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Schrodinger operators with Leray-Hardy potential
singular on the boundary

Huyuan Chen*

Laurent Véron T

Abstract

We study the kernel function of the operator u — L,u = —Au + #u in a bounded

smooth domain Q C Rf such that 0 € 09, where p > —NTZ) is a constant. We show the

existence of a Poisson kernel vanishing at 0 and a singular kernel with a singularity at 0. We
prove the existence and uniqueness of weak solutions of £,u = 0 in €2 with boundary data
v + kdy, where v is a Radon measure on 092\ {0}, & € R and show that this boundary data
corresponds in a unique way to the boundary trace of positive solution of £,u = 0 in €.
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1 Introduction

We denote by £,, the Schrédinger operator defined in a domain 2 C RN by

7
Lyu:=—Au+ WU,
where p is a real constant and N > 2. This operator which is associated to the Hardy inequality
has been thoroughly studied in the last thirty years. When the singular point 0 belongs to €2, it

appears a critical value
N —2)\?
ILLO = - T

and the range of the p in which the operator is bounded from below is [, 00). This is linked
to the Hardy inequality

2
/]V¢\2+u0/(252dx20 for all ¢ € C5°(2).
0 olz|

Furthermore this inequality is never achieved if €2 is bounded, in which case a remainder was
shown to exist by Brézis and Vazquez [4]. When X is a Radon measure in {2, the associated
Dirichlet problem
Lyu=\ in €,
{ u=20 on 0N

is studied in its full generality in [8] and [9] thanks to the introduction of a notion of very
weak solution associated to some specific weight. Thanks to this new formulation an extensive
treatment of the associated semilinear problem

Lyu+gu)=X in Q,
u=20 on 01},

where g : R — R is a continuous nondecreasing function is developed in [9].

In this article we assume that the singular point of the potential lies on the boundary of the
domain 2, and we are mainly interested in the two problems:
1- To define a notion of very weak solution for the problem

= 1 Q
{E#u 0 in Q, (1.1)

u=v on 0,

where v is a Radon measure on 912, and more generaly on 02\ {0};
2- To prove the existence of a boundary trace for any positive £,-harmonic function, i.e. solution
of £L,u =0 in © and to connect it to the problem (1.1).

The model example is 2 = RY := {z = (z/,zy) € RV x R : 2y > 0} although it is not a
bounded domain. There exists a critical value

N2

- (1.2)

B> p =
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This value is fundamental for the operator £, to be bounded from below since there holds,
2 ¢2 00 N
Vol" +m | —mdx >0 forall ¢ € Cg°(RY). (1.3)
RY RY |z

The analysis of the model case is explicit. Let (r,0) € Ry x Sf ~1 be the spherical coordinates
in ]Rf , then, if (1.2) is satisfied, there exist two different types of positive £,-harmonic functions
vanishing on ORY \ {0}),

(r,0) = 19 n(o) and dulro) = | ) Ty
r,o) =r"" (o) an o) = N2 .
” 1 " P (o) i =,

T generates ker(—A" + (N —1)I) in H&(Sif—l), and where

||

2N NZ 2N N?
Qy = a+(u):T+ ,U+T and a_ := Oéf(/l):T* IU’+T (15)

Put dv,(z) = yu(z)dr. We define the v,-dual operator L}, of £, by

=
=
@
=
@
<
S
2
I

£i0=—AC— j(vw, Ve) forall ¢ € CARY), (1.6)
n

and we prove that ¢, is, in some sense, the fundamental solution of

Lyu=0 in RY,
u = dg on QRJJ\Z,

since it satisfies

/ GuLiCdru(z) = c,C(0) for all ¢ € Co(RY) N C(RY)
RY

such that pL},¢ € L™ (RY), where ¢, > 0 is a normalized constant and p(x) = dist(z, 0S2). Here
p(z) = zy when Q = RY.

When Rf is replaced by a bounded domain 2 satisfying the condition
(C-1) 0€9Q, QCcRY and (z,n) = O(|z|?) for all = € 9,

where n = n, is the outward normal vector at z, inequality (1.3) holds but it is never achieved
in the Hilbert space H}(Q). Note that the last condition in (C-1) holds if  is a C? domain. It
is proved in [5] that there exists a remainder under the following form:

¢* 1 ¢? 0
/Q\V¢|2 + ,ul/Qde > / dx for all ¢ € C2°(9), (1.7)

4 Jo e ?(|z|Rg1)

where Rq = max |z|. Under the assumption (C-1), there holds
z€E

68 := inf {/ <|Vv|2 + 'u2v2> dr v € Ccl(Q),/U2d:L‘ = 1} > 0.
Q |z Q
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This first eigenvalue is achieved in H{ () if u > p1, or in the space H(Q) which is the closure

of C1(Q) for the norm
v = ol o) = / (|Vv|2 + M12U2> dx,
Q ||

when p = pp. In the sequel we set

) Hy(@) if p>
Hul) = { HO) =g

Moreover, under the assumption (C-1) the imbedding of H,(Q) is compact (see e.g. [6]). We
denote by 7{} the positive eigenfunction, its satisfies

Lyl =01 in Q, 18)
=0 on 99\ {0}. '
We prove that there exist ¢; = ¢;(€, ) > 0, j=1, 2, such that
(2) (@) = cip()|z[*+ 71 (1 +o(1)) as x =0,
Q 1.9)

y Y () (
1 VA (z)| < L for all x € Q.
@ CERCIE

This function will play the role of a weight function for replacing v,. Next we construct the
Poisson kernel Kf} of £, in © x 092. When p > 0 this construction can be made by truncation
as in [18], considering for € > 0 and A € M (02) the solution u of

u=20 in €,
U=\ on 0f).

By a more elaborate method, we also construct the Poisson kernel when p; < p < 0. It is
important to notice that when p > 0 the kernel has the property that

Kf}(w,O) =0 forall z€Q)\ {0} (1.10)

by [18, Theorem A.1]. Because of (1.10) it is clear that the Poisson kernel cannot be the tool for
describing all the positive £,-harmonic functions. Our first concern in this article is to clarify
the Poisson kernel of £,,.

We first characterize the positive £,-harmonic functions which are singular at 0.

Theorem A Let 2 be a C? bounded domain such that 0 € O and pu > p1. If u is a nonnegative
L,,-harmonic function vanishing on By (0) N (02\ {0}) for some ro > 0, there exists k > 0 such

that
lim u(z)

B GV A
a—0 p(z)|x]*-—1 ’
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if p > pp and
N
o JelTu(z)
2—=0 p(z)In|z|

)

if o= p1.

Actually the above convergence hold in a stronger way. In order to prove that such solutions
truly exist we construct the kernel function qﬁi} (see [13] for the denomination) which is the
analogue in a bounded domain of the explicit singular solution ¢, defined in Rf .

Theorem B Let Q be a C? bounded domain such that 0 € 9 satisfying (C-1) and 1 > py. Then

there exists a positive L,-harmonic function in , which vanishes on 0Q \ {0} which satisfies,

qﬁf}(m) = p(x)|z|* (14 0(1)) as z— 0, (1.11)

if w> p1, and
¢f}1(x) = p(:c)]w\_%(] Injz||+1)(1+0(1)) as = —0, (1.12)

if p=p.
As in the model case, we define the ’yf}—dual operator of £, by

2
N V—QWV‘?, VC) +6}¢ for all ¢ € CM(Q).
17

The following commutation formula holds
Lu(1¢) =1L (1.13)

Corollary C Let Q2 be a C? bounded domain such that 0 € 0 satisfying (C-1) and p > p.
Then (bf} is the unique function belonging to L'(<, pfldvff) which satisfies

/Q ulhCdy, = keuC(0)  for all ¢ € X, (), (1.14)
where and in the sequel the test function space
X, (Q) ={C€C(Q): 7 ¢ € HyRQ) and pLi¢ € L™(Q)}.
Furthermore, if u is a nonnegative L,-harmonic function vanishing on 0\ {0}, there exists
k > 0 such that u = kqﬁf}.
We let Uf} € H,(Q2) be the unique variational solution of

Q
Euu:py—“ in Q and w=0 on JN. (1.15)
p

Note that 03 € C2(2\ {0}) is a positive classical solution of (1.15) with zero Dirichlet boundary
)

d
condition on 99 \ {0}, i.e. Uf} =0 on 90\ {0}. Moreover, % < 0on o\ {0}. We set

Q
_ %

= in €,
o

n
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which satisfies

Lin = in Q, (1.16)

D=

play a key role in the sequel. Clearly, n € C?(Q2\ {0}) and > 0 in Q\ {0}. We denote by
ML J{}) the set of Radon measures v in  such that

sup{/(dw :CeC(N),0<¢< af}} = /af}d!yl < +o00.
Q Q
If v € My (Y af}) the measure af}l/ is a nonnegative bounded measure in Q. Put

Q
Bi(x) = —678’;(96), V€ oQ. (1.17)

The set Radon measures A in 92\ {0} such that

sup {/ CdIA|: C € Ce(002\{0}), 0 < (< nﬁf}} = / NBud|Al < 400
aO\{0} oaQ\{0}

is denoted by (90 \ {0};?76;?). The extension of A € M (9N \ {0};776,?) as a measure 775,?)\
in 02 is given by

/ Cd(nBIA) = sup {/ vnBdX v € Ce(02\ {0}), 0 < v < g} for all ¢ € C.(0Q), ¢ >0
[oJ9) o)

and 76, A = nBury —nBuA— if X is a signed measure in M (0N \ {0}; nﬁff), and this defines the
set M (I 775/?) of all such extensions. The Dirac mass at 0 does not belong to 9t(9€; nﬂff), but
it is the limit of sequences of measures in this space in the same way as it is a limit of measures
in M (002\ {0}; 7763). In the next result we prove the existence and uniqueness of a solution to

{ Lyu=v in Q, (1.18)

u= A+ kdy on 0f).

Thanks to (1.7) the Green kernel Gf} is easily constructible. If v € 9ﬁ+(Q;af}) and \ €
M(0; nﬂf}) the following expressions are well defined

KON () = [ K2, y)dA(y) and GIp)(x) = / GOz, y)dv(y).
o0 Q

Our main existence result is the following.

Theorem D Let Q be a C? bounded domain such that 0 € 0K satisfying (C-1) and p > py. If
v e M, (9 af}), AE 9)?(89;7763) and k € R, the function

u= G [v] + K[\ + ke, := H[(v, A, k)] (1.19)
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is the unique solution of (1.18) in the very weak sense that u € Ll(Q,p_ldvf}) and

* Q _ Q Q
/Quﬁqu'yu = /Q<d(’yu V) —l—/(m(d(ﬁﬂ A) + ke, €(0) (1.20)

for all ¢ € X,,(92).

In the next result we prove that all the positive £,-harmonic functions in {2 are described
by formula (1.19) (with v = 0).

Theorem E Let Q be a C? bounded domain such that 0 € 0Q satisfying (C-1), u > u1 and u be
a nonnegative L,-harmonic functions in 2. Then there exist A € M(OQ; 775{}) and k > 0, such
that

u =K\ + koy, =H[(0,\, k)].

The couple (A, kdg) is called the boundary trace of w.

The rest of this paper is organized as follows. In section 2, we introduce the distributional
identity of £, harmonic function ¢, in Rf . Section 3 is devoted to build the Kato’s type
inequalities, to construct Poisson kernel and related properties. Section 4 is addressed to classify
the boundary isolated singular £, harmonic functions in a bounded domain, i.e. Theorem
A and to show the existence and related distributional identity in a (C-1) domain: proofs
of Theorem B and Corollary C. We classify the boundary trace for general £, harmonic
functions and give the existence of £, harmonic functions with the boundary trace (A, kdp):
Theorem D and Theorem E respectively in Section 5. Finally, we show Estimates (1.9) in
Appendix.

In a forthcomming article [10] we study the semilinear problem

Lyu+g(u) =0 in 9,
{ uU=A on 0.

2 The half-space setting

Let RY = {z = (2/,2y) € RN"IxR: xn > 0}, (r,0) € Ry x ST ! be the spherical coordinates
in ]Rf and A’ is the Laplace Beltrami operator on S™V~!. Then

N -1 1
Lyu=—=0pu— ——0u—— A+ —'uz u.
r r r

If u(r,0) = r%¢(0) is a (separable) solution of £,u = 0 vanishing on ORY \ {0}, then ¢ satisfies

~A¢p=Xop in SYli=SNIARY,
é=0 in oS~ ~ SN2,

where A\ a constant which necessarily belongs to the spectrum

ooy (=) = A = k(N +k—2) : k € N},
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and o = a4, g — is a root of
o+ (N=2a—-X\—pu=0. (2.1)

The fundamental state corresponds to & = 1, in which case since Ay = N — 1, existence of real
2

roots of (2.1) necessitates u > 3 = —NT = u1 and we denote a; 1+ = a4 and a3 - = a_. Note

that this value is connected to the boundary Hardy

2
/RNwsF -+ MI/RNIiIde >0 forall ¢ € C(SY).
+

+

If this condition is fulfilled, the two roots a and a_ corresponding to £ =1 and A; are
2 — 2—N
oy = 7+\/,u w1 and Q- =—F5— — V- (2.2)

The corresponding positive separable solutions v, and ¢, of £,u = 0 vanishing on aRf \ {0}
are defined by (1.4). We set dv,(z) = y,(z)dz and define the operator L, by (1.6).

Proposition 2.1 The function ¢, belongs to Lloc(Rf,pfldﬁm). It satisfies
/RNquEZCd'yM(x) =cuC(0) forall ¢ € XM(RJI), (2.3)
+

where

2/ — ul/le%dS if 1> p,
= St (2.4)
PidS if p=

st
and X, (RY) = {g € Cu(RY) s.t. pLiC € LOO(M)}.

Proof. Let ¢ € X,(RY), € > 0 and set B = B.(0) NRY, (BH)° = B¢(0) NRY and I' =
0B.(0) NRY

€

_ " 99 ¢ | 9,
_/(Bj)ﬁuﬁugd%(x)‘*‘/ﬁ( #C + <%8n ¢ H>¢u>

:A OuLyCdyu(x) + C(0)Ae)

BE)*

x on I'}) and

0:/( +)CC7#£#¢#dx

and n = —e !

i [ RAS O i >,
Ale) = S (2.5)

/N_lqb%dS + O(e) if u=p,
+

which implies (2.3)-(2.4). O
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3 The Poisson kernel

In this section we assume that € is a bounded C? domain included in By (which can always be
assumed by scaling) and 0 € 9€). We start with the following identity of commutation valid for
all A € M(09; ﬁf}) and ¢ € CH1(Q)

Q
—/ 9) 4y = C(BN) for all ¢ € CLL(Q), (3.1)
oo On 29

where Bf} is defined in (1.17).
The following inequality extends the classical Kato inequality to our framework.

Lemma 3.1 Assume N >3 and u > p1 or N =2 and p > py. Then for any f € Ll(Q,af}d:L‘),
h € Ll(OQ,B/g}d;U) there exists a unique weak solution u to

Lyou=f m €,
2
{ u=nh on 0N (32)
in the sense that
/ ulhdyy) = / fedy, + / h¢dByt  for all ¢ € X,(Q). (3.3)
Q Q 0
Furthermore, for any ¢ € X,(R2), ¢ >0, there holds
[ugicn? < [ sotuscang + [ juicass (3.4
Q Q o0
and
/Q utLhCdyy) < /Q sgn., (u) fCdvs + /@ Qh+gd,6’f}. (3.5)

Proof. Uniqueness. Assume that u is a weak solution of (3.2) with f = h = 0. Then for any
¢ € X,(€2) there holds

* Q _
/Quﬁ#g“dfyu =0.
Let ¢ € C°(R2), and v € H,(2) be the variational solution of

A9
L,v= 7“925 and wu € H,(Q).

Then v € C*(Q), |v| < ||| 08; the equation is satisfied everywhere and in the sense of
distributions in Q. Clearly w = (7{})_11} belongs to C*°(Q2) and satisfies
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Since ¢ is arbitrary, we have that u = 0.

Ezistence and estimates. We proceed by approximation as in [8, Prop. 2.1]. We assume that
{(fn,hn)} C CH(Q) x CL(OQ\ {0}) is a sequence which converges to (f,h) in L(£, f}dx) X
Ll(aQ,ﬂf}dx). We set V(x) = |z|~2, denote by K the Poisson potential of —A in Q and
consider the approximate problem

{ £uwn = fn— /LVK[hn] in € (3.6)

wy, =0 on 0Jf2.

Near 0, we have VK[h,](z) = O(%), hence, if N > 3, VK[h,] € L?(Q). If N = 2, the function
T % belongs to the Lorentz space L?°°(Q) which is the dual of L*!(Q). Since H(Q) C

L*Y(Q) by (1.7), it follows that H'(Q) C L?*°(2). Hence, by Lax-Milgram theorem there exists
a unique w, € H(Q) such that (3.6) holds in the variational sense. Then w, = w, + K[h,],
which has the same regularity as w,, satisfies

{ Luun = fn in Q,

Uy, = hy, on ON). (3.7)

For o > 0, we set

oo [1-5 iize
meg = 2 .
= if |t| < o.

The m, is convex, |m/ (t)| <1 and m/ (t) —signg(t) as o | 0. Let ¢ € CH1(Q), ¢ > 0. We have
that

/Q (V. V(i (un)72)) + a0l (un )}y 2) d

= /S)Cm;(un)vﬁfndx - M/QVK[hn]Cm’U(un)vﬁdx =: R(0).
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By the fact uy, = wy + K[hn], we have that
R(0) = [ (Vun, V(G ()i = [ (TK[ba), 9Crm (o)

u / VunCml, (un)y2dz — / VE[hn]Cm, (un )y 2z

/ IVt P ()2 + / (Vi (tn), V(YD) + 1 / VnCml, (un)y2dz

—p / VK[hn]Cmy (un)y, dz
/ () A (CA2) i + / o () 7“ T i + 1 / VanCm, (un)y2de

~ 1 | VIhaJm, (1)1 o

> [matuicart - /8 ()3 g1 | V (s 1) = 1)) G

u /Q V[l (un)r O,

thus, we obtain that

[ moun) 25607+ [V Gl ) = g () e
@ @ (3.8)
< /Cm/a(un)fnd%? +/ ma(hn)gdﬁ,?-
Q Elo)
Since m, is convex, u,m, (un) — my(uy) > 0. Hence for > 0, we can let ¢ — 0 in (3.8) and

obtain (3.4).
For u € [u1, 0), we note that

0< unm;(un) - ma(un) < o5
and

2

Hence if N > 3, or N = 2 and p > p3 = —1, the right-hand side of (3.9) tends to 0 as 0 — 0
and then we obtain (3.4). The proof of (3.5) is similar.
Applying estimate (3.4) to u, — upm, we obtain for all ¢ € X,(Q2), ¢ >0,

0< /V (unmly () = mo(un)) ¢yt < KHLOO/ |z L VI gy (3.9)
Q {lun|<o}

o= wnlicn? < [ V= fukcarf + [ o = halcas.

For test function, we take 7, the solution of (1.16), then

/|un_ d Q</|fn fmldof] +/ [P = hanld(nf5)}),
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Therefore {u,} is a cauchy sequence in L*(£2, p_ldyl?) with limit u. Since u,, satisfies (3.7), we

let n go to infty in
u L3¢ dy = / (o2 frdr + / ¢BShndS
/Q e o " oo "

and obtain (3.3). O

Lemma 3.2 Assume \ € 9M(99; Bf}) and ¢ € X,(R2), then there holds

we_ P Q Q_ Q
[ (g6~ L) woang = [ catsp.

Proof. By (1.13) we have almost everywhere in {2,
(ﬁzc - m’}c) KAy, = (ﬁm,?o - ‘;727,?() K2 = —A (3, QKA.

If we assume that A vanishes in a neighborood of 0 we derive from (3.1)

Q
/A LOK®[Ndz = —/ Mcﬂ = [ Cd(BIN).
0! o0

0 81’1

Since *yf} (ﬁ;{ ’
the sequence {x . A} and letting € — 0, and then for any A = A" — \~. O

E —C ) is bounded, we obtain the result first if A is nonnegative by considering

We observe also that the existence of the Green kernel follows from Lax-Milgram theorem
which gives the existence of a unique variational solution in H(f2) to

—Au—i—"u’u—f in €,
u=20 on 0f).

We denote by Gf} the Green kernel and by Gf} the corresponding Green operator.

3.1 Construction of the Poisson kernel when p > 0

For the sake of completeness, we recall the construction in [18]. For € > 0 we set Vi(z) =
max{e2,|z|72} and Vo(z) = V(z) = |z|~2, and if A € 9MM(ON) let u, be the solution of

—Au+ pVeu =0 in €,
U=\ on Of).

Then
/ (z,y)d\(y) = Kﬁe[)\].
o0

We obtain by the maximum principle,

Kp <K, <K? forall p>p' >0and ¢ >e>0,
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where K is the usual Poisson kernel in Q and there exists

K}Na,y) = lim Kl (z,y)  forall (z,y) € Qx 0Q.
Therefore we infer, firstly by monotone convergence if A > 0, and then for any A € 9(99), that

lim u(z) = u(z) = Kf}(w, y)d\(y) for all x € Q. (3.10)
e—0 o0

Since V is finite in BE N, for any z € Q, Kf}(x,y) > 0 for all y € 92\ {0}. If G is the Green
kernel in €2, there holds

0+ | @ Viwudy = | K 5)aw)
If A > 0, we have by Fatou’s lemma,

/GQ z,y)V(y)u(y)dy < hmlnf/G’ z, Y)Ve(y)ue(y)dy. (3.11)

Combined with (3.10) it yields

x) + u/ Gz, )V (y)u(y)dy < K% (z,y)d\(y) for all z € Q.
Q o0

Since the function u + uG[Vu| is nonnegative and harmonic in €2, it admits a boundary trace
which is a nonnegative Radon measure A* and there holds

x) + u/ G, y)V (y)u(y)dy = K% (z,y)d\*(y) for all z € Q. (3.12)
Q 0

Because of (3.11) 0 < A* < A. The measure \* is the reduced measure associated to A. Since

(3.12) is equivalent to

u(z) = [ K} x,y)d\*(y),
15)9)
there holds

K (z,y)d(A — X*)(y) = 0.

o0
This implies that A = A\* in 992\ {0}. With the notations of [18], we recall that
Sing,, (2 —{yGOQ Jxg € Q s.t. KQ (zo,y —O}

c 7, = {y €00 /QK(?(J:,y)V(x)p(w)dx _ oo} .

Actually, if y € Sing,, (), Kf}(xo, y) = 0 for any xp € Q by Harnack inequality. Clearly 0 € Zy
and if y # 0 the integral term in the definition of Zy is finite. Hence Sing, (?) C Z,, = {0}.
Since for any truncated cone Cj s € €2 with vertex 0, there holds

dx
V(]ﬁ)i = 00,
~/Co,5 |l’ - y‘N72

it follows by Ancona’s result [18, Theorem Al] that 0 € Sing, (). Finally
Kl?(x,O) =0 forall zeQ.
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3.2 Construction of the Poisson kernel when p; < <0

For e > 0 and A € C(092), A > 0 we denote by w = we ) the variational solution in H(2) of

—Aw + pVew = —puV KA in Q,
w=0 on 0f.

Then wey > 0 and u = ue ) := we + K[A] satisfies

—Au+ puVeu =0 in Q,
1
{ u=A  on 0. (3:13)
Since —Au, y + puVu y <0, there holds from Lemma 3.1
Jveaticar? < [ 2cds? for ¢ € %,(2), ¢20
Q oQ
and in particular
Ue X ; O Q
dry S/ Ad(nB;))- 3.14
/Q P . oQ ( “) ( )
Ife >¢ >0and X >\ >0 we have
Au, Aug
St | SN (Ve - V) <0
Ue, ) Uer N

Since

Au A
/Q <_ €A + €A > (ua)\ — uz,7/\,)+d-75

Ue, X Uer N

2
Ue, )
:/ ‘VU€7,\— 2 Ve y dx,
{5} er

we deduce that the function z %(m) is constant on the set {z : uc\(x) > ue v (x)}. If this

2
Ue' N

Ve y

+ ‘VU€/7,\/ —

€\

set is non-empty we get a contradiction since it is strictly included in 2. Therefore the mapping
(6, /\) —> Ue A

is decreasing in € and increasing in \.

Next we can assume that A\ € 9, (0€2) vanishes in Bs N 02 and that {\,} C C(99) is a
sequence of functions which converge to A in the weak sense of measures. We denote by u, »,

the solution of (3.13) with A replaced by A,. Since u < 0, ay < 1, p_l'yf} ~ |zt > R3+_1,
where R, = max{|z| : z € Q}. Hence

/ wen,dz < cg / And(nB2) < col Allamon.
Q o0

Hence uc y, and Viu ), are uniformly bounded in L'(Q)). From standard regularity estimates

N
the sequence {ue, fnen is bounded in the Lorentz spaces L¥-1°°(Q) and weakly relatively



Schrédinger operators with boundary singular potential 15

compact in L'(Q) (see e.g. [12]). This implies that, up to a subsequence, ucy, converges in
LY(Q) and a.e. in Q to a weak solution u, ) of

—Au+pVeu =0 in €,
U=\ on 0,

that is a function which satisfies

0
/ (—ue AAC + pVeue a) de = — % n for all CeCyt(D). (3.15)
Q a0 0On
Furthermore (3.14) holds (with the same notation). For test function ¢ in (3.15), we take ( = 6;

be the solution of
{ —Agl =1 in Q,

01 =0 on 02

Then 90
/ue)\d:c = —,u/ Veue \01dx — Lan.

Q Q oo On
By the monotone convergence theorem we obtain that Viue x — Vuy in LY(2,6:1dx) by letting
e — 0 and 90

/uAdﬁc = —,u/ Vuy61dx —/ —1d/\

Q o0
Hence 9
/ (=AC + pVE) urds = — % an for all ¢ eyl (D).
Q a0 0N

We also have

/ Uen, L1 Cdy,) = pu / (V = Vo)ue, Cdyl + / (AndB
Q Q [2)9]

for all ¢ € X,,(€2). Since u,y, converges in L(Q2) we obtain if ¢ > 0,

w1 Q B Q Q Q
/Q weALLCd D = g /Q (V — VoJuerCdy? + /a ) < /d B

since p(V — V¢) < 0. When € — 0, u, ) increases and converges to some uy in L(€, pfld’yf})
which satisfies

/UAL (dvy! < / ¢d(ABYY)  for all ¢ € X,(), ¢ > 0.
Q
For § > 0 denote by (s the solution of

LG = Xo, L£,,¢ where Q5 ={z € Q:p(z) > d}.

As ¢ € X,(Q), [£;¢] < crop, hence (5 € X,(Q), |¢s] < c1om and (5 — ¢ when § — 0. Furthermore,
since c11]x| is a supersolution for ¢;; > 0 large enough, ns < ¢11]z|. Hence

. 1
/ UerLCdr? = / TG + / Gd(ABD).
Qs {|z|<e} I
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Because |x|_2u67)\|C5| < cnp_lue,)\ and u )y — uy in L1, p_ldwff), we derive that
. 1 Q
lim Tz lerGsdy, =0
0 J{|z<e} |7

which implies

L5yt = d(\B%
/Q(SUA G /89(5 (AB9),

Letting 6 — 0 we obtain by monotonicity

* Q _ Q
/Q N /8 GO, (3.16)

Finally, if A € 9t (09, n’yf}) we replace it by As = x,. A and denote by u,, the weak solution
S

of
{ —Au+pVu=0 in Q,

Y on Of).

The mapping ¢ — u); is monotone. Hence, by the monotone convergence theorem u), increases
and converges to some wuy in L(€, p_ld’yg) and clearly uy satisfies (3.16) for all { € X,(£2).

4 The singular kernel

In this section we construct the singular kernel ¢8 and prove that it satisfies estimates (1.11)-
(1.12) and it is associated to Dirac mass at 0. Up to a rotation we can assume that the inward
normal direction to 9Q at 0 is ey = (0’,1) € RV~ x R. Hence the tangent hyperplane to 92 at
0is ORY =RN~1 For R > 0 set By = {2/ e RV"!: |2/| < R} and D = B}y x (—R, R). Then
there exist R > 0 and a C? function 6 : Bf — R such that 92N D = {z = (2/,2n) : oy =
§(«’) for 2’ € BR} and QN Dp = {z = (2/,2n) : 0(2’) < 2y < R}. Furthermore V6(0) = 0.

4.1 Classification of Boundary isolated singularities

We characterize the positive solutions of £,u = 0 which vanish on 92\ {0}.

Lemma 4.1 Let u > py and u € C*(Q\ {0}) be a positive solution of L,u =0 in Q vanishing
on 002\ {0}. Then there exist a > 0 and c12 > 0 such that

u(z) < eralx| 4 tp(x) for all z € Q\ {0}. (4.1)
Proof. This is a direct consequence of Boundary Harnack inequality [3, Th. 2.7].

Proposition 4.2 Assume that p > py and u € C*(Q\ {0}) is a positive solution of L,u = 0,
vanishing on 0Q \ {0} satisfying (4.1) with a > —a_. Then the following convergences hold in
cHsih:
(i) If p > p1 and a = —a_, there exists c13 > 0 such that
lim u(r, )
r—0 7r%-

= c13¢ as r — 0. (4.2)
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(ii) > py and a > —a_ there exist T > a + a— depending on a and p, and c14 > 0 such that
w(z) < ca|z| T p(x)  for allz € Q\ {0}

Proof. Step 1. Straightening the boundary. We define the function © = (04, ...,0x) on Dr by
yj = 0j(x) =z;if 1 <j < N—1and yy = On(x) = zn — 6(z’). Since DO(0) = Id we can
assume that © is a diffeomorphism from Dp onto ©(Dp). We set

u(z) =a(y)  for all x € D} = By x [0, R). (4.3)
Then
Upja; = Uyy; — 2000y, — Ouj 0, Tyy + 05 Gyyyy  for 1<j <N -1,
Ugyay = Uyyyn
and
Aii + V0| ity — 2(V0, Vi) — iy A — Wa ~0.

We use here the spherical coordinates (r,0) in the variable y and we recall that A’ is the
Laplace-Beltrami operator on SV~1 and V' is the tangential gradient on SV—! identified with
the covariant derivative via the isometric imbedding S¥~! & RY which enables the formula,

1
Vi(y) = <ﬂrn + V'ﬂ) (r,o) with n=|y|™ty.
r

After a lengthy computation the details of which can be found in [12, P 298-300] we obtain

. [1 —20,(n,en) + \V0\2(<n,eN>)2]
+ri, [N —1- 7"<n, eN>A0 + r’Vﬁ’z ((V’((n, eN>)7eN> - 2<V’9, V’((n,eN>)>)]
+(V'u, en) [-rA0 + 26, — [VO]*(n,en)] + 7(V'd,, en) [20, + 2|V0|*(n, en)]

~2(V' V) (@) + (VT ), (V0o =2 1V/0) + N — g fisg =0
Next we set
a(r,o) =r""(t,o) with t=Inr,
and we assume that -
a# T_ (4.4)

We notice that
N N-1
r? = ny = Z mJQ + (zn — 0(2")? = |2%| — 2zn50(2') = |2|*(1 + O(r)) as 7 — 0
j=1 j=1

= |z2(1 +O(e!)) as t — —oo.
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By a straightforward computation we find that v satisfies the following asymptotically au-
tonomous equation in (—oc,rq] x SY !

(T+e(t,)vg+ (N —2—2a+e(t,))ve+ (ala+2—N) — pu+es(t,-))v
+ A'v+ (Vv eq(t, ) + (Vo es(t, ) + (V((V'v,en)), es(t,-)) =0,

where the ¢; satisfies

(4.5)

€5 (8 ) + 10ee;(t, )| + [V'ej (¢, )] < ease. (4.6)
This is due to the fact that |0(z)| = O(]2'|?) near 0.
Step 2. The convergence process. Since v is bounded in (—oo, 7] X Sf ~1 and vanishes on
(—o0, o] % 8Sf ~! and all the coefficients are continuous functions, we obtain that v is bounded
in W24([T —1,T +1] x Sf_l) independently of T' < ¢ — 2, for any ¢ < co. Hence v is bounded
in any CV7([T —1,T +1] x Sffl) for any 7 € [0, 1). Differentiating the equation and using the
standard elliptic equation regularity, we obtain that v is bounded in W34([T —1,T + 1] x Sf -1
and in C%7 ([T —1,T +1] x Sf_l). We consider the negative trajectory of v in C} (Sf_l) defined

by
U v

t<rg—1

By the previous estimates and the Arzela-Ascoli theorem, it is a relatively compact subset of

C(SY™1), hence its limit set at —oo (or alpha-limit set), denoting A(7_(v)), is a non-empty

connected compact subset of C} (Sf ~1). Multiplying (4.5) by v; and integrating on Sf ~! yields

1 1
/ (N —2—2a+ €y — atel) vgdS — / Ope3v3dS
Sffl 2 2 41\_/71

— % [/sfl <;!W|2 _ % la(a+2—N) — p+ es]v? — %(1 —I-el)vt) dS] (4.7)

—/SN1 ((V'v, 1) + (Vv e5) + (V' ((V'0,en)), e6)) v7dS.

+

Next we integrate over (—oo,ry) for some ry large enough so that

1 1
’N—2—2a+62—28t61 ZilN—Q—Qa\>O,

here we use the crucial assumption (4.4). Since all the terms on the right-hand side of (4.7) are
integrable on (—oo,r2) because of (4.6) and the bounds on v, we obtain that

/ /N v dS < 0. (4.8)

Differentiating (4.5) with respect to t and using the estimates on v and the €; we obtain (see

[12, p. 302] for a similar calculation)
r2
2
/—oo/Sf—lvttdS < 00. (4.9)
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Because v; and vy are uniformly continuous on (—oo, 1], we infer from (4.8) and (4.9)

Jim (et ) ey + ot sy, ) = 0.
Therefore the set A(7-(v)) is a compact connected subset of the set of nonnegative solutions of

ANw+(ala+2—N)—pw =0 in Sﬁfl,
=0 on 881_1.
Step 3. The case a(a+2—N)—pu = N —1. The set A(T_(v)) is a subset of ker(—A’— (N —1))I,

in H}(SY ') and more precisely A(7-(v)) = {me : m € I*} where I* is a compact interval of
[0,00). We set

X(t) = /SN_lv(t, YndS.

+

Then X satisfies
X"(t)+ (N —2—2a)X'(t) + F(t) =0, (4.10)

where

F(t) = /S et Jon +ealt, Jo + sl o+ (T, a(t,.)
’ H(V'up, €5(,.)) + (V/((V'0, en)), e6(t, )] 1 dS.

Then |F(t)] < ci16e’. We consider a sequence {t,} converging to —oo and c¢* € I* such that
X(t,) — ¢*. Since X'(t) and X" () converges to 0 as t — —oo, we integrate (4.10) on (t,,t)
and let n — oco. Then we get

X'(t) + (N =2 —2a)(X(t) — c*) + O(e') = 0.
Letting t — —oo yields X (t) — ¢*. Hence we have proved that

lim v(¢,.) =c"Y; in Cl(Sffl).

t——o0

Step 4. The case a(a+2— N) —pu# N — 1. Clearly A(7_(v)) = {0} and

lim v(t,)=0 in C'(SY™1). (4.11)

t——o00
Furthermore, since we have assumed a > —a_, there holds actually a > —a_. We recall that

Ak is the k-th eigenvalue of —A’ in H}(SY ') and put

Hy, = ker(—=A' — N\ Id) = span(gg 1, 2, -, 1 j,) and Hy(SY 1) = & Hi.

We denote
Pi(z) =2 4+ (N — 2)x — pt — \p.
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Then Pi(a-) =0 and Pr(a—) = A1 — A\ < 0 for k > 2. Since a(a+2— N)—pu # N —1 by
assumption, we define a partition of N* by setting

Ny ={keN:a(a+2—N)—p—X >0}, No:={keN':a(a+2—-—N)—pu— X <0}

and
Wi= & Hp and Wo = & H;.
keN; k€ENa
Then
o / 2
SﬁqéA ¢dS > ’Y/Sfld) dS for all ¢ € Wo, (4.12)
where

7=u+)\k2—a(a+2—]\7)>0 with ko = inf Ns.

We denote by P; the orthognal projector onto W; in Hg (S]I_l) and set v = Piv+ Pyv = vy +va.
Then the projection of (4.5) on to Wy is

(v2)u + (N =2 —=2a) (v2)¢ + (ala + 2 = N) — p) va + Avg = F(t, ),

where F} satisfies the same estimates (4.6) as €;. Then, using (4.6) and (4.12)
1
2

o _ 2 ot 2
/SN_l(UZ)ttUQdS+ (N -2 2a)/SN_1(vz)tvzdS ’y/SN_lvzdS > —cyre (/SN_1v2dS> )
+ + + +

Put Y () = ||va(t, ')||L2(Sf‘1)’ because

/ (09)y02dS = Y'(1)Y () and / (09)gvadS > Y (DY (1),

s¥—1 s¥—1

we obtain the following differential inequality

Y4+ (N —2—2a)Y' — Y > —cj7e’ in D'(—o0,73).

The characteristic roots of the equation 3" + (N — 2 — 2a)y’ — vy = 0 are

1
Uy =0+ 5 (Q—N—\/4u+4)\k2+(N—2)2) = Qp,— +a<0
(4.13)

1
ak2,+:a+§(2—N+\/4u+4)\k2—|—(N—2)2) = oyt +a> 0.

where the ay, 1 are the roots of equations (2.1) with & = k. The solutions of
2"+ (N —2—2a)s —yz = —ci7¢’ in D'(—o0,13).

endow the form z(t) = Ae'%2.— + Be'%2+ + cigel if ay, 4 # 1 or 2(t) = Ae'™2— + Be! + Cte! if
ay, + = 1, for some explicit constant c;g depending on ci7 and the coefficients in the equation.
Since Y'(t) — 0 when t — —oo by (4.11), it follows from the maximum principle that

Y (t) < crge’™2+ + cige’ if ap, . # 1, or Y(t) < cgltle! if ap,» =1 for t <ro.



Schrédinger operators with boundary singular potential 21

Then using standard elliptic equations a priori estimates, initialy in LQ(Sf ~1), then in L? (Sf -1
and finally in C’T(Sf_l), we obtain that for ¢ < rg,

tag,,+ t :
core k2t 4 co0e if Qo+ 7& 1,
HUQ(t7 ')”01(81*1) < ‘ . (4.14)
casltle if ag,+ =1,
where r3 < re — 1.
For the components in W7 we have

vilt, ) =Y > wr(t)er,(), (4.15)

kEN1 1<j<jk

where the ¢, ; form an orthoromal basis of Hj. Then
wy j+ (N =2 =2a)wy ; + (a(a +2 = N) — p — M) wyj = F j(t) (4.16)

The characteristic roots of equation 2’ + (N — 2 — 2a)z’ + (a(a4+2—N) — pu— Xg) z = 0 are
given in (4.13) with a general k, ay— = a + aj— and ax 4+ = a + a4 where oy 4 are the roots
of (2.1). They have same sign (including 0) since a(a +2 — N) — p — A\, > 0, furthermore, their
sum is positive since N — 2 — 2a < 0, as a consequence of a > —a_. By standard calculation
the solution of (4.16) has the form

0p(t=s)ap4 _ p(t—s)ak—
Wy, (1) = mye' ™+ + moe'® -~ — / Fy. j(s)ds. (4.17)
t Ak 4 — Ak —

Since |Fy, ;(s)| < co4€® there holds

0, (t—s)ar+ _ o(t—s)ag —
/ c c F. j(s)ds
t

A+ — G —

|t|e! ifap_ =1
<
= { max{e!, e!% -} ifap_ #1 (4.18)

In particular, if k; = max Ny, then ag, + = min{ag 4 : k € N1 }.
We assume first that ag, — > 0. Combining this fact with (4.15) and (4.18) we obtain
et ifap, - =1

1, <

Furthermore, because of the explicit formulation and (4.6), the left-hand side of (4.18) can be

replaced by |[|v1 (¢, ')”01(81\77’1)' Combining (4.14) and (4.18) we obtain the result since v(¢,.) =0
+

on (—oo,r1) x 9SY 1.
Next we suppose that ag, -~ = 0. Then for k = k;, (4.17) endows the form

0
Wy j(t) = mie ™1+ + mg — / (=9 + _1)Fy, i(s)ds. (4.20)
t

Ak +

This implies that

0
wkhj(t) — M2 + / Fkhj(S)dS = Ak’1,j as t — oo.

Ak 4+ J -
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Jk
If Ay, ; # 0 it would imply that Z Ay, j®k,,; is a nonzero eigenfunction of order k1 > 1, hence

j=1
it changes sign and it would imply that v changes sign at —oo (notice that all the other terms
wy,;(t) tends to 0 exponentially because of (4.17)-(4.18)). Hence Ay, ; = 0 and (4.20) endows
the form

1 0 t
wg, (1) = mpe'it — / ety (s)ds —/ Fy, j(s)ds.
a4+ Jt —00

Because .
/ Fy, j(s)ds = O(e) as t — oo,
—o0

we conclude that for k = k1, there holds

|t|et if ag, + =1,
. t < ’
[k 3 (B)] < 027{ max{et,etaklﬂr} if ag, + #1
and finally we infer (4.19), which complete the proof. O

Proof of Theorem A. Assume that u € C?(Q\ {0}) is a positive solution of £,u = 0 vanishing
on 00\ {0}.

Case 1: j > pyp. We claim (4.2) holds for some ¢35 > 0.

By Lemma 4.1, (4.1) holds for some a > 0. If a < —a_, then (4.2) holds with ¢;3 = 0. If
a = —a_, then (4.2) holds by Proposition 4.2-(i). Hence we are left with the case a > —a_. As
in the proof of Proposition 4.2 we define k1 and k9. By replacing a by @’ = a+ ¢, we can assume
that ax, + # 1 and ay, — # 1, to avoid the resonance complication in (4.14) and (4.19), hence

|lv(t, ')”Cl(SNi_l) < ey (M2t 4 e 4 et
+

Furthermore k9 = k1 + 1 and

1
Uky+ = Ohy = = 5 (\/4M+4)\k1+1+(N—2)2+\/4u+4)\k1 +(N—2)2> > 0,

which yields
o6, M g, < cas (e~ + ).

This implies that u satisfies
gy — l—a
u(@) < cgo (|2[*1= + [z7) p(2).
We iterate this procedure up to obtain
u() < caolel* p(a)

and we conclude as in the proof of Proposition 4.2, Step 3. O
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Case: = p1. In this case, the difficulty comes from the fact that there is no dissipation of
energy in (4.7) for a = —a_ = % But from the above iterative procedure in Case: pu > pq,
we could obtain could obtain that for some ¢ € (0, 1),

N-2_
u(a) < el p(a).

We finally show that there exists cga > 0 such that

limr 2z ulr,.)
r—0 Inr

= —c3291(.) (4.21)

in C’l(Sf_l) and

lig 3 () _ (N = 2)6321/;1(.) (4.22)

r—0 Inr 2

uniformly in Sf_l.
Note that (4.5) reduces that
(1+e1() vy + ea()vg + (N — 1+ e3(t))v + Alw
+ (Vv ea(t, ) + (Vo es(t, ) + (V/((V'v, en)), () = 0,

in (—o0,79) % Sﬂr_l, vanishes on (—oo,79) X 881_1 and the €; verify (4.6), and

v(t,0) < c33e”

Since the operator involved in the equation is uniformly elliptic we have by standard regularity
theory

100l s 1,040 1) T loell o r 1,04 &) T loetll s 171 41y 5571)

< al|vll oo (21 2) w5 1

< cgeT

for any T' < rg + 3. We set
X(t) = / o(t,)1dS,
SNfl

+

X"t)+ F(t)=0 (4.23)

F(t) = /SNI(Eﬂitt + €9Vt + €3V + <V/1), 64(t, )> + <V/Ut, 65(t, )> + <V’(<V/U, eN>), 66(t, ))) 1/)1dS

+

|F(t)] < csgelt 0" (4.24)
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This implies that X’(¢) admits a limit cg7 < 0 when ¢t — —oo and

lim tilX(t) = c37.

t——o0

Set

Wy = @ ker(A" + \i1d),
k>2

and denote by vs the orthogonal projection of v onto Ws. Then
Vo4t + (N — 1)1)2 + A,'UQ = FQ(t, .), (4.25)
where
|Fy(t, )] < caget=91,

Since Ay = 2N, the function Y (t) = ||va(t, .)HLQ(SIA) satisfies in D’(—o0, r1)

V" — (N +1)Y > —c3gell9,

Because Y (t) = o(e” VN1 when t — —o0, it follows by the maximum principle that Y (¢) =
O(eVNHI 4 e(0=0t) — O(e(1-9!), Using again the standard regularity estimates for elliptic
equations, we derive

-6
loa(t M mr, + loaelts Mlpgrmr, < esoe ="

(4.26)
Combining (4.23) and (4.25) we derive (4.21). Since v(t,.) = X (t)11 + va(t,.) it follows from
(4.26) that

lim wv(t,.) = c37¢p1  uniformly in Sf_l.
t——o00

S
J

Thus, the indentity wu,(r,-) =r =N y(t,) +v(t, ) implies (4.21) and (4.22). O

4.2 Existence and uniqueness

Proof of Theorem B. We still assume that 2 satisfies the condition (C-1) and 9RY is tangent
to 9Q at 0. For € > 0 let u. be the solution of
Lyuc=0 in Q. :=Q\ B,
uc=0 in QN B, (4.27)
Ue = ¢, in QN IB..
Since Q) C Rf, ue < ¢y in Q, and

Oue
on

_ 90
QNIB. on

<0, (4.28)
QNOB.

where n = ¢ 'x. Furthermore, if 0 < € < €, ue|0noB. < Uc|onoB.= ¢u, hence ug < u, in Q..
There exists up = lim¢ o u. and ug is a nonnegative solution of £,u = 0 in {2 which vanishes on
002\ {0} and is smaller than ¢,,.
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Let ¢ € X,,(Q), ¢ > 0, then, with n’ = —‘l = —n,
0= /Q C'yfzﬁuuedx

ou O ¢
N € a0 b Q
= /QFUeEqu% +/BBGOQ ( 9 SCv + <<8 7TV o ) Ve ds.

Using (4.27) and (4.28) we obtain

i 0, a¢
« 1 Q p 9%\ o
/EUGEqu% - /83609 ( on 7 (C on W On On | 5.

We take ¢ = 1, hence £ ¢ = EQ and we get

D'l o
0 Qs YPu o Y
éu/geued’m > /83609 ( on " on ¢, | dS

> 2y/u+ ul/lew%dS —o(1),
+

in the case p > 1, and

0¢S} 07
ff}/QEuedfyf} > / ( o u e ¢Q>

<{j ) [, vtds —om)

Y

in the case p = p1. Since ue < qﬁﬁ,

uEfYN < f)/lu, ¢p, - T27N’l/}% € Ll (Q)

Therefore, by dominated convergence theorem, we conclude that

© /Q uody® >

We infer that the function ug is nonzero. It is a positive solution of £,ug = 0 in {2 which vanishes
on 00\ {0}. It follows from Theorem A that there exists & > 0 such that

QVMJFM/N ids it >,
-
+ (4.29)

N 9 :
(2 — 1> SN_1¢1d.5’ if p=p.
+

. u(x) :
lim ——————— =k f
230 p(@)[a]*-—1 s>
lim u(@) =k if p=p.

=0 p(z)|z|~ /2 In x|



Schrédinger operators with boundary singular potential 26

Next we next show that k = 1. In fact, if k& < 1, there exists ¢y > 0 such that for any e € (0, ¢)

k:l
Ue +¢

and then

k+1
lim ¢ / ued’yQSEQ/ Pt <
~ I 2 Ko HTH

et M

2\/u+u1/N ids it >,
S+_

N , .

(2 - 1> SN_1¢1dS if p=p,
+

which contradicts (4.29). Thus, (1.11) and (1.12) hold true. O

Proof of Corollary C. Identity (1.14). As a consequence of Proposition 4.2, for any ¢ € X,(Q2)
and € > 0 we set Q. = QN B, and there holds

oz/ﬂgfyﬁcuqsi}dx

_ Q px Q d)# 8< Q Q
_/Qe%ﬁugd% +/maBE( A/NORT +< +< 62 | ds.

Using Proposition 7?7, we have

Q
/ ( (bc +( 6<+< )¢2)d8=—<<O>A<e><1+o<1>>,
QNOB.

where A(e) is defined in (2.5).
The uniqueness follows direct from Kato’s inequality (3.4). O

5 The Dirichlet problem

Proof of Theorem D. Note that in section §3.2 for A € (9 nﬁfz), problem

Lyu=0 in €,
U=\ on 0f)

has a unique solution, denoting Ki}()\), which verifies the indentity

/Q K2 (AL Cdyt = /8 . Cd(AB]) for all ¢ € X,(Q).

Moreover, problem
Lyu=v in Q,
u=20 on 0f)
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has a unique solution, denoting (Gf}(l/), which verifies the indentity

Q * Q Q
/Q KS(\)L5CdyS = /Q Cdy for all ¢ € X,(Q).

Together with Corollary C and the linearity of operator £, we have that Kf}()\) —i—Gﬁ(V) + kol
is a weak solution of (1.18) satisfying (1.20) and the uniqueness follows directly from Kato’s
inequality (3.4). O

Our final part is to classify the boundary data for nonnegative £,-harmonic function.

Proof of Theorem E. Let Q be a bounded C? domain and u be a nonnegative £,,-harmonic
function in 2. We now show that there exists a nonnegative measure A on 992\ {0} and k£ > 0
such that

u =K\ + ko), (5.1)

For € > 0 the term p|z|~2 is bounded in Q. = QN B;. Hence the exists a nonnegative Radon
measure A, such that « is the unique solution of

Lyu=0 in €,
U= Ae on 0.

Furthermore A is the boundary trace is achieved in dynamical sense, see [14] and references

therein. Hence for any ¢ € C'(2) vanishing on B, there holds

lim [ w(dS = Cd)e,
6=0 Jx; 20N B

where X5 = {x € Q: p(x) = 6}. If we write
Ae = AcloonBe Tl onoB.

it proves that for 0 < ¢ < €, A \_agmBg: e loan pe. This defines in a unique way a nonnega-
tive Radon A on 99 \ {0} measure such that (5.1) holds for all ¢ € X,(€2) vanishing near 0.
Furthermore pu € L'(€,) for any € > 0. Denote by Kf}é the Poisson potential of £, in Q.. Then

ulo,= K [Aloonse] + K [ulonos. -
For 0 < € < ¢, one has that K%’ [Ae loonBe, ] [onaB. > 0. Therefore ]K,S}' [Aer loonBe,] > Kf}f [AeloanBe]
in Q.. Hence

lim K2 [Aeloonse] = K/ [A] <u in Q.

Next we aim to characterize the behaviour at 0. By contradiction we assume that

lim sup/ udﬁf} = lim udﬁf} = 00.
=0  JQnoB. =0 JansB.,
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Then for any m > 0 there exists a sequence {¢,, 1} C R% tending to 0 and a sequence {/,, 1} C
R% tending to oo such that

/ mim{u,Kmyk}dﬂz2 =m.
QnoB.,
. Qe
Set Ty 1 = min{u LgmaBsk,fmJg} and set w1 = K, ™ [ijkaaBEk]. Then

Uk S U in Qeka

and we recall that

LB — ¢ (14 o(1
/Q o, R0 = a1 o0,

where ¢, is the constant defined in (2.4). Combining the boundary Harnack inequality with the
standard Harnack inequality, one infers

pla) _ 9p@) _ump(e) _  #@) _ pla)
“oly) = G0 wnaly) © o8 = () 52
for all z,y € Q such that |z| = |y| > 2e. If we set ¢5}(x) = %0.(2) and U, k(x) = tm k() then
a g p(x) ’ o(z)
(5.2) becomes
O (1) < o i (2) < C44q?“ (@) < cy5. (5.3)

ca7 < Ch6 "
o

P2 y) ~ Umk(y) o2(y)

Assume for a while that we have proved that there exists # > 0, independent of m and k
such that for for any

/ i (p5) > 0 / i (pB2) = Om. (5.4)
0B2¢, NQ dBe, NQ

If we assume that for § < 2¢y,

. C
2 z/ 62 (p82) > .
"= Jaross " (v5) 2

one has for k > ky,

] Om 0 Q
ik (pB7) > Om > —— O (B
/Qm&Bzek ( #) 2¢y QNIBag, g ( “)
Since C45
Q < Q
Do) < 20)
and
U 1 (T) > Carlim 1(Y),
we derive

1

. Omecae 0 Q
o) [ d (o) = ) [ (o).
car ( OB, N (05;) 2cpcas ) QNOBs., (05;)
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Therefore
Uk (X) > 648m¢2(:z:) for all = € Q s.t. |z |= 2¢,

and c4g > 0 is independent of m and €;. This implies by the maximum principle and letting
e — 0
w(x) > Uy () > 048m¢f}(x) for all = € Q. (5.5)

Since m is arbitrary we obtain a contradiction. Hence there holds

lim sup/ udﬁf} = lim udﬁf} =m, < o0. (5.6)
=0 JOnaB. =0 JanaB.,

Then inequality (5.5) holds without truncation with m replaced by m,. We recall that
we =K [ulonon,] = ulo, K [Aeloonse] in Qe (5.7)

Case 1: We first assume that m,, > 0. Then (5.4) combined with the maximum principle yields

/ we,d (pB) > / e, d (pBil) > 0 we,d (pBY) = Omy (1 + o(1)),
8Be, NQ 9B2¢, NQ 8Bc, NQ
with e = p~lwe. Inequality (5.3) is replaced by
HQ x H2 T
Ca7 < 046??2( ) < el < 644¢g( ) < in Qg (5.8)
Hy) — wely) 1Y)

Therefore, for €, small enough and |z| = 2¢y,
U'Je(x)/ d (PBE}) < 045/ We, (y)d (pﬁf}) < 2c45my
0B., NQ 9B., N0

4eq5my, / ‘0 Q deggcasmy g Q
< 2o $2(y)d (pB2) < “HE M ja ) d(pB2) .
s, ™ (o) = = % - (nBy)

which implies

degacasmy

We, (z) < 7@?(1’) = 049mu¢f}(x) for x € QN OBy, . (5.9)
Cpucat
Hence 4
We, (z) < wgbﬁ(:ﬁ) = 04gmu¢ff(x) for x € QN OBy,. (5.10)

CuC47
Since we, and ¢, are £,-harmonic in €y, , and vanishes on 92 N By, it follows that inequality

(5.10) also holds for any = € Qg,. By definition w, = Ki}k [ulanos,, |, hence

Qe
Ky [ulonos,, J(z) < C4gmu¢2(l‘) for z € Qg . (5.11)
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Next we obtain the estimate from below. From (5.8), with |z| = 2¢,

; . CA7 My,
e, () d(pB) = car e, (y)d (pBF) >

2
8Be, NQ 9Be,,NQ

Ca7My, 02 (0 d Q C47C44My 5 d Q)
> e | P 080) = i) / ot )

4e,, deyeqs
Hence
C47C44MN
we,, () > Taﬁ)u%&}(ﬂﬁ) 1= csomudy (z) for € QN OBy,
It follows that
Qe
K™ [ulonos,, J(z) > C5Omu¢f}(m‘) for = € Qa,. (5.12)

From (5.7), (5.12) and (5.11) we infer

Qe .
csomud), < ula,, —Ku* [\, Loanse, ] < cagmudy, 0 Qoe,. (5.13)
This implies, by letting e — 0,

050mu¢>22 <u-— Kf}[)\] < C4gmu¢2 in Q.

Therefore, the function u — Kfj [A] is £,-harmonic and positive in €2 and it vanishes on 0. By
Corollary C, it implies that it coincides with cqﬁf} for some ¢ > 0 (and in that case c5om, < ¢ <
049mu)~

Case 2: Assume m, = 0. Following the same inequalities as in Case 1, (5.9) is replaced by: for
any 0 > 0 there exists kg > 0 such that for k > ko,

We, () < 6(;52(3:) for x € QN OBy, .
Hence (5.13) is transformed into
Qek (9] .
0 <wula, —Ku™ A loonse | < 0¢,  in Q.

Letting successively ¢, — 0 and 6 — 0 yields u — Kf} [A] = 0 in ©, which ends the proof. O

Appendx: Estimates (1.9)

Proposition A.1 Assume Q is a bounded C? domain such that 0 € 0K satisfying condition
(C-1) and let 78 be defined by (1.8) and normalized by ”’}/I?HLQ(Q) =1. Then

. N_1 0 . N—-1
l%rQ 17u (r,.) =ci1 in Cp (SY)

and

r—0

N
lim r%fyf}r(r, J=a <1 — 2> 1 locally uniformly in Sf_l.
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Proof. Since ay + (N —2)ay — p+1— N =0, the function z — w(x) := |z|** satisfies
Lw(z) = L0 — Ef}w = |z|*+ 2 (N —1— Ef}]mﬁ) in RV \ {0}.

loc

Furthermore, Vw € L2 (R™). Let Ry > 0 such that N —1 > ESR% and m > 0 such that mw >

wf} on QNBg . Then the function (yﬁ—mw)Jr belongs to H,(€2) and satisfies ENM('yf} —mw)+ <0
in the dual of H,(£2). Hence

i (ww{} — mw)y 2 + (|§| - 653) (i mw)i) dr < 0.

Therefore (7 — mw), < 0, which implies that

M
0< fyf}(a:) < mlx|* for all = € Q.

Then we proceed as in the proof of Proposition 4.2. We flatten the boundary near 0 and set

v(t,o) = T*O‘*’yf}(r, o) with t=1Inr,

where the function :yf} is defined similarly as @ in (4.3). Then v is bounded in (—oo, Ty] X Sf -t
where it satisfies

(L4 e(t, ))va + (N =2+ 2ay +e(t,.) v + (o (ay + N —2) — p+e3(t,.) + e%ﬁg) v
+ Av+ (Vv ea(t,.)) + (Vo es(t, ) + (V' ((V'v,en)), e(t,.)) =0,

instead of (4.5). It vanishes on (—oo, Tp] x OSY ! and the ¢; satisfy again (4.6).

Case 1: p > p1. The energy method used in proof of Proposition 4.2 applies with no
modification and we infer that there exists c51 > 0 such that

v(t,.) = 5191 as t — —oo

in C’l(Sffl) and v;(t,.) — 0 uniformly in Sﬁfl. If c51 = 0, we can prove, as in Proposition 4.2-
(ii) that there exists 7 > 0 such that

'yf}(a;) < cso|x|*tTT for all z € Q. (5.14)

Iterating this process, we infer that (5.14) holds for any 7 > 0. For k& > 1, let oy 4 be the
positive root of (2.1) and put wg(z) = |z|* +. Then

Lwy(z) = |z|*+72 (A — Eﬁ\x|2) in RV \ {0}.

Since A\, — 00, as k — 0o, we choose k such that \; > 62 (diam(£2))2. Hence wy, is a supersolution
of £,,. Because 'yf}(x) = o(wg(z)) near x = 0, it follows that ’7,8(.%) < eo(wg(z)) in Q for any
z € Q). Hence 'yf} = 0, which is a contradiction. Finally it implies that cs; > 0, which yields
(1.9)-(i). Because the convergence holds in Cl(Sﬂr\Ll) and v(t,.) — 0, we infer

lim rl_o‘+Vﬁ/f}(r, ) =cs1 (a+w1e + V’wl)

r—0
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where e = é—‘ This implies the claim.

N_1

Case 2: = p1. Set v(t,.) = r2 " u(r,.) with ¢ = Inr and X (¢) = /N 1v(t,.)w1d5’ and
SN -

obtain again (4.23), where F(¢,.) satisfies (4.24). Since X't) — 0 and X is bounded, it follows
that X (¢) admits a limit cs2 > 0 when t — —oo. As in the proof of Theorem A, we infer that

tg@mv(t,.) =cs5¢1 in CI(S_]‘\_[A) and tii{rloo ve(t,.) =0 uniformly in S_]X*l.

If c5o = 0 we derive a contradiction as in the first case. O
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