x ∈ ∂Ω,

where n = n x is the outward normal vector at x, inequality (1.3) holds but it is never achieved in the Hilbert space H 1 0 (Ω). Note that the last condition in (C-1) holds if Ω is a C 2 domain. It is proved in [START_REF] Cazacu | On Hardy inequalities with singularities on the boundary[END_REF] that under the assumption (C-1) there exists a remainder under the following form:

Ω |∇ζ| 2 + µ 1 Ω ζ 2 |x| 2 dx ≥ 1 4 Ω ζ 2 |x| 2 ln 2 (|x|R -1 Ω ) dx for all ζ ∈ C ∞ c (Ω), (1.7) 
where R Ω = max z∈Ω |z|. Then there holds

Ω µ := inf Ω |∇v| 2 + µ |x| 2 v 2 dx : v ∈ C 1 c (Ω), Ω v 2 dx = 1 > 0.
This first eigenvalue is achieved in

H 1 0 (Ω) if µ > µ 1 , or in the space H(Ω) which is the closure of C 1 c (Ω) for the norm v → v H(Ω) := Ω |∇v| 2 + µ 1 |x| 2 v 2 dx, when µ = µ 1 .
In the sequel we set

H µ (Ω) = H 1 0 (Ω) if µ > µ 1 , H(Ω) if µ = µ 1 .
Moreover, under the assumption (C-1) the imbedding of H µ (Ω) in L 2 (Ω) is compact (see e.g. [START_REF] Cazacu | Hardy inequality and Pohozaev identity for operators with boundary singularities: Some applications[END_REF]). We denote by γ Ω µ the positive eigenfunction, its satisfies

L µ γ Ω µ = Ω µ γ Ω µ in Ω, γ Ω µ = 0 on ∂Ω \ {0}. (1.8)
We prove in Appendix that there exist

c j = c j (Ω, µ) > 0, j = 1, 2, such that (i) γ Ω µ (x) = c 1 ρ(x)|x| α + -1 (1 + o(1)) as x → 0, (ii) |∇γ Ω µ (x)| ≤ c 2 γ Ω µ (x) ρ(x)
for all x ∈ Ω.

(1.9)

This function will play the role of a weight function for replacing γ µ . Next we construct the Poisson kernel K Ω µ of L µ in Ω × ∂Ω. When µ ≥ 0 this construction can be made by truncation as in [START_REF] Véron | Boundary value problems with measures for elliptic equations with singular potentials[END_REF], considering for > 0 and λ ∈ M + (∂Ω) the solution u of

     -∆u + µ max{ 2 , |x| 2 } u = 0 in Ω, u = λ on ∂Ω.
By a more elaborate method, we also construct the Poisson kernel when µ 1 ≤ µ < 0. It is important to notice that when µ > 0 the kernel has the property that

K Ω µ (x, 0) = 0 for all x ∈ Ω \ {0} (1.10)
by [START_REF] Véron | Boundary value problems with measures for elliptic equations with singular potentials[END_REF]Theorem A.1]. Because of (1.10) it is clear that the Poisson kernel cannot be the tool for describing all the positive L µ -harmonic functions. Our first concern in this article is to clarify the Poisson kernel of L µ . We first characterize the positive L µ -harmonic functions which are singular at 0.

Theorem A Let Ω be a C 2 bounded domain such that 0 ∈ ∂Ω and µ ≥ µ 1 . If u is a nonnegative L µ -harmonic function in Ω vanishing on B r 0 (0) ∩ (∂Ω \ {0}) for some r 0 > 0, then there exists k ≥ 0 such that

lim x→0 u(x) ρ(x)|x| α --1 = k, if µ > µ 1 and lim x→0 |x| N 2 u(x) ρ(x) ln |x| = -k, if µ = µ 1 .
Actually the above convergences hold in a stronger way. In order to prove that such solutions truly exist we construct the kernel function φ Ω µ (see [START_REF] Hunt | Positive harmonic functions on Lipschitz domains[END_REF] for the denomination) which is the analogue in a bounded domain of the explicit singular solution φ µ defined in R N + . Theorem B Let Ω be a C 2 bounded domain satisfying (C-1) and µ ≥ µ 1 . Then there exists a positive L µ -harmonic function in Ω, which vanishes on ∂Ω \ {0}, which satisfies

φ Ω µ (x) = ρ(x)|x| α --1 (1 + o(1)) as x → 0, (1.11) if µ > µ 1 , and φ Ω µ 1 (x) = ρ(x)|x| -N 2 (| ln |x|| + 1)(1 + o(1)) as x → 0, (1.12) if µ = µ 1 .
As in the model case, we define the γ Ω µ -dual operator of L µ by

L * µ ζ = -∆ζ - 2 γ Ω µ ∇γ Ω µ , ∇ζ + Ω µ ζ for all ζ ∈ C 1,1 (Ω).
The following commutation formula holds

L µ (γ Ω µ ζ) = γ Ω µ L * µ ζ. (1.13)
Corollary C Let Ω be a C 2 bounded domain satisfying (C-1) and µ ≥ µ 1 . Then φ Ω µ is the unique function belonging to L 1 (Ω, ρ -1 dγ Ω µ ), which satisfies

Ω uL * µ ζdγ Ω µ = kc µ ζ(0) for all ζ ∈ X µ (Ω), (1.14) 
where dγ Ω µ = γ Ω µ dx, here and in the sequel the test function space

X µ (Ω) = ζ ∈ C(Ω) : γ Ω µ ζ ∈ H µ (Ω) and ρL * µ ζ ∈ L ∞ (Ω) .
Furthermore, if u is a nonnegative L µ -harmonic function vanishing on ∂Ω \ {0}, there exists k ≥ 0 such that u = kφ Ω µ . We denote by M(Ω; γ Ω µ ) the set of Radon measures ν in Ω such that sup

Ω ζd|λ| : ζ ∈ C c (Ω), 0 ≤ ζ ≤ γ Ω µ := Ω γ Ω µ d|ν| < +∞. If ν ∈ M + (Ω; γ Ω µ ) the measure γ Ω µ ν is a nonnegative bounded measure in Ω. Put β Ω µ (x) = - ∂γ Ω µ (x) ∂n x = lim t→0 + γ Ω µ (x -tn x ) t = lim t→0 + γ Ω µ (x -tn x ) ρ * (x -tn x )) , ∀ x ∈ ∂Ω \ {0} (1.15)
and from (3.2) and (1.9), we have that

c 1 |x| α + -1 ≤ β Ω µ (x) ≤ c 1 c 3 |x| α + -1 for x ∈ ∂Ω \ {0}. (1.16)
As a consequence, the following potential function plays an important role in defining our boundary data. Denote

β µ (x) = |x| α + -1 for x ∈ R N \ {0}.
(1.17)

The set Radon measures λ in ∂Ω \ {0} such that sup

∂Ω\{0} ζd|λ| : ζ ∈ C c (∂Ω \ {0}), 0 ≤ ζ ≤ β µ := ∂Ω\{0} β µ d|λ| < +∞ is denoted by M(∂Ω \ {0}; β µ ). The extension of λ ∈ M + (∂Ω \ {0}; β µ ) as a measure β µ λ in ∂Ω is given by ∂Ω ζd(β µ λ) = sup ∂Ω υβ µ dλ : υ ∈ C c (∂Ω \ {0}), 0 ≤ υ ≤ ζ for all ζ ∈ C c (∂Ω) , ζ ≥ 0 and β µ λ = β µ λ + -β µ λ -if λ is a signed measure in M(∂Ω \ {0}; β µ )
, and this defines the set M(∂Ω; β µ ) of all such extensions. The Dirac mass at 0 does not belong to M(∂Ω; β µ ), but it is the limit of sequences of measures in this space in the same way as it is a limit of measures in M + (∂Ω \ {0}; β µ ). In the next result we prove the existence and uniqueness of a solution to

L µ u = ν in Ω, u = λ + kδ 0 on ∂Ω. (1.18)
Thanks to (1.7) the Green kernel G Ω µ is easily constructible. If ν ∈ M + (Ω; γ Ω µ ) and λ ∈ M(∂Ω; β µ ) the following expressions are well defined

K Ω µ [λ](x) = ∂Ω K Ω µ (x, y)dλ(y) and G Ω µ [ν](x) = Ω G Ω µ (x, y)dν(y).
Our main existence result is the following.

Theorem D Let Ω be a C 2 bounded domain satisfying (C-1) and µ ≥ µ 1 . If ν ∈ M + (Ω; γ Ω µ ), λ ∈ M(∂Ω; β µ ) and k ∈ R, the function u = G Ω µ [ν] + K Ω µ [λ] + kφ Ω µ := H Ω µ [(ν, λ, k)] (1.19)
is the unique solution of (1.18) in the very weak sense that u ∈ L 1 (Ω, ρ -1 dγ Ω µ ) and

Ω uL * µ ζdγ Ω µ = Ω ζd(γ Ω µ ν) + ∂Ω ζd(β Ω µ λ) + kc µ ζ(0) for all ζ ∈ X µ (Ω).
(1.20)

In the next result we prove that all the positive L µ -harmonic functions in Ω are described by formula (1.19) (with ν = 0).

Theorem E Let Ω be a C 2 bounded domain such that 0 ∈ ∂Ω satisfying (C-1), µ ≥ µ 1 and u be a nonnegative L µ -harmonic functions in Ω. Then there exist λ ∈ M(∂Ω; β µ ) and k ≥ 0, such that

u = K Ω µ [λ] + kφ Ω µ = H Ω µ [(0, λ, k)]. The couple (λ, kδ 0 ) is called the boundary trace of u.
The rest of this paper is organized as follows. In Section 2, we introduce the distributional identity of L µ harmonic function φ µ in R N + . Section 3 is devoted to build the Kato's type inequalities, to construct Poisson kernel and related properties. Section 4 is addressed to classify the boundary isolated singular L µ harmonic functions in a bounded domain, i.e. Theorem A and to show the existence and related distributional identity in a (C-1) domain: proofs of Theorem B and Corollary C. We classify the boundary trace for general L µ harmonic functions and give the existence of L µ harmonic functions with the boundary trace (λ, kδ 0 ): Theorem D and Theorem E respectively in Section 5. Finally, we show Estimates (1.9) and (3.2) in Appendix.

In a forthcomming article [START_REF] Chen | Semilinear elliptic equations with Leray-Hardy potential singular on the boundary and measure data[END_REF] we develop our observations to study qualitative properties of the semilinear problem

L µ u + g(u) = 0 in Ω, u = λ on ∂Ω,
when the origin lies on the boundary of Ω and λ is a Radon measure defined in proper way.

2 The half-space setting

Let R N + := {x = (x , x N ) ∈ R N -1 ×R : x N > 0}, (r, σ) ∈ R + ×S N -1 + be the spherical coordinates in R N
+ and ∆ is the Laplace Beltrami operator on S N -1 . Then

L µ u = -∂ rr u - N -1 r ∂ r u - 1 r 2 ∆ u + µ r 2 u. If u(r, σ) = r α φ(σ) is a (separable) solution of L µ u = 0 vanishing on ∂R N + \ {0}, then ψ k satisfies -∆ ψ k = λ k ψ k in S N -1 + := S N -1 ∩ R N + , ψ k = 0 in ∂S N -1 + ≈ S N -2 ,
where λ k is a constant which necessarily belongs to the spectrum

σ S N -1 + (-∆ ) = {λ k = k(N + k -2) : k ∈ N * },
and α = α k + , α k -is a root of α 2 + (N -2)α -λ k -µ = 0. (2.1)
The fundamental state corresponds to k = 1, in which case since λ 1 = N -1, existence of real roots of (2.1) necessitates µ ≥ µ 1 = -N 2 4 = µ 1 and we denote α 1 + = α + and α 1 -= α -. Note that this value is connected to the boundary Hardy

R N + |∇φ| 2 + µ 1 R N + φ 2 |x| 2 dx ≥ 0 for all φ ∈ C ∞ 0 (S N -1 + ).
If this condition is fulfilled, the two roots α + and α -corresponding to k = 1 and λ 1 are

α + = 2 -N 2 + √ µ -µ 1 and α -= 2 -N 2 - √ µ -µ 1 . (2.
2)

The corresponding positive separable solutions γ µ and φ µ of L µ u = 0 vanishing on ∂R N + \ {0} are defined by (1.4). We set dγ µ (x) = γ µ (x)dx and define the operator L * µ by (1.6).

Proposition 2.1 The function φ µ belongs to L 1 loc (R N + , ρ -1 dγ µ ). It satisfies R N + φ µ L * µ ζdγ µ (x) = c µ ζ(0) for all ζ ∈ X µ (R N + ), (2.3) 
where

c µ = 1 N √ µ -µ 1 |S N -1 | if µ > µ 1 , 1 2N |S N -1 | if µ = µ 1 (2.4) and X µ (R N + ) = ζ ∈ C c (R N + ) : ρL * µ ζ ∈ L ∞ (R N + ) . Proof. Let ζ ∈ X µ (R N + ), > 0 and set B + = B (0) ∩ R N + , (B + ) c = B c (0) ∩ R N + and Γ + = ∂B (0) ∩ R N + , by direct compute, we have that 0 = (B + ) c ζγ µ L µ φ µ dx = (B + ) c φ µ L * µ ζdγ µ (x) + Γ + - ∂φ µ ∂n ζγ µ + γ µ ∂ζ ∂n + ζ ∂γ µ ∂n φ µ dS = (B + ) c φ µ L * µ ζdγ µ (x) + ζ(0)A( )
and n = --1 x on Γ + , and

A( ) =          -2 √ µ -µ 1 S N -1 + x 2 N dS + O( ) if µ > µ 1 , - S N -1 + x 2 N dS + O( ) if µ = µ 1 , (2.5) 
together with the fact that

S N -1 + x 2 N dS = 1 2N |S N -1 |, which implies (2.3)-(2.4).

The Poisson kernel

In this section we assume that Ω is a bounded C 2 domain included in B 1 (which can always be assumed by scaling) and 0 ∈ ∂Ω. We let σ Ω µ ∈ H µ (Ω) be the unique variational solution of

L µ u = γ Ω µ ρ * in Ω and u = 0 on ∂Ω, (3.1) 
where ρ * (x) = min{ 1 l Ω µ , ρ}. We prove in Appendix that there is c 3 > 1 such that

γ Ω µ ≤ σ Ω µ ≤ c 3 γ Ω µ in Ω. (3.2) Note that σ Ω µ ∈ C 2 (Ω \ {0}
) is a positive classical solution of (3.1) with zero Dirichlet boundary condition on ∂Ω \ {0}, i.e. σ Ω µ = 0 on ∂Ω \ {0}. Moreover,

∂σ Ω µ ∂n < 0 on ∂Ω \ {0}. We set η = σ Ω µ γ Ω µ in Ω, which satisfies L * µ η = 1 ρ in Ω. (3.3)
This function play a key role in the sequel. Clearly, η ∈ C 2 (Ω \ {0}) and 1

≤ η ≤ c 2 in Ω \ {0} by (3.2).
We start with the following identity of commutation valid for all λ ∈ M(∂Ω;

β µ ) and ζ ∈ C 1,1 (Ω) - ∂Ω ∂(ζγ Ω µ ) ∂n dλ = ∂Ω ζd(β Ω µ λ) for all ζ ∈ C 1,1 (Ω), (3.4) 
where β Ω µ is defined in (1.15) with the asymptotic behavior (1.16) near the origin. The following inequality extends the classical Kato inequality to our framework. Lemma 3.1 Assume N ≥ 3 and µ ≥ µ 1 or N = 2 and µ > µ 1 . Then for any f ∈ L 1 (Ω, γ Ω µ dx), h ∈ L 1 (∂Ω, β Ω µ dx), there exists a unique weak solution u to

L µ u = f in Ω, u = h on ∂Ω (3.5)
in the sense that

Ω uL * µ ζdγ Ω µ = Ω f ζdγ Ω µ + ∂Ω hζdβ Ω µ for all ζ ∈ X µ (Ω). (3.6) Furthermore, for any ζ ∈ X µ (Ω), ζ ≥ 0, there holds Ω |u|L * µ ζdγ Ω µ ≤ Ω sgn(u)f ζdγ Ω µ + ∂Ω |h|ζdβ Ω µ (3.7)
and

Ω u + L * µ ζdγ Ω µ ≤ Ω sgn + (u)f ζdγ Ω µ + ∂Ω h + ζdβ Ω µ . (3.8)
Proof. Uniqueness. Assume that u is a weak solution of (3.5) with f = h = 0. Then for any ζ ∈ X µ (Ω) there holds

Ω uL * µ ζdγ Ω µ = 0. Let φ ∈ C ∞ c (Ω)
, and υ ∈ H µ (Ω) be the variational solution of

L µ υ = γ Ω µ ρ φ and u ∈ H µ (Ω). Then υ ∈ C ∞ (Ω), |υ| ≤ φ L ∞ σ Ω µ ;
the equation is satisfied everywhere and in the sense of distributions in Ω. Clearly w := (γ Ω µ ) -1 υ belongs to C ∞ (Ω) and satisfies

L * µ := 1 ρ φ.
Thus,

Ω u ρ φdγ Ω µ = 0.
Since φ is arbitrary, we have that u = 0.

Existence and estimates. We proceed by approximation as in [8, Prop. 2.1]. We assume that

{(f n , h n )} ⊂ C 1 0 (Ω) × C 1 0 (∂Ω \ {0}) is a sequence which converges to (f, h) in L 1 (Ω, γ Ω µ dx) × L 1 (∂Ω, β Ω µ dx). We set V (x) = |x| -2
, denote by K Ω 0 the Poisson potential of -∆ in Ω and consider the approximate problem

L µ w n = f n -µV K Ω 0 [h n ] in Ω, w n = 0 on ∂Ω. (3.9)
Near 0, we have

V K Ω 0 [h n ](x) = O( ρ(x) |x| 2 ), hence, if N ≥ 3, V K Ω 0 [h n ] ∈ L 2 (Ω). If N = 2, the function x → ρ(x)
|x| 2 belongs to the Lorentz space L 2,∞ (Ω) which is the dual of L 2,1 (Ω). Since H µ (Ω) ⊂ L 2,1 (Ω) by (1.7), it follows that H µ (Ω) ⊂ L 2,∞ (Ω). Hence, by Lax-Milgram theorem there exists a unique w n ∈ H µ (Ω) such that (3.9) holds in the variational sense. Then

u n = w n + K Ω 0 [h n ],
which has the same regularity as w n , satisfies

L µ u n = f n in Ω, u n = h n on ∂Ω. (3.10) 
For σ > 0, we set

m σ (t) = |t| -σ 2 if |t| ≥ σ, t 2 2σ if |t| < σ. Then m σ is convex, |m σ (t)| ≤ 1 and m σ (t) → sign 0 (t) as σ ↓ 0. Let ζ ∈ C 1,1 (Ω), ζ ≥ 0. We have that Ω ∇w n , ∇(ζm σ (u n )γ Ω µ ) + µV w n ζm σ (u n )γ Ω µ dx = Ω ζm σ (u n )γ Ω µ f n dx -µ Ω V K Ω 0 [h n ]ζm σ (u n )γ Ω µ dx =: R(σ).
By the fact u n = w n + K Ω 0 [h n ], we have that

R(σ) = Ω ∇u n , ∇(ζm σ (u n )γ Ω µ ) dx - Ω ∇K Ω 0 [h n ], ∇(ζm σ (u n )γ Ω µ ) dx + µ Ω V u n ζm σ (u n )γ Ω µ dx -µ Ω V K Ω 0 [h n ]ζm σ (u n )γ Ω µ dx = Ω |∇u n | 2 m σ (u n )ζγ Ω µ dx + Ω ∇m σ (u n ), ∇(ζγ Ω µ ) dx + µ Ω V u n ζm σ (u n )γ Ω µ dx -µ Ω V K Ω 0 [h n ]ζm σ (u n )γ Ω µ dx ≥ - Ω m σ (u n )∆(ζγ Ω µ )dx + ∂Ω m σ (h n )ζ ∂γ Ω µ ∂n dS + µ Ω V u n ζm σ (u n )γ Ω µ dx -µ Ω V K Ω 0 [h n ]ζm σ (u n )γ Ω µ dx ≥ Ω m σ (u n )L * µ ζdγ Ω µ - ∂Ω m σ (h n )dβ Ω µ + µ Ω V (u n m σ (u n ) -m σ (u n )) γ Ω µ ζdx -µ Ω V K Ω 0 [h n ]ζm σ (u n )γ Ω µ dx,
thus, we obtain that

Ω m σ (u n )L * µ ζdγ Ω µ + µ Ω V u n m σ (u n ) -m σ (u n ) ζdγ Ω µ ≤ Ω ζm σ (u n )f n dγ Ω µ + ∂Ω m σ (h n )ζdβ Ω µ . (3.11) Since m σ is convex, u n m σ (u n ) -m σ (u n ) ≥ 0.
Hence for µ ≥ 0, we can let σ → 0 in (3.11) and obtain (3.7). For µ ∈ [µ 1 , 0), we note that

0 ≤ u n m σ (u n ) -m σ (u n ) ≤ |u n | 2 2σ 2 χ {|un|≤σ} and 0 ≤ Ω V u n m σ (u n ) -m σ (u n ) ζdγ Ω µ ≤ ζ L ∞ 2 {|un|≤σ} |x| -1-N 2 + √ µ-µ 1 dx. (3.12)
Hence if N ≥ 3, or N = 2 and µ > µ 1 = -1, the right-hand side of (3.12) tends to 0 as σ → 0 and then we obtain (3.7). The proof of (3.8) is similar.

Applying estimate (3.7) to u n -u m , we obtain for all ζ ∈ X µ (Ω), ζ ≥ 0,

Ω |u n -u m |L * µ ζdγ Ω µ ≤ Ω |f n -f m |ζdγ Ω µ + ∂Ω |h n -h m |ζdβ Ω µ .
For test function, we take η, the solution of (3.3), then

Ω |u n -u m | ρ dγ Ω µ ≤ Ω |f n -f m |dσ Ω µ + ∂Ω |h n -h m |d(ηβ Ω µ ).
Therefore {u n } is a cauchy sequence in L 1 (Ω, ρ -1 dγ Ω µ ) with limit u. Since u n satisfies (3.10), we let n go to infty in

Ω u n L * µ ζ dγ Ω µ = Ω ζσ Ω µ f n dx + ∂Ω ζβ Ω µ h n dS
and obtain (3.6).

Lemma 3.2 Assume λ ∈ M(∂Ω; β µ ) and ζ ∈ X µ (Ω), then there holds (1.16). By (1.13) we have almost everywhere in Ω,

Ω L * µ ζ - µ |x| 2 ζ K Ω 0 [λ]dγ Ω µ = ∂Ω ζd(β Ω µ λ). Proof. Note that d(β Ω µ λ) is equivalent to d(β µ λ) by
L * µ ζ - µ |x| 2 ζ K Ω 0 [λ]γ Ω µ = L µ (γ Ω µ ζ) - µ |x| 2 γ Ω µ ζ K Ω 0 [λ] = -∆(γ Ω µ ζ)K Ω 0 [λ].
If we assume that λ vanishes in a neighborood of 0 we derive from (3.4)

- Ω ∆(γ Ω µ ζ)K Ω 0 [λ]dx = - ∂Ω ∂(ζγ Ω µ ) ∂n dλ = ∂Ω ζd(β Ω µ λ). Since γ Ω µ L * µ ζ - µ |x| 2 ζ
is bounded, we obtain the result first if λ is nonnegative by considering the sequence {χ B c λ} and letting → 0, and then for any λ = λ + -λ -.

We observe also that the existence of the Green kernel follows from Lax-Milgram theorem which gives the existence of a unique variational solution in H µ (Ω) to

     -∆u + µ |x| 2 u = f in Ω, u = 0 on ∂Ω.
We denote by G Ω µ the Green kernel and by G Ω µ the corresponding Green operator defined by

G Ω µ [f ](x) = Ω G Ω µ (x, y)f (y)dy.

Construction of the Poisson kernel when µ > 0

For the sake of completeness, we recall the construction in [START_REF] Véron | Boundary value problems with measures for elliptic equations with singular potentials[END_REF]. For > 0, we set V (x) = max{ -2 , |x| -2 } and V 0 (x) = V (x) = |x| -2 , and if λ ∈ M(∂Ω), let u be the solution of

-∆u + µV u = 0 in Ω, u = λ on ∂Ω. Then u (x) = ∂Ω K Ω µ, (x, y)dλ(y) = K Ω µ, [λ].
We obtain by the maximum principle,

K Ω µ, ≤ K Ω µ , ≤ K Ω 0 for all µ ≥ µ ≥ 0 and ≥ > 0,
where K Ω is the usual Poisson kernel in Ω and there exists

K Ω µ (x, y) = lim →0 K Ω µ, (x, y) for all (x, y) ∈ Ω × ∂Ω.
Therefore we infer, firstly by monotone convergence if λ ≥ 0, and then for any λ ∈ M(∂Ω), that lim

→0 u (x) = u(x) = ∂Ω K Ω µ (x, y)dλ(y) for all x ∈ Ω. (3.13)
Since V is finite in B c ∩ Ω, for any x ∈ Ω, K Ω µ (x, y) > 0 for all y ∈ ∂Ω \ {0}. Letting G Ω 0 be the Green kernel in Ω, there holds

u (x) + µ Ω G Ω 0 (x, y)V (y)u (y)dy = ∂Ω K Ω 0 (x, y)dλ(y).
If λ ≥ 0, we have by Fatou's lemma, Since the function u + µG Ω 0 [V u] is nonnegative and harmonic in Ω, it admits a boundary trace which is a nonnegative Radon measure λ * and there holds

u(x) + µ Ω G Ω 0 (x, y)V (y)u(y)dy = ∂Ω K Ω 0 (x, y)dλ * (y) for all x ∈ Ω. (3.15)
Because of (3.14), we have that 0 ≤ λ * ≤ λ and the measure λ * is the reduced measure associated to λ. Since (3.15) is equivalent to

u(x) = ∂Ω K Ω µ (x, y)dλ * (y), there holds ∂Ω K Ω µ (x, y)d(λ -λ * )(y) = 0.
This implies that λ = λ * in ∂Ω \ {0}. With the notations of [START_REF] Véron | Boundary value problems with measures for elliptic equations with singular potentials[END_REF], we recall that

Sing V (Ω) := y ∈ ∂Ω : ∃x 0 ∈ Ω s.t. K Ω µ (x 0 , y) = 0 ⊂ Z V := y ∈ ∂Ω : Ω K Ω 0 (x, y)V (x)ρ(x)dx = ∞ .
Actually, if y ∈ Sing V (Ω), K Ω µ (x 0 , y) = 0 for any x 0 ∈ Ω by Harnack inequality. Clearly 0 ∈ Z V and if y = 0 the integral term in the definition of Z V is finite. Hence Sing V (Ω) ⊂ Z V = {0}. Since for any truncated cone C 0,δ Ω with vertex 0, there holds

C 0,δ V (x) dx |x -y| N -2 = ∞,
it follows by Ancona's result [18, Theorem A1] that 0 ∈ Sing V (Ω). Finally K Ω µ (x, 0) = 0 for all x ∈ Ω.

Construction of the Poisson kernel when µ 1 ≤ µ < 0

For > 0 and λ ∈ C(∂Ω), λ ≥ 0 we denote by w = w ,λ the variational solution in H µ (Ω) of

-∆w + µV w = -µV K Ω 0 [λ]
in Ω, w = 0 on ∂Ω.

Then w ,λ ≥ 0 and u = u ,λ := w + K Ω 0 [λ] satisfies

-∆u + µV u = 0 in Ω, u = λ on ∂Ω. (3.16) 
Since -∆u ,λ + µV u ,λ ≤ 0, there holds from Lemma 3.1

Ω u ,λ L * µ ζdγ Ω µ ≤ ∂Ω λζdβ Ω µ for ζ ∈ X µ (Ω), ζ ≥ 0 and in particular Ω u ,λ ρ dγ Ω µ ≤ ∂Ω λd(ηβ Ω µ ). (3.17)
If > > 0 and λ > λ > 0 we have

- ∆u ,λ u ,λ + ∆u ,λ u ,λ = µ (V -V ) ≤ 0. Since Ω - ∆u ,λ u ,λ + ∆u ,λ u ,λ (u 2 ,λ -u 2 ,λ ) + dx = {u ,λ ≥u ,λ } ∇u ,λ - u ,λ u ,λ ∇u ,λ 2 + ∇u ,λ - u ,λ u ,λ ∇u ,λ 2 dx,
we deduce that the function x → u ,λ u ,λ (x) is constant on the set {x : u ,λ (x) > u ,λ (x)}. If this set is non-empty we get a contradiction since it is strictly included in Ω. Therefore the mapping ( , λ) → u ,λ is decreasing in and increasing in λ.

Next we can assume that λ ∈ M + (∂Ω) vanishes in B δ ∩ ∂Ω and that {λ n } ⊂ C(∂Ω) is a sequence of functions which converge to λ in the weak sense of measures. We denote by u ,λn the solution of (3.16) with λ replaced by λ n . Since µ < 0,

α + < 1, ρ -1 γ Ω µ ∼ |x| α + -1 ≥ R α + -1 ω , where R ω = max{|z| : z ∈ Ω}. Hence Ω u ,λn dx ≤ c 8 ∂Ω λ n d(ηβ Ω µ ) ≤ c 9 λ M(∂Ω) .
Hence u ,λn and V u ,λn are uniformly bounded in L 1 (Ω). From standard regularity estimates the sequence {u ,λn } n∈N is bounded in the Lorentz spaces L N N -1 ,∞ (Ω) and weakly relatively compact in L 1 (Ω) (see e.g. [START_REF] Gmira | Boundary singularities of solutions of nonlinear elliptic equations[END_REF]). This implies that, up to a subsequence, u ,λn converges in L 1 (Ω) and a.e. in Ω to a weak solution u ,λ of

-∆u + µV u = 0 in Ω, u = λ on ∂Ω,
that is a function which satisfies Furthermore (3.17) holds (with the same notation). For test function ζ in (3.18), we take ζ = θ 1 be the solution of

-∆θ 1 = 1 in Ω, θ 1 = 0 on ∂Ω. Then Ω u ,λ dx = -µ Ω V u ,λ θ 1 dx - ∂Ω ∂θ 1 ∂n dλ.
By the monotone convergence theorem we obtain that V u ,λ → V u λ in L 1 (Ω, θ 1 dx) by letting → 0 and

Ω u λ dx = -µ Ω V u λ θ 1 dx - ∂Ω ∂θ 1 ∂n dλ.
Hence

Ω (-∆ζ + µV ζ) u λ dx = - ∂Ω ∂ζ ∂n dλ for all ζ ∈ C 1,1 0 (Ω).
We also have

Ω u ,λn L * µ ζdγ Ω µ = µ Ω (V -V )u ,λn ζdγ Ω µ + ∂Ω ζλ n dβ Ω µ for all ζ ∈ X µ (Ω).

Classification of Boundary isolated singularities

We characterize the positive solutions of L µ u = 0 which vanish on ∂Ω \ {0}. (ii) µ ≥ µ 1 and a > -α -there exist τ > a + α -depending on a and µ, and c 14 ≥ 0 such that u(x) ≤ c 14 |x| -a-1+τ ρ(x) for all x ∈ Ω \ {0}.

Proof.

Step 1. Straightening the boundary. We define the function Θ = (Θ 1 , ..., Θ N ) on D R by y j = Θ j (x) = x j if 1 ≤ j ≤ N -1 and y N = Θ N (x) = x N -θ(x ). Since DΘ(0) = Id we can assume that Θ is a diffeomorphism from D R onto Θ(D R ). We set

u(x) = ũ(y) for all x ∈ D + R = B R × [0, R). (4.3)
Then u x j x j = ũy j y j -2θ x j ũy j y N -θ x j ,x j ũy N + θ 2

x j ũy N y N for 1 ≤ j ≤ N -1, u x N x N = ũy N y N (4.4) and ∆ũ + |∇θ| 2 ũy N y N -2 ∇θ, ∇ũ y N -ũy N ∆θ - µ |Θ -1 (y)| 2 ũ = 0. (4.5)
We use here the spherical coordinates (r, σ) in the variable y and we recall that ∆ is the Laplace-Beltrami operator on S N -1 and ∇ is the tangential gradient on S N -1 identified with the covariant derivative via the isometric imbedding S N -1 ⊂ > R N which enables the formula

∇ũ(y) = ũr n + 1 r ∇ ũ (r, σ) with n = |y| -1 y.
After a lengthy computation the details of which can be found in [12, p 298-300] we obtain

r 2 ũrr 1 -2θ r n, e N + |∇θ| 2 ( n, e N ) 2 +rũ r N -1 -r n, e N ∆θ + r|∇θ| 2 ( ∇ ( n, e N ), e N -2 ∇ θ, ∇ ( n, e N ) ) + ∇ ũ, e N -r∆θ + 2θ r -|∇θ| 2 n, e N + r ∇ ũr , e N 2θ r + 2|∇θ| 2 n, e N -2 ∇ ũ, ∇ θ n, e N + ∇ ( ∇ ũ, e N ), |∇θ| 2 e N -2r -1 ∇ θ + ∆ ũ - µ |Θ -1 (y)| 2 = 0.
Next we set ũ(r, σ) = r -a v(t, σ) with t = ln r, and we assume that

a = N -2 2 . (4.6) 
We notice that

r 2 = N j=1 y 2 j = N -1 j=1 x 2 j + (x N -θ(x )) 2 = |x 2 | -2x N θ(x ) = |x| 2 (1 + O(r)) as r → 0 = |x| 2 (1 + O(e t )) as t → -∞.
By a straightforward computation we find that v satisfies the following asymptotically autonomous equation in (-∞, r 0 ] × S N -1

+ (1 + 1 (t, •))v tt + (N -2 -2a + 2 (t, •)) v t + (a(a + 2 -N ) -µ + 3 (t, •)) v + ∆ v + ∇ v, 4 (t, •) + ∇ v t , 5 (t, •) + ∇ ( ∇ v, e N ), 6 (t, •) = 0, (4.7) 
where the j satisfies

| j (t, •)| + |∂ t j (t, •)| + |∇ j (t, •)| ≤ c 15 e t . (4.8) 
This is due to the fact that |θ(x

)| = O(|x | 2 ) near 0.
Step 2. The convergence process. Since v is bounded in (-∞, r 0 ] × S N -1 + and vanishes on (-∞, r 0 ] × ∂S N -1 + and all the coefficients are continuous functions, we obtain that v is bounded in

W 2,q ([T -1, T + 1] × S N -1 + ) independently of T ≤ r 0 -2, for any q < ∞. Hence v is bounded in any C 1,τ ([T -1, T + 1] × S N -1 +
) for any τ ∈ [0, 1). Differentiating the equation and using the standard elliptic equations regularity, we obtain that v is bounded in

W 3,q ([T -1, T + 1] × S N -1 + ) and in C 2,τ ([T -1, T + 1] × S N -1 + ). We consider the negative trajectory of v in C 1 0 (S N -1 + ) defined by T -(v) = t≤r 0 -1 {v(t, .)}.
By the previous estimates and the Arzela-Ascoli theorem, it is a relatively compact subset of C 1 0 (S N -1 + ), hence its limit set at -∞ (or alpha-limit set), denoting

A(T -(v)), is a non-empty connected compact subset of C 1 0 (S N -1 +
). Multiplying (4.7) by v t and integrating on S N -1

+ yields S N -1 + N -2 -2a + 2 - 1 2 ∂ t 1 v 2 t dS - 1 2 S N -1 + ∂ t 3 v 2 dS = d dt S N -1 + 1 2 |∇v| 2 - 1 2 [a(a + 2 -N ) -µ + 3 ] v 2 - 1 2 (1 + 1 )v 2 t dS - S N -1 + ( ∇ v, 4 + ∇ v t , 5 + ∇ ( ∇ v, e N ), 6 ) v 2 t dS. (4.9) 
Next we integrate over (-∞, r 2 ) for some r 2 large enough so that

N -2 -2a + 2 - 1 2 ∂ t 1 ≥ 1 2 |N -2 -2a| > 0,
here we use the crucial assumption (4.6). Since all the terms on the right-hand side of (4.9) are integrable on (-∞, r 2 ) because of (4.8) and the bounds on v, we obtain that

r 2 -∞ S N -1 + v 2 t dS < ∞. (4.10) 
Differentiating (4.7) with respect to t and using the estimates on v and the j we obtain (see [12, p. 302] for a similar calculation)

r 2 -∞ S N -1 + v 2 tt dS < ∞. (4.11) 
Because v t and v tt are uniformly continuous on (-∞, r 1 ], we infer from (4.10) and (4.11) Step 3. The case a(a

lim t→-∞ v t (t, •) L 2 (S N -1 + ) + v tt (t, •) L 2 (S N -1 + ) = 0.
+ 2 -N ) -µ = N -1. The set A(T -(v)) is a subset of ker(-∆ -(N -1))I d in H 1 0 (S N -1 +
) and more precisely A(T -(v)) = {mψ 1 : m ∈ I * } where I * is a compact interval of [0, ∞). We set

X(t) = S N -1 + v(t, •)ψ 1 dS. Then X satisfies that X (t) + (N -2 -2a)X (t) + F (t) = 0, (4.12) 
where

F (t) = S N -1 + 1 (t, •)v tt + 2 (t, •)v t + 3 (t, •)v + ∇ v, 4 (t, •) + ∇ v t , 5 (t, •) + ∇ ( ∇ v, e N ), 6 (t, •) ] ψ 1 dS.
Then |F (t)| ≤ c 16 e t . We consider a sequence {t n } converging to -∞ and c * ∈ I * such that X(t n ) → c * . Since X (t) and X (t) converges to 0 as t → -∞, we integrate (4.12) on (t n , t) and let n → ∞. Then we get

X (t) + (N -2 -2a)(X(t) -c * ) + O(e t ) = 0.
Letting t → -∞ yields X(t) → c * . Hence we have proved that

lim t→-∞ v(t, •) = c * ψ 1 in C 1 (S N -1 +
).

Step 4. The case a(a

+ 2 -N ) -µ = N -1. Clearly A(T -(v)) = {0} and lim t→-∞ v(t, •) = 0 in C 1 (S N -1 + ). (4.13)
Furthermore, since we have assumed a ≥ -α -, there holds actually a > -α -. We recall that λ k is the k-th eigenvalue of -∆ in H 1 0 (S N -1

+

) and put

H k = ker(-∆ -λ k Id) = span ϕ k,1 , ϕ k,2 , ..., ϕ k,j k and H 1 0 (S N -1 + ) = ∞ ⊕ k=1 H k .
We denote

P k (x) = x 2 + (N -2)x -µ -λ k .
Then P 1 (α -) = 0 and

P k (α -) = λ 1 -λ k < 0 for k ≥ 2. Since a(a + 2 -N ) -µ = N -1
by assumption, we define a partition of N * by setting

N 1 := {k ∈ N * : a(a + 2 -N ) -µ -λ k ≥ 0}, N 2 := {k ∈ N * : a(a + 2 -N ) -µ -λ k < 0} and W 1 = ⊕ k∈N 1 H k and W 2 = ⊕ k∈N 2 H k .
Then -

S N -1 + ϕ∆ ϕdS ≥ γ S N -1 + ϕ 2 dS for all ϕ ∈ W 2 , (4.14) 
where

γ = µ + λ k 2 -a(a + 2 -N ) > 0 with k 2 = inf N 2 .
We denote by P j the orthognal projector onto W j in H 1 0 (S N -1

+ ) and set v = P 1 v + P 2 v = v 1 + v 2 . Then the projection of (4.7) on to W 2 is (v 2 ) tt + (N -2 -2a) (v 2 ) t + (a(a + 2 -N ) -µ) v 2 + ∆ v 2 = F 2 (t, .),
where F 2 satisfies the same estimates (4.8) as j . Then, using (4.8) and (4.14)

S N -1 + (v 2 ) tt v 2 dS + (N -2 -2a) S N -1 + (v 2 ) t v 2 dS -γ S N -1 + v 2 2 dS ≥ -c 17 e t S N -1 + v 2 2 dS 1 2 . Put Y (t) = v 2 (t, .) L 2 (S N -1 +
) , because

S N -1 + (v 2 ) t v 2 dS = Y (t)Y (t) and S N -1 + (v 2 ) tt v 2 dS ≥ Y (t)Y (t),
we obtain the following differential inequality

Y + (N -2 -2a)Y -γY ≥ -c 17 e t in D (-∞, r 2 ).
The characteristic roots of the equation y + (N -2 -2a)y -γy = 0 are

a k 2 ,-= a + 1 2 2 -N -4µ + 4λ k 2 + (N -2) 2 = α k 2 ,-+ a < 0 and a k 2 ,+ = a + 1 2 2 -N + 4µ + 4λ k 2 + (N -2) 2 = α k 2 ,+ + a > 0, (4.15) 
where the α k 2 ,± are the roots of equations (2.1) with k = k 2 . The solutions of

z + (N -2 -2a)z -γz = -c 17 e t in D (-∞, r 2 ).
endow the form z(t) = Ae ta k 2 ,-+ Be ta k 2 ,+ + c 18 e t if a k 2 ,+ = 1 or z(t) = Ae ta k 2 ,-+ Be t + Cte t if a k 2 ,+ = 1, for some explicit constant c 18 depending on c 17 and the coefficients in the equation. Since Y (t) → 0 when t → -∞ by (4.13), it follows from the maximum principle that

Y (t) ≤ c 19 e ta k 2 + + c 18 e t if a k 2 + = 1, or Y (t) ≤ c 20 |t|e t if a k 2 + = 1 for t ≤ r 2 .
Then using standard elliptic equations a priori estimates, initialy in L 2 (S N -1

+ ), then in L p (S N -1 + )
and finally in C τ (S N -1

+

), we obtain that for t ≤ r 3 ,

v 2 (t, •) C 1 (S N -1 + ) ≤ c 21 e ta k 2 ,+ + c 22 e t if a k 2 ,+ = 1, c 23 |t|e t if a k 2 ,+ = 1, (4.16) 
where r 3 ≤ r 2 -1.

For the components in W 1 we have

v 1 (t, •) = k∈N 1 1≤j≤j k w k,j (t)ϕ k,j (•), (4.17) 
where the ϕ k,j form an orthoromal basis of H k . Then

w k,j + (N -2 -2a)w k,j + (a(a + 2 -N ) -µ -λ k ) w k,j = F k,j (t). ( 4 

.18)

The characteristic roots of equation z

+ (N -2 -2a)z + (a(a + 2 -N ) -µ -λ k ) z = 0 are
given in (4.15) with a general k, a k -= a + α k -and a k + = a + α k + where α k ± are the roots of (2.1). They have same sign (including 0) since a(a + 2 -N ) -µ -λ k ≥ 0, furthermore, their sum is positive since N -2 -2a < 0, as a consequence of a > -α -. By standard calculation the solution of (4.18) has the form

w k,j (t) = m 1 e ta k + + m 2 e ta k -- 0 t e (t-s)a k + -e (t-s)a k - a k + -a k - F k,j (s)ds. ( 4 

.19)

Since |F k,j (s)| ≤ c 24 e s there holds

0 t e (t-s)a k + -e (t-s)a k - a k + -a k - F k,j (s)ds ≤ c 25 |t|e t if a k -= 1 max{e t , e ta k -} if a k -= 1 (4.20) In particular, if k 1 = max N 1 , then a k 1 ± = min{a k ± : k ∈ N 1 }.
We assume first that a k 1 -> 0. Combining this fact with (4.17) and (4.20) we obtain

v 1 (t, .) L ∞ (S N -1 + ) ≤ c 26 |t|e t if a k 1 -= 1 max{e t , e ta k 1 -} if a k 1 -= 1 (4.21)
Furthermore, because of the explicit formulation and (4.8), the left-hand side of (4.20) can be replaced by v 1 (t, •)

C 1 (S N -1 + )
. Combining (4.16) and (4.20) we obtain the result since v(t,

•) = 0 on (-∞, r 1 ) × ∂S N -1 + . Next we suppose that a k 1 -= 0. Then for k = k 1 , (4.19) endows the form w k 1 ,j (t) = m 1 e ta k 1 + + m 2 - 1 a k 1 + 0 t (e (t-s)a k 1 + -1)F k 1 ,j (s)ds. ( 4 

.22)

This implies that

w k 1 ,j (t) → m 2 + 1 a k 1 + 0 -∞ F k 1 ,j (s)ds := A k 1 ,j as t → ∞. If A k 1 ,j = 0 it would imply that j k j=1 A k 1 ,j ϕ k 1 ,j is a nonzero eigenfunction of order k 1 > 1, hence
it changes sign and it would imply that v changes sign at -∞ (notice that all the other terms w k,j (t) tends to 0 exponentially because of (4.19)-(4.20)). Hence A k 1 ,j = 0 and (4.22) endows the form

w k 1 ,j (t) = m 1 e ta k 1 ,+ - 1 a k + 0 t e (t-s)a k,+ F k 1 ,j (s)ds - t -∞ F k 1 ,j (s)ds. Because t -∞ F k 1 ,j (s)ds = O(e t ) as t → ∞,
we conclude that for k = k 1 , there holds

|w k 1 ,j (t)| ≤ c 27 |t|e t if a k 1 ,+ = 1, max{e t , e ta k 1 ,+ } if a k 1 ,+ = 1
and finally we infer (4.21), which complete the proof. This implies that u satisfies u(x) ≤ c 29 |x| α k 1 ,-+ |x| 1-a ρ(x).

We iterate this procedure up to obtain u(x) ≤ c 30 |x| α -ρ(x)

and we conclude as in the proof of Proposition 4.2, Step 3.

Case 2: µ = µ 1 . In this case, the difficulty comes from the fact that there is no dissipation of energy in (4.9) for a = -α -= N -2 2 . But from the above iterative procedure in the Case 1, we could obtain could obtain that for some δ ∈ (0, 1),

u(x) ≤ c 31 |x| -N -2
2 -δ ρ(x).

We finally show that there exists c 32 ≥ 0 such that where This implies that X (t) admits a limit c 37 ≤ 0 when t → -∞ and lim t→-∞ 

F (t) = S N -1 + 1 v tt + 2 v t + 3 v + ∇ v

  y)V (y)u(y)dy ≤ lim inf →0 Ω G Ω 0 (x, y)V (y)u (y)dy. (3.14) Combined with (3.13) it yields u(x) + µ Ω G Ω 0 (x, y)V (y)u(y)dy ≤ ∂Ω K Ω 0 (x, y)dλ(y) for all x ∈ Ω.

Ω(

  -u ,λ ∆ζ + µV u ,λ ζ) dx = -

Lemma 4 . 1 Proposition 4 . 2

 4142 Let µ ≥ µ 1 and u ∈ C 2 (Ω \ {0}) be a positive solution of L µ u = 0 in Ω vanishing on ∂Ω \ {0}. Then there exist a > 0 and c 12 > 0 such thatu(x) ≤ c 12 |x| -a-1 ρ(x)for all x ∈ Ω \ {0}. (4.1) Proof. This is a direct consequence of Boundary Harnack inequality [3, Th. 2.7]. Assume that µ ≥ µ 1 and u ∈ C 2 (Ω \ {0}) is a positive solution of L µ u = 0, vanishing on ∂Ω \ {0} satisfying (4.1) with a ≥ -α -. Then the following convergences hold in C 1 (S N -1 + ): (i) If µ > µ 1 and a = -α -, there exists c 13 ≥ 0 such that lim r→0 u(r, •) r α -= c 13 ψ 1 as r → 0. (4.2)

  Therefore the set A(T -(v)) is a compact connected subset of the set of nonnegative solutions of ∆ ω + (a(a + 2 -N ) -µ) ω = 0 in S N -1

C 1 (S N - 1 +)≤

 11 Proof of Theorem A. Assume that u ∈ C 2 (Ω \ {0}) is a positive solution of L µ u = 0 vanishing on ∂Ω \ {0}.Case 1: µ > µ 1 . We claim (4.2) holds for some c 13 ≥ 0. By Lemma 4.1, (4.1) holds for some a > 0. If a < -α -, then (4.2) holds with c 13 = 0. If a = -α -, then (4.2) holds by Proposition 4.2-(i). Hence we are left with the case a > -α -. As in the proof of Proposition 4.2 we define k 1 and k 2 . By replacing a by a = a + , we can assume that a k 2 ,+ = 1 and a k 1 ,-= 1, to avoid the resonance complication in (4.16) and (4.21), hencev(t, •) C 1 (S N -1 + ) ≤ c 27 e ta k 2 ,+ + e ta k 1 ,-+ e t .Furthermore k 2 = k 1 + 1 anda k 2 + -a k 1 -= 1 2 4µ + 4λ k 1 +1 + (N -2) 2 + 4µ + 4λ k 1 + (N -2) 2 > 0,which yields v(t, •) c 28 e ta k 1 ,-+ e t .

.

  Note that (4.7) reduces that

( 1 + 1 + 1 +

 111 1 (t))v tt + 2 (t)v t + (N -1 + 3 (t))v + ∆ v + ∇ v, 4 (t, .) + ∇ v t , 5 (t, .) + ∇ ( ∇ v, e N ), 6 (t, .) = 0, in (-∞, r 0 ) × S N -, vanishes on (-∞, r 0 ) × ∂S N -and the j verify (4.8), andv(t, σ) ≤ c 33 e -δt .Since the operator involved in the equation is uniformly elliptic we have by standard regularity theoryv C 2,δ ([T -1,T +1]×S N -1 + ) + v t C 1,δ ([T -1,T +1]×S N -1 + ) + v tt C δ ([T -1,T +1]×S N -1 + ) ≤ c 34 v L ∞ ((T -2,T +2)×S N -1 + ≤ c 35 e -δT ,for any T ≤ r 0 + 3. We setX(t) = S N -1 + v(t, •)ψ 1 dS,thenX (t) + F (t) = 0, (4.25)

t - 1 1 +)C 1 (S N - 1 +)+ v 2 t 1 +.

 111121 X(t) = c 37 . Set W 2 = ⊕ k≥2 ker(∆ + λ k Id),and denote by v 2 the orthogonal projection of v onto W 2 . Thenv 2 tt + (N -1)v 2 + ∆ v 2 = F 2 (t, •),(4.27)where|F 2 (t, •)| ≤ c 38 e (1-δ)t . Since λ 2 = 2N , the function Y (t) = v 2 (t, •) L 2 (S N -satisfies in D (-∞, r 1 ) Y -(N + 1)Y ≥ -c 38 e (1-δ)t . Because Y (t) = o(e - √ N +1t ) when t → -∞, it follows by the maximum principle that Y (t) = O(e √ N +1t + e (1-δ)t ) = O(e (1-δ)t). Using again the standard regularity estimates for elliptic equations, we derivev 2 (t, •) (t, •) C(S N -1 + ) ≤ c 39 e (1-δ)t . (4.28) Combining (4.25) and (4.27) we derive (4.23). Since v(t, •) = X(t)ψ 1 + v 2 (t, •) it follows from (4.28) that lim t→-∞ v t (t, •) = c 37 ψ 1 uniformly in S N -Thus, the indentity u r (r, •) = r -N 2 2-N 2 v(t, •) + v t (t, •) implies (4.23) and (4.24).

  , 4 (t, •) + ∇ v t , 5 (t, •) + ∇ ( ∇ v, e N ), 6 (t, •) ψ 1 dS.

	Hence	
	|F (t)| ≤ c 36 e (1-δ)t .	(4.26)
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Since u ,λn converges in L 1 (Ω) we obtain if ζ ≥ 0,

by using the fact that µ(V -V ) ≤ 0. When → 0, u ,λ increases and converges to some u λ in L 1 (Ω, ρ -1 dγ Ω µ ), which satisfies

For δ > 0 denote by ζ δ the solution of

where Ω δ = {x ∈ Ω : ρ(x) > δ}.

As 

Because |x| -2 u ,λ |ζ δ | ≤ c 11 ρ -1 u ,λ and u ,λ → u λ in L 1 (Ω, ρ -1 dγ Ω µ ), we derive that lim

Letting δ → 0 we obtain by monotonicity

Finally, if λ ∈ M + (∂Ω, β µ ) we replace it by λ δ = χ B c δ λ and denote by u λ δ the weak solution of -∆u + µV u = 0 in Ω, u = λ δ on ∂Ω.

The mapping δ → u λ δ is monotone. Hence, by the monotone convergence theorem u λ δ increases and converges to some u λ in L 1 (Ω, ρ -1 dγ Ω µ ) and clearly u λ satisfies (3.19) for all ζ ∈ X µ (Ω).

The singular kernel

In this section we construct the singular kernel φ Ω µ and prove that it satisfies estimates (1.11)-(1.12) and it is associated to Dirac mass at 0. Up to a rotation we can assume that the inward normal direction to ∂Ω at 0 is e N = (0 , 1) ∈ R N -1 × R. Hence the tangent hyperplane to ∂Ω at 0 is

Existence and uniqueness

Proof of Theorem B. We recall that Ω satisfies the condition (C-1) and ∂R N

+ is tangent to ∂Ω at 0. Let u be the solution of

where

There exists φ Ω µ = lim →0 u and φ Ω µ is a nonnegative solution of L µ u = 0 in Ω which vanishes on ∂Ω \ {0} and is smaller than φ µ . Therefore, lim sup

Using (4.29) and (4.30), we obtain

We take ζ = 1, hence L * µ ζ = Ω µ and we get

in the case µ > µ 1 , and

Therefore, by dominated convergence theorem, we conclude that

(4.32)

We infer that the function φ Ω µ is nonzero. It is a positive solution of L µ φ Ω µ = 0 in Ω which vanishes on ∂Ω \ {0}. It follows from Theorem A that there exists k ∈ [0, 1] by (4.31) such that

Next we show that k = 1. In fact, if k < 1, there exists 0 > 0 such that for any ∈ (0, 0 ),

and then lim

which contradicts (4.32). Thus, (1.11) and (1.12) hold true.

Proof of Corollary C. Identity (1.14). As a consequence of Proposition 4.2, for any ζ ∈ X µ (Ω) and > 0, we set Ω = Ω ∩ B c and then there holds

Using Proposition A.1, we have that

where A( ) is defined in (2.5).

The uniqueness follows direct from Kato's inequality (3.7).

The Dirichlet problem

Proof of Theorem D. Note that in Section 3.2 for λ ∈ M(∂Ω; β µ ), problem

has a unique solution, denoting K Ω µ (λ), which verifies the indentity

Moreover, problem

Together with Corollary C and the linearity of operator L µ , we have that

is a weak solution of (1.18) satisfying (1.20) and the uniqueness follows directly from Kato's inequality (3.7).

Our final part is to classify the boundary data for nonnegative L µ -harmonic function.

Proof of Theorem E. Let Ω be a bounded C 2 domain and u be a nonnegative L µ -harmonic function in Ω. We now show that there exists a nonnegative measure λ on ∂Ω \ {0} and k ≥ 0 such that

For > 0, the term µ|x| -2 is bounded in Ω = Ω ∩ B c . Hence the exists a nonnegative Radon measure λ such that u is the unique solution of

Furthermore λ is the boundary trace is achieved in dynamical sense, see [START_REF] Marcus | Nonlinear Second Order Elliptic Equations Involving Measures[END_REF] and references therein. Hence for any ζ ∈ C(Ω) vanishing on B , there holds

where

it proves that for 0 < < , λ ∂Ω∩B c = λ ∂Ω∩B c . This defines in a unique way a nonnegative Radon λ on ∂Ω \ {0} measure such that (5.1) holds for all ζ ∈ X µ (Ω) vanishing near 0. Furthermore ρu ∈ L 1 (Ω ) for any > 0. Denote by K Ω µ the Poisson potential of L µ in Ω . Then

Next we aim to characterize the behaviour at 0. By contradiction, we assume that lim sup

Then for any m > 0, there exists a sequence { m,k } ⊂ R * + tending to 0 and a sequence

and we recall that

where c µ is the constant defined in (2.4). Combining the boundary Harnack inequality with the standard Harnack inequality, one infers

Assume for a while that we have proved that there exists θ > 0, independent of m and k such that for for any

If we assume that for δ ≤ 2 k 0 ,

and ũm,k (x) ≥ c 47 ũm,k (y),

we derive 1 c 47 tildeu m,k (x)

, and c 48 > 0 is independent of m and k . This implies by the maximum principle and letting

Since m is arbitrary we obtain a contradiction. Hence there holds lim sup

Then inequality (5.5) holds without truncation with m replaced by m u . We recall that

Case 1: We first assume that m u > 0. Then (5.4) combined with the maximum principle yields

with w = ρ -1 w . Inequality (5.3) is replaced by

(5.8)

Therefore, for k small enough and |x| = 2 k , ẇ (x)

which implies 

Next we obtain the estimate from below. From (5.8), with |x| = 2 k , w k (x)

(5.12)

From (5.7), (5.12) and (5.11) we infer

This implies, by letting k → 0,

Therefore, the function u -K Ω µ [λ] is L µ -harmonic and positive in Ω and it vanishes on ∂Ω. By Corollary C, it implies that it coincides with cφ Ω µ for some c ≥ 0 (and in that case

Case 2: Assume m u = 0. Following the same inequalities as in Case 1, (5.9) is replaced by: for any δ > 0 there exists k 0 > 0 such that for k ≥ k 0 ,

Hence (5.13) is transformed into

Letting successively k → 0 and δ → 0 yields u -K Ω µ [λ] = 0 in Ω, which ends the proof.

Appendix: Estimates (1.9) and (3.2)

Assume Ω is a bounded C 2 domain such that 0 ∈ ∂Ω satisfying condition (C-1) and let γ Ω µ be defined by (1.8) and normalized by γ Ω µ L 2 (Ω) = 1. Then

and

Therefore (γ Ω µ -mw) + ≤ 0, which implies that 0 < γ Ω µ (x) ≤ m|x| α + for all x ∈ Ω.

Then we proceed as in the proof of Proposition 4.2. We flatten the boundary near 0 and set

where the function γΩ µ is defined similarly as ũ in (4.3). Then v is bounded in (-∞, T 0 ] × S N -1 + and it satisfies

+ and then j satisfies again (4.8).

Case 1: µ > µ 1 . The energy method used in proof of Proposition 4.2 applies with no modification and we infer that there exists c 51 ≥ 0 such that

) and v t (t, .) → 0 uniformly in S N -1 + . If c 51 = 0, we can prove, as in Proposition 4.2-(ii) that there exists τ > 0 such that γ Ω µ (x) ≤ c 52 |x| α + +τ for all x ∈ Ω. (5.14) Iterating this process, we infer that (5.14) holds for any τ > 0. For k > 1, let α k,+ be the positive root of (2.1) and put

) for any x ∈ Ω. Hence γ Ω µ = 0, which is a contradiction. Finally it implies that c 51 > 0, which yields (1.9)-(i). Because the convergence holds in C 1 (S N -1

+

) and v t (t, .) → 0, we infer

where e = x |x| . This implies the claim.

) with t = ln r and X(t) =

)ψ 1 dS and obtain again (4.25), where F (t, .) satisfies (4.26). Since X t) → 0 and X is bounded, it follows that X(t) admits a limit c 52 ≥ 0 when t → -∞. As in the proof of Theorem A, we infer that

If c 52 = 0 we derive a contradiction as in the first case.

Proof of (3.2). Since ρ * ≤ 1

In fact, we only have to show this inequality holds in a neighborhood of the origin.

Case 1: the boundary is flat at the origin. We first prove above inequality when Ω is flat in a neighborhood of the origin, i.e. B R × [0, R) ⊂ Ω ⊂ R N + for some R > 0. For τ ∈ R, denote

and direct calculation shows that

When α + ≥ 0, we have that µ -(α + -1)(α + -1 + N ) = 0 and

By comparison principle, we have that

which, together with the inequality u ≤ 2t

The remaining of the proof is similar to the previous one and we omit it.

Case 2: the boundary is not flat at the origin.

We define the function Θ

Then by (4.4) and (4.5), we have that

Then by resetting R > 0 small and the calculation in Case 1, we have that

By Hopf's Lemma, there exists t 2 > 0 such that t

and by compactness of Θ -1 (B R × {R}), there exists t 3 > 0 such that t 3 u 1 ≥ σ Ω µ on Θ -1 (B R × {R}). Applying comparison principle, for some t 4 ≥ max{t 2 , t 3 }, we have that

and we have σ Ω µ ≤ c 2 γ Ω µ near the orgin. (5.16)

Proof. We follow the proof of Proposition A. instead of (4.7), where the function m is bounded as well as its gradient. Then v satisfies the same bounds as the ones in the proof of Proposition 4.2. The only difference is that the energy estimate (4.9) is replaced by