

Porous polymers and metallic nanoparticles: A hybrid wedding as a robust method toward efficient supported catalytic systems

Romain Poupart, Daniel Grande, Benjamin Carbonnier, Benjamin Le

Droumaguet

▶ To cite this version:

Romain Poupart, Daniel Grande, Benjamin Carbonnier, Benjamin Le Droumaguet. Porous polymers and metallic nanoparticles: A hybrid wedding as a robust method toward efficient supported catalytic systems. Progress in Polymer Science, 2019, 96, pp.21-42. 10.1016/j.progpolymsci.2019.05.003 . hal-02157146

HAL Id: hal-02157146 https://hal.science/hal-02157146

Submitted on 5 Jul2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Porous Polymers and Metallic Nanoparticles: a Hybrid Wedding as a Robust Way Toward Efficient Supported Catalytic Systems

Romain Poupart, Daniel Grande, Benjamin Carbonnier, Benjamin Le Droumaguet*

Université Paris Est, Institut de Chimie et des Matériaux Paris-Est (ICMPE), UMR 7182, CNRS, UPEC, F- 94320 THIAIS France

Submitted as a review article to Progress in Polymer Science

* Corresponding author: Dr. Benjamin Le Droumaguet
Phone: +33 (0)1 49 78 11 77
Fax: +33 (0)1 49 78 12 08
E-mail: ledroumaguet@icmpe.cnrs.fr

Abstract: Over the past recent years, nanoparticles have been the subject of numerous studies, due to their unique intrinsic properties. In particular, they have found widespread interest in heterogeneous catalysis, and their development in this area is growing. Nevertheless, they still display drawbacks and, among them, the question of their recyclability may arise. In order to avoid tedious filtration steps, metallic nanoparticles may be advantageously supported on miscellaneous porous materials. Polymer materials can be envisaged as versatile and effective supports, due to their low production cost and easy functionalization. This review will first focus on different types of porous polymers developed in view of their further use as catalytic supports. Then, a brief description of the nanoparticles synthesis will be addressed, before a presentation of typical examples reported in the literature about metallic nanoparticles immobilized on porous polymers meant for heterogeneous supported catalysis.

Keywords: Porous polymers; Metallic nanoparticles; Hybrid materials; Supported heterogeneous catalysis

Abbreviations

AM	acrylamide
ATRP	atom transfer radical polymerization
BCP	block copolymer
BET	Brunauer-Emmett-Teller
ВЈН	Barrett-Joyner-Halenda
CEC	capillary electrochromatography
DABCO	1,4-diazabicyclo[2.2.2]octane
DMF	N,N-dimethylformamide
DMSO	dimethylsulfoxide
DSC	differential scanning calorimetry
DSDMA	disulfide-based dimethacrylate (bis(2-methacryloyl)oxyethyl disulfide)
DTT	D,L-dithiothreitol
EGDMA	ethylene glycol dimethacrylate
GCMA	glycerol carbonate methacrylate
GMA	glycidyl methacrylate
HEMA	2-hydroxyethyl methacrylate
HIPE	high internal phase emulsion
IUPAC	International union of pure and applied chemistry
MIP	mercury intrusion porosimetry
NAS	N-acryloxysuccinimide
NMR	nuclear magnetic resonance
NP	nanoparticle; PAA, poly(acrylic acid)
PEI	poly(ethylene imine)

PES	poly(ether sulfone)
PI	polyisoprene
PLA	poly(D,L-lactide)
PMMA	poly(methyl methacrylate)
PS	polystyrene
PVA	poly(vinyl alcohol)
RAFT	reversible addition-fragmentation chain transfer
ROMP	ring opening metathesis polymerization
ROP	ring opening polymerization
SEM	scaning electron microscopy
TEOS	tetraethyl orthosilicate
TFA	trifluoroacetic acid
THF	tetrahydrofuran
TIPS	temperature-induced phase separation
TON	turnover number
UV	ultraviolet
VBC or 4-VBC	4-vinylbenzyl chloride
VDMA	2-vinyl-4,4-dimethylazlactone

Contents

1	Intr	oduction1
2	Por	ous polymers: general features, synthesis, and characterization
	2.1	Basics on porous polymers
	2.2	Macroporous polymers
	2.3	Nanoporous polymers10
	2.4	Biporous polymers
	2.5	Characterization techniques of porous materials
3	Арр	plication of metallic nanoparticle immobilized on porous polymers as supported
ca	talysts	
	3.1	Key features of nanoparticles
	3.2	Nanoparticles supported by macroporous polymers
	3.3	Nanoparticles supported by nanoporous polymers
	3.4	Nanoparticles supported by biporous polymers
4	Crit	ical appraisal of the different strategies
5	Cor	clusions and prospects
A	cknow	ledgments
Re	eferen	ces

1 1 Introduction

2 A catalyst is commonly described by the International Union of Pure and Applied 3 Chemistry (IUPAC) as a substance that increases the rate of a reaction without modifying the 4 overall standard Gibbs energy change in the reaction. Two different types of catalytic 5 processes actually exist: (i) one type based on homogeneous catalysis, namely the catalyst is 6 present in the same phase as the reactants, mostly a liquid phase [1], while (*ii*) the other type 7 is named as heterogeneous when the catalyst and the reactants are in different phases. 8 Though, the frontier between both kinds of processes can be sometimes really thin in 9 particular cases [2]. The metal-based catalyst is mostly in the solid state, finely divided, and 10 the reactants are in the liquid or gaseous one. Nevertheless, some examples of heterogeneous 11 biphasic catalysis reported that the catalyst remains in one liquid phase (i.e. water) and 12 reactants in another one (*i.e.* oil), such as for the hydroformylation of propene, for instance 13 [3]. One such example illustrates very well the possibility to perform catalysis by phase 14 transfer. Recent developments in this research area notably demonstrated that catalytic 15 reactions, especially organometallic-based ones, can be carried out in more environmentally-16 friendly conditions than a few years ago [4]. Such catalytic reactions more and more call upon 17 green and sustainable chemistry, and efforts have been put forward in this direction to address 18 specific issues related to the recycling of the catalysts.

In this context, supported metallic nanoparticles present some undeniable advantages regarding heterogeneous catalysis. They have actually shown an increasing interest over the last decade. Such nanometer-sized metallic particles, immobilized on high surface area materials, can now be relatively well characterized by different techniques and have shown some great catalytic performances. The preparation of such hybrid materials involves the design and development of still novel and efficient catalysts, and thus the improvement of (in)organic supports in terms of specific surface area, porosity, surface functionality and

1 chemical inertness towards a wide variety of versatile or harsh reaction conditions [5]. 2 Catalytic systems are commonly used in various industrial techniques [6] as well as in our 3 common life, as demonstrated by automotive catalytic converters for instance [5]. While a 4 serious drawback has been encountered with suspended nanoparticles, *i.e.* the recycling of the 5 nanometal catalyst through time-consuming and non-environmentally friendly purification 6 processes, miscellaneous solutions exists. First, a recently reported solution to address this 7 issue relies on the use of nanoparticles bearing a magnetic core, generally γ -Fe₂O₃. In this 8 case, the nanometal recovery step can be achieved by harvesting with the help of a magnet. 9 However, a coating (silica, carbon, or polymer) of these magnetic metallic nanoparticles is 10 generally required to allow for their suspension in a stable fashion, thus avoiding their 11 coalescence, and protecting them from the surrounding environment. When a polymer coating 12 is implemented for such magnetic nanoparticles, the resulting coated particles are not stable in 13 harsh reaction conditions, such as at high temperature. The same observations have been 14 made with silica coatings that are porous. Such an inorganic coating has a very low stability in 15 harsh pH conditions. Finally, when carbon-based coatings are used for magnetic 16 nanoparticles, they aim at agglomerating and form clusters, which would lead to a decrease of 17 specific surface area of the catalysts [7]. Then, another solution consists in using macroscopic 18 porous matrices as supports for the immobilization of metallic nanoparticles at the pore 19 surface. The robust and straightforward immobilization of nanoparticles at the pore surface of 20 suitable supports, notably by tuning the nature of the interface, enables to further avoid 21 tedious purification processes, as the supported catalyst can be readily removed from the 22 reaction mixture by mere filtration.

Hybrid catalysts based on supported metallic nanoparticles generally consist of (in)organic/hybrid porous frameworks presenting a rather high specific surface area that allows for a large amount of metallic nanoparticles to be immobilized in a straightforward and

1 robust fashion. Among such high specific surface area supports, inorganic materials like 2 zeolites [8] or ordered mesoporous silicas [9] can be found. Zeolites possess pores within the 3 microporous range, enabling them to be used as catalyst supports in liquid or gas reaction 4 conditions. Even though zeolites can be synthetized in rather mild temperature conditions 5 (90–180 °C), their preparation requires pressures up to 15 bars in autoclaves. Other inorganic 6 supports like mesoporous silicas can be prepared in a straightforward fashion by reacting in a first step a surfactant typically arising from the Tween[®] or Pluronic[®] family and a precursor 7 8 mainly tetraethyl orthosilicate (TEOS) in mild conditions [10]. However, the major concern 9 of such porous inorganic supports relies on the harsh reaction conditions required in the 10 calcination step that enables for the disappearance of the organic surfactant and thus the 11 generation of the porosity. The calcination step is indeed performed at very high temperatures, 12 *i.e.* hundreds of °C, for several hours, which is highly energy- and time-consuming. On the 13 other hand, organic polymer-based supports as well as modified carbon nanotubes [11] have 14 been recently developed. Finally, hybrid structures, *i.e.* Metal-Organic Frameworks [12] 15 (MOFs) have been more recently deeply investigated in heterogeneous supported catalysis 16 applications, due to their versatility and remarkably high surface area. Unfortunately, this 17 class of hybrid materials suffers from high fabrication costs, poor selectivity, low capacity, 18 and difficulty in recycling/regeneration [13].

In the case of polymeric materials, some advantages rapidly come to mind. They can first be easily functionalized so as to tune the pore surface chemistry, which is of upmost importance for further adsorption of chemical species or metallic nanoparticles. One can also easily play with the hydrophilic/hydrophobic nature of the polymer interface that will have some consequences on the interaction with the surrounding fluid, notably in terms of wettability. The porosity can also be readily varied in terms of pore size, ratio, and shape. Such polymeric materials are generally cross-linked, allowing for a better stability of the

1 resulting hybrids in miscellaneous experimental conditions such as harsh pH or temperature. 2 Finally, such polymer-based porous supports have mechanical properties tunable in a useful 3 range, and their production cost is lower than that of their inorganic analogues. On the 4 opposite, some drawbacks can be noticed with such porous polymers: they cannot generally 5 resist to high pressure and temperature, rendering some catalytic chemical reactions on these supports difficult to envision. However, they still remain common porous supports for 6 7 metallic nanoparticles immobilization and are thus the subject of widespread interest in the 8 field of heterogeneous catalysis.

9 In light of this general introduction, this review will focus on the design and synthesis 10 of hybrid materials consisting of metallic nanoparticles immobilized at the pore surface of 11 porous polymers for catalytic reaction purposes. A first section will be devoted to general 12 features about porous polymer-based materials; then the main strategies to prepare such 13 porous supports and the associated techniques of characterization will be presented. The 14 reader should bear in mind that this section will not give a full overview of all strategies 15 implemented for the synthesis of porous polymers, but it will rather focus on those mainly 16 used for the preparation of porous polymeric systems meant for supported catalysis 17 applications. It is thus recommended for casual readers to refer to more general reviews on 18 porous polymers to get a full overview of their preparation routes [14]. A second section will 19 then be directed towards the use of hybrid porous materials obtained after metallic 20 nanoparticles immobilization at the pore surface of polymeric supports, and their further 21 implementation in heterogeneous catalysis.

2 Porous polymers: general features, synthesis, and characterization

2

2.1 Basics on porous polymers

3 According to the IUPAC [13], porous solid materials can be classified into three main 4 categories. Firstly, microporous materials are characterized by pore diameters below 2 nm. 5 Secondly, the term "mesoporous" is used to qualify materials with pore diameters between 2 6 and 50 nm. Finally, macroporous materials can be distinguished by a pore diameter larger 7 than 50 nm. It is at this stage very important to note that this classification is the only one that 8 is commonly admitted by the scientific community. However, in the areas of materials science 9 and nanotechnologies, the term "nanoporous" is commonly applied to materials containing 10 pore sizes lower than 100 nm, even though such a terminology can be somehow confusing for 11 casual readers and even experts in the field. Likewise, materials with porosity in the 12 micrometer range (or more) are often called macroporous materials. This general 13 classification can be applied to any type of porous material, namely inorganic, hybrid or 14 organic ones.

15

16 **2.2 Macroporous polymers**

Macroporous materials may be prepared by different techniques through the use of miscellaneous porogens. In 1967, Seidl *et al.* [15] distinguished three main synthetic strategies to prepare porous polymeric matrices: *(i)* by using a porogenic solvent, *(ii)* by using a non-solvent as the porogen or *(iii)* by adding a linear polymer as a macromolecular porogen. According to Švec and Fréchet, these synthetic strategies are the most commonly used, but above all they are easy to implement [16].

When a solvent is used as a porogenic agent, the initiator, monomer(s) and crosslinker are dissolved in a solvent or in a solvent mixture. When the polymerization is triggered by photochemical or thermal decomposition of the initiator, polymeric particles nucleate,

1 grow, and coalesce in the solvent. Depending on the affinity of the solvent for the growing 2 cross-linked polymer, the former will be ejected more or less promptly from the polymer 3 matrix through a syneresis phenomenon, creating voids filled with solvent. Upon porogenic 4 solvent removal, these voids generate the porosity within the polymeric material. As the 5 moment of the solvent ejection is closely related to the solvent and polymer compatibility, the 6 pore size of the resulting materials can be thus easily tuned by merely changing the solvent 7 polarity. In addition, the porosity ratio will also be dictated by the comonomers/(co)solvent(s) 8 volume ratio. Finally, the porosity can be open or closed, depending on the amount of 9 porogenic agent chosen. For very low porogenic solvent(s) to (co)monomers ratio, it is 10 particularly true.

Such a way of generating porosity within polymeric materials has been widely 11 12 implemented notably for preparing polymer-based monolithic columns with an interconnected 13 porosity. This enables liquids or gases to easily flow through such monolithic columns, 14 depending on the average pore size of the material as well as on the viscosity of the solvent, to 15 avoid too high back pressures. Different monolithic columns have been prepared so far 16 following this synthetic strategy, whatever the nature of the monomer used. Generally, the 17 monomer is functional, that is to say it possesses a chemical moiety that can be easily 18 chemically modified through a post-polymerization step consisting of a reaction occurring at 19 the interface of the pore with the surrounding fluid, allowing for the interfacial properties of 20 the pore surface to be easily tuned. Historically, the first monolithic capillaries were prepared 21 by Švec's research group in the mid-1990's using glycidyl methacrylate (GMA) as a 22 functional monomer [17]. GMA bears an epoxide moiety that can be easily functionalized 23 through ring-opening reaction with rather strong nucleophiles like amines [17]. Later on, the 24 same research group has deeply expanded his pioneering works on the exploitation of GMA 25 monomer, notably for chromatographic applications [18]. It is now used in other laboratories

1 [19, 20], allowing for a plethora of potential applications to be envisioned. In the late 1990's, 2 4-chloromethyl styrene, also known as 4-vinylbenzyl chloride (4-VBC or VBC), was 3 investigated in applications related to monolithic columns [21]. This styrenic monomer gave 4 birth to highly hydrophobic columns, while the pore surface of the resulting materials can be 5 easily tuned by nucleophilic substitution of the benzylic chlorine. It is worth mentioning that 6 such functionalization reactions can lead to hypercrosslinked materials, provided that the 7 chemical graft to anchor possesses two identical reactive groups [22]. 2-Vinyl-4,4-8 dimethylazlactone (VDMA) is another interesting monomer used for the preparation of 9 porous materials [23]. Indeed, VDMA can be readily incorporated into the composition of 10 polymerization mixtures in conjunction with diverse hydrophilic monomers, e.g. 2-11 hydroxyethyl methacrylate (HEMA) and acrylamide (AM), to prepare functional in-capillary 12 monoliths that can be functionalized with amine bearing bio(macro)molecules [23]. Finally, 13 *N*-acryloxysuccinimide (NAS) and glycidyl carbonate methacrylate (GCMA) have been more 14 recently implemented for the design of innovative functional porous in-capillary columns, as 15 shown in Fig. 1A [24]. NAS can undergo nucleophilic substitution due to the presence of 16 pendant activated ester moieties and has been widely used for chromatographic applications, 17 such as capillary electrochromatography (CEC) separations [25-30] or for flow through 18 catalysis applications [31]. Alternatively, oligomeric or polymeric chains have also been used 19 as porogens in other studies (Fig. 1B) [32, 33].

1

2 Fig. 1. Examples of macroporous polymeric materials derived from the use of porogenic 3 agents. (A) N-acryloylsuccinimide-based monoliths obtained in the presence of a porogenic 4 solvent. [24], Copyright 2007 (Reproduced with permission from Elsevier Ltd). (B) 5 polystyrene macroporous monolith obtained after leaching of a semi-interpenetrated polycaprolactone oligomer. [32], Copyright 2010 (Reproduced with permission from Elsevier 6 7 Ltd). (C) Poly(D,L-lactic-co-glycolic acid)-based frameworks using NaCl cubic particles as 8 macroporogens [34]. Copyright 2005. Reproduced with permission from Elsevier Ltd. (D) 9 Porous poly(2-hydroxyethyl methacrylate) material obtained upon removal of sintered poly(methyl methacrylate) beads as 3-D macroporogenic template. [35], Copyright 2014 10 11 (Reproduced with permission from Elsevier Ltd).

12

Other porogens than those defined by Seidl and coworkers are nowadays commonly
used for different purposes. Especially, macroporogen templating has gained a tremendous

1 interest in the last years. It relies on the use of a so-called template which acts as a 2 macroporogen. It is added to the initial polymerization mixture (consisting of the initiator, the 3 (co)monomer(s) and the cross-linker(s)) and immediately removed after the polymerization 4 completion. The judicious choice of this porogenic template notably allows for tuning the 5 pore morphology as the pores will present a shape that perfectly matches the template imprint. 6 Such porogenic templates are based on solid, mostly inorganic crystal particle, such as sodium 7 chloride (NaCl) [36], calcium carbonate (CaCO₃) [37] or ammonium bicarbonate (NH₄HCO₃) 8 [36] particles, for instance. The use of such a methodology presents some non-negligible 9 advantages as it permits to vary the size (by particle sieving) and morphology (depending on 10 the shape of selected porogen) of the pores, while their removal is generally simple to achieve 11 through easy template leaching into an appropriate aqueous solution. In fact, they are usually 12 dissolved in pure water through particle leaching, such as for the extraction of NaCl particles. 13 Alternatively, CaCO₃ particle-based templates require an acidic aqueous solution to be 14 removed from the polymer matrix. It is worth mentioning that the porogenic template could 15 also be prepared with the desired shape [34] (Fig. 1C). As a matter of fact, other 16 investigations reported on the use of different sacrificial templates derived from organic 17 (macro)molecules, such as paraffin or poly(methyl methacrylate) (PMMA) beads. In this case, 18 the porogen could also be dissolved via Soxhlet extraction with an appropriate organic 19 solvent. LaNasa et al. [38] and Le Droumaguet et al. [35] independently demonstrated that it 20 is possible to successfully use sintered polymeric PMMA beads as an original porogenic 21 template (Fig. 1D). Such sintered PMMA beads could further be extracted in organic 22 solvent(s), while the porous polymeric matrix remains intact, due to permanent cross-linking. 23 These sintered spherical beads allowed for the generation of interconnected spherical pores 24 upon removal of the macroporogen.

1

2.3 Nanoporous polymers

Miscellaneous approaches have been developed so far to prepare nanoporous polymerbased materials. These materials are mostly used as filtration membranes. In this particular case, the process is subtler than for the preparation of macroporous materials, and it usually involves the removal of a sacrificial polymer segment from nanostructured precursors, thus generating pores at the nanoscale level. Techniques like track-etching which lead to nanopores will not be addressed here, but reviews discussing the subject may be easily found [39].

9 A largely investigated strategy consists in specifically removing one sacrificial block 10 from oriented block copolymers (BCPs), thus leading to ordered nanoporous materials via a 11 process milder than that used with other strategies. BCPs and especially diblock copolymers 12 develop very precise equilibrium domain morphologies depending on three main critical 13 parameters, *i.e.* the volume fraction of both blocks f, the number of repeating units N in the copolymer, and χ_{AB} the Flory-Huggins interaction parameter between the two different blocks 14 15 [40]. According to theoretical phase diagrams, body-centered spheres, hexagonally close-16 packed cylinders, bicontinuous gyroids or alternating lamellae can be obtained (Fig. 2) [41, 17 42]. Polydispersity of both blocks is also a key parameter to precisely control the morphology 18 of the block copolymers after orientation of the nanodomains. Indeed, a high polydispersity of 19 the minority block has been shown to lead to a change of morphology due to a larger 20 interfacial curvature [43]. On the opposite, a high polydispersity of the majority one was 21 demonstrated to lead to a change of morphology due to a smaller interfacial curvature. So far, 22 different natures of sacrificial blocks have been implemented to prepare nanoporous materials 23 from this strategy. Historically, the first diblock copolymer precursors used were constituted 24 of a degradable polyisoprene (PI) block and of a stable polystyrene-derived (4vinylphenyl)dimethyl-2-propoxysilane) block, both synthetized by anionic polymerization. 25

The former block was removed by ozonolysis that selectively cleaved the carbon-carbon double bonds of the isoprene units, while the polystyrene (PS) segment was simultaneously crosslinked, thus revealing nanoporous PS-based networks [44]. Later on, other research groups have successfully developed other sacrificial blocks by varying the conditions of etching [45]. Herein, we will focus on poly(D,L-lactide) (PLA), which has been widely used in the area of nanoporous polymers.

7

8 Fig. 2. (A) Morphology diagram of AB diblock copolymers obtained upon orientation of 9 respective BCP domains depending on the segregation regime (χN) and the volume fraction of 10 the minor component (*f*): L, H, Q²²⁹, Q²³⁰, CPS and DIS stand for lamellae, hexagonally 11 packed cylinders, spherical phases with *Im3m*, 3D gyroid phase, close-packed (fcc or 12 hexagonal) symmetry, or disorder respectively. [42], Copyright 2006 (Reproduced with 13 permission from the American Chemical Society). (B) Schematic representation of the various

possible morphologies depending on *f*_{black}: S and S', C and C', G and G', L and L' stand for
spheres, cylinders, gyroïds and lamellae, respectively. [41], Copyright 1999 (Reproduced with
permission from the American Institute of Physics).

4

5 PLA can be synthetized via anionic or coordinative ring-opening polymerization 6 (ROP) of 3,6-dimethyl-1,4-dioxane-2,5-dione (usually called D,L-lactide), from alcohol- [46] 7 or amine-based [47] initiators in the presence of organic [48] or organo-metallic [49] 8 catalysts. PLA is generally etched in mild conditions, namely in alkaline conditions and 9 especially in NaOH or KOH hydro-alcoholic solutions, as described by numerous studies 10 from Hillmyer and coworkers first in 2001 [50] or later on from our research group [51, 52] 11 (Fig. 3A). It is worth noticing that PLA can also be degraded in acidic conditions. It is not 12 until recently that such etching conditions have been reported in the literature for PS-b-PLA 13 [53].

1

Fig. 3. Examples of nanoporous polymeric materials. (A) Nanopores arising from selective hydrolysis of the PLA sacrificial block in a PS-*b*-PLA diblock copolymer. [51], Copyright 2011 (Reproduced with permission from Elsevier Ltd). (B) Nanopores arising from an intrinsically microporous polytriazine network. [54], Copyright 2008 (Reproduced with permission from Wiley-VCH publishers).

7

8 Another somehow smarter strategy to etch the sacrificial block from BCPs relies on 9 the selective cleavage of the junction present between both block. Indeed, the degradable 10 character of such a junction can lead to easy and straightforward removal of the entire 11 sacrificial block in a non-solvent of the remaining block. Such a strategy notably permits to

1 carry out the sacrificial block removal in milder conditions than those employed for the 2 chemical degradation of the block itself and to ensure the presence of a well-defined functional group at the pore surface. Russell's group pioneered this elegant strategy by 3 4 precisely positioning an anthracene photodimer at the junction between both blocks of a 5 polystyrene-block-poly(methyl methacrylate), the PMMA sacrificial block being further 6 released from the oriented diblock copolymers by dissociation of the photodimer under UV or 7 thermal stimuli, thus revealing nanopores [55]. Later on, different selectively cleavable 8 chemical junctions have been used in diblock copolymers. They can be categorized into three 9 main sub-classes. The first one relies on using an irreversibly cleavable junction between both 10 blocks (Table 1). Trityl ether [56, 57] which is easily cleavable by trifluoroacetic acid (TFA), 11 o-nitrobenzyl ester [58-60] or carbamate [61] derivative, hemiacetal junction [62] or acetal 12 moiety [63, 64] for instance have been successfully implemented in this context. Other 13 strategies involving reversible junctions have also been put forward, such as the 14 aforementioned $[4\pi+4\pi]$ anthracene photodimer [55, 65], disulfide bridges, [66, 67] oxi-15 imines [68] or hetero Diels-Alder adducts arising from RAFT agents [69], for instance, as 16 depicted in Table 2. Finally, other investigations reported on the possibility to implement 17 supramolecular junctions to link both blocks in a non-covalent manner, as shown in Table 3. 18 We can notably mention the use of terpyridine-ruthenium [70] or terpyridine-nickel [71] 19 complexes, ionic interactions [72] or even hydrogen bonds [73] taking place between the two 20 adjacent blocks of oriented copolymers.

- 21
- 22
- 23
- 24

Table 1. Irreversibly cleavable junctions used for the preparation of functionalized
 nanoporous polymers.

Type of block junction	Junction chemical structure	Cleavage agent/stimulus	Chemical function remaining after cleavage	References
Trityl ether		Brønsted or Lewis acid (ex: TFA)	он Primary alcohol	[56, 57]
o-nitrobenzyl ester	NO ₂	UV light $(\lambda = 350 \text{ nm})$	он н NO ₂ он он остроитории Carboxylic acid	[58-60, 74]
o-nitrobenzyl carbamate		UV light $(\lambda = 300 \text{ nm})$	$\begin{array}{c} & H & NO_2 \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ Primary amine \end{array}$	[61]
Hemiacetal ester	o o ^R	TFA	Carboxylic acid	[62]
Acetal	noton	TFA	он _н но Alcohol	[64]
Acetal		TFA	Aldehyde	[63]

- 4 **Table 2.** Reversible junctions used for the preparation of functionalized nanoporous
- 5 polymers.

Type of block junction	Junction formula	Cleavage agent/stimulus	Chemical function remaining after cleavage	References	
$[4\pi+4\pi]$		UV light ($\lambda = 280$ nm)			
anthracene	Å.	130-200 °C		[55, 65]	
photodimer	V V		Anthracene		
Disulfide bridge	× × ⁸ * *	DTT, TPP or glutathione	Thiol	[66, 67]	
			0		
Oxi-imines		TFA	H H ₂ N ²⁰	[68]	
			Primary amine		

2 Finally, some polymeric materials develop intrinsic free volume that can be viewed as 3 micropores; this is the so-called intrinsic microporosity. Such micropore sizes notably allow 4 such types of material to be used for gas-related applications [75-77] especially for separation 5 sciences, gas storage or heterogeneous catalysis in the gaseous phase. Only monomers that 6 offer a good rigidity to the polymer network can prevent them from pore collapse and enable 7 a permanent microporosity. Polymeric microporous polycyanurate [78], polyisocyanurate 8 [79], polyurethane [80], polytriazine [54] (Fig. 3B), based on Tröger's base [81] or porous 9 aromatics frameworks [82, 83] can be found among such innovative materials.

1	Table 3.	Supramolecular	junctions	used for	the	preparation	of	functionalized	nanoporous
---	----------	----------------	-----------	----------	-----	-------------	----	----------------	------------

2 polymers.

1

2.4 **Biporous polymers**

2 Biporous materials have gained a tremendous interest within the last decades in 3 different research area, such as civil engineering, tissue engineering or even drug delivery. 4 Scientists are now able to prepare porous polymers possessing at least two distinct levels of 5 porosity. Several methods have been so far developed to prepare biporous materials, including 6 rapid prototyping (also called solid free-form fabrication or additive manufacturing) which is 7 undergone by 3D printing [84], gas foaming [85], temperature-induced phase separation 8 (TIPS) [86], the polyHIPE technique or the double porogen templating approach. Due to 9 purpose considerations, this part will essentially focus on electropsun materials, polyHIPEs, 10 and doubly porous materials derived from the double porogen templating approach, as these 11 three strategies were recently implemented in the literature for the preparation of hybrid 12 polymer-based materials dedicated to supported catalysis.

13 Closely related to the use of a 3-D printer (i.e. rapid prototyping) for constructing 14 biporous materials, electrospinning is a powerful technique that allows for the formation of 15 highly porous scaffolds from solutions of polymeric materials [87]. The electrospinning 16 process was patented by Anton Formhals in 1934 [88], and it was intensively developed by 17 Reneker's research group [89, 90] in the 1990's and 2000's with the emergency of 18 nanotechnologies. Electrospun materials are prepared by applying a high voltage electrostatic 19 field (usually in the 10-30 kV range) between a syringe containing a viscous polymeric 20 solution and a collector for the deposition of polymeric fibers. Due to the fiber packing, pores 21 with a wide pore size distribution are generated between fibers, thus allowing for the 22 production of macroporous materials with highly interconnected voids and a large ratio of 23 surface area to volume [91]. Electrospun polymeric fibers present morphological similarities 24 as natural collagen fibrils, and their morphologies can be easily tuned by varying different 25 parameters, such as the voltage, the syringe needle-to-collector distance, the polymer solution

flow rate, the solvent volatility and polarity, the polymer solution viscosity and conductivity,
 etc. Therefore, choosing appropriate (co)solvents and electrospinning parameters are crucial
 to finely control the porous features of resulting polymeric materials (Fig. 4A) [92].

4

5 Alternatively, polymerization of High Internal Phase Emulsions (HIPEs) is a 6 technique of choice to prepare biporous polymeric frameworks [93, 94]. Such materials were 7 first designed by Barby and Haq from Unilever in the early 1980's [95]. In this patent, the 8 authors reported on the preparation of a biporous polymer network obtained after the 9 polymerization of a high internal phase emulsion, the porous polymer being subsequently 10 called polyHIPE. In such polyHIPE-based scaffolds, the higher porosity level arises from 11 drops of the discontinuous phase of the emulsion, while the lower one originates from the 12 interconnections between adjacent pores. PolyHIPEs can be prepared from water-in-oil (w/o) 13 [96], oil-in-water (o/w) [97] emulsions or from emulsified biphasic systems constituted by 14 two immiscible liquids [98] in the presence of surfactants that help to the emulsion 15 stabilization. Due to monomers and cross-linkers remaining in the external continuous phase, 16 w/o emulsions are appropriate to yield hydrophobic polymers such as styrenic polyHIPEs [99] 17 while o/w emulsions are suitable for the production of more hydrophilic polymers (Fig. 4B) 18 [97].

Fig. 4. Examples of biporous polymeric materials observed by SEM. (A) Biporous polymeric
material generated by a combination of electrospinning and particle leaching. [92], Copyright

4 2001 (Reproduced with permission from Wiley-VCH publishers). (B) Biporous polymeric

- 5 material obtained via high internal phase emulsion. [100], Copyright 2007 (Reproduced with
- 6 permission from Elsevier Ltd.).
- 7

Fig. 5. Examples of doubly porous materials obtained through the double porogen approach.
(A) Porous polyacrylonitrile prepared *via* a combination of electrospinning and CaCO₃
particle leaching. [101], Copyright 2013 (Reproduced with permission from Wiley-VCH

publishers). Biporous poly(hydroxyethyl methacrylate) frameworks obtained *via* a
 combination of NaCl particle leaching concomitant to the use of a porogenic solvent (B), (D)
 or *via* extraction of PMMA beads and a porogenic solvent (C), (E). [102], Copyright 2015.
 Reproduced with permission from Springer.

5

6 Last but not least, the double porogen templating approach consists in using two 7 different types of porogenic agents, *i.e.* one for the generation of pores within the micrometer 8 range and the other one to obtain pores within the nanometer range. For instance, the use of 9 electrospinning and particle leaching [101] (Fig. 5A) allowed for the preparation of materials 10 with a macroporosity generated by the fibers organization and a nanoporosity revealed by 11 calcium carbonate particle leaching using 1, 3, and 5% v/v of HCl aqueous solution, increasing the specific surface area of the porous scaffolds. Another interesting approach 12 13 using two different porogens was described by Ly et al. Poly(HEMA-co-EGDMA) monoliths 14 were synthetized using macroporogenic agents consisting of fused PMMA beads [102] or 15 NaCl particles [102-106] and different porogenic solvents (Fig. 5B,C) [103]. The fused 16 macroporogens allow for the pores generated after particle leaching to be interconnected, 17 while the porogenic solvent gives rise to a lower porosity level, thus enhancing the specific 18 surface area of the resulting doubly porous materials. Different experimental conditions such 19 as the particle sintering conditions (Spark Plasma Sintering vs. vacuum oven), the particle 20 morphology (spherical vs. cubic) as well as the porogenic solvent nature were carefully 21 investigated. Such studies have led to optimized materials on which were immobilized gold 22 nanoparticles, thus leading to porous hybrid materials meant for heterogeneous supported 23 catalysis [105, 106].

1

2.5 Characterization techniques of porous materials

Different techniques have been so far developed for the fine characterization of porous materials. In this way, critical information, including pore size, pore size distribution, pore connectivity (open *vs.* closed, *i.e.* presence or absence of interconnections between adjacent pores), and specific surface area, can be accurately determined using complementary physicochemical techniques in the laboratory.

7 Two different techniques are mainly used to determine the pore size of porous 8 polymeric materials. Such techniques rely on the type of porous materials under investigation. 9 Mercury intrusion porosimetry (also shortened as MIP, Table 4) is a specific technique 10 consisting in intruding a non-wetting liquid, *i.e.* mercury, into a porous sample placed within 11 a penetrometer. Upon applying an increasing pressure, mercury is forced to intrude into the 12 pores of the material [107]. Mercury does not wet materials, and so it will not penetrate pores 13 by capillary action, excepted if it is forced to do so by applying the said pressure. The pore 14 size can then be determined by correlating the pressure required for mercury intrusion into the 15 pores to the pore size *via* the Washburn equation (Equation 1) [108]:

16

$$P = \frac{-4\gamma\cos\theta}{D} \tag{1}$$

17 where *P* is the pressure applied for the mercury intrusion, γ is the mercury surface tension, θ is 18 the contact angle between the mercury and the pore wall, and *D* stands for the diameter of the 19 pore being intruded.

It is noteworthy that the pores are supposed to by cylindrical in this equation, while most of the real porosity is not. As said before, for MIP analyses, the porosimeter apply a pressure to force mercury intruding the pores, and the Washburn equation allows for determining the pore diameter [109]. Applying an increasing pressure indeed pushes known amounts of mercury into the porosity of the material, and it thus allows for determining the pore volume for a precise pore size. Additionally, knowing the distribution of the pore volume with respect to its pore size provides the pore size distribution [110]. However, this technique
 has some limitations especially regarding pore sizes in the nanometer range.

For materials exhibiting pore sizes that range from 2 to 300 nm, gas sorption is much more appropriate, especially for accuracy reasons [111]. Gas sorption measurements can use different gases: mostly N₂ [112] is used, but CO₂ [113] or Kr [114] can also be employed at a precise temperature to obtain isotherms. Gas sorption porosimetry is now routinely used to determine the specific surface area of porous materials, using the Brunauer-Emmett-Teller (BET) method [115], whose equation is given below (**Equation 2**):

9
$$\frac{P}{n^{a}(P_{0}-P)} = \frac{1}{n_{m}^{a}C} + \frac{(C-1)}{n_{m}^{a}C} \times \frac{P}{P_{0}}$$
(2)

10 where n^a is the gas amount adsorbed at the relative pressure $\frac{P}{P_0}$, n_m^a is the monolayer capacity, 11 and *C* is a constant, which is function of the isotherm shape. According to this equation, a 12 linear relation exists between $\frac{P}{n^a(P_0-P)}$ and $\frac{P}{P_0}$ so it is possible to determine n_m^a , thus leading to 13 (Equation 3):

14

3

4

5

6

7

8

$$A(BET) = n_m^a \times L \times a_m \tag{3}$$

15 where A(BET) is the specific surface area, L the Avogadro constant, and a_m the average area 16 occupied by each adsorbed molecule in the complete monolayer (*i.e.* the molecular cross-17 sectional area).

Gas sorption measurements can also give pore sizes for porous materials exhibiting a
porosity from 2 to 300 nm using the so-called Barrett-Joyner-Halenda (BJH) method (Table
4) [116]. Similarly to MIP, this calculation method leads to a pore size distribution, but it is
limited for materials exhibiting pores higher than 0.1 µm.

Alternatively, a less widespread characterization technique can be used for the porosity characterization of mesoporous materials, namely thermoporometry (**Table 4**), based on differential scanning calorimetry (DSC) [117]. This technique relies on the Gibbs Thomson equation (Equation 4) [113]:

3

$$D_p = 2\left(A + \frac{B}{T_m - T_{m0}}\right) \tag{4}$$

4 where D_p is the pore diameter, *A* and *B* are constants depending on saturating solvent, pore 5 geometry and measurements on cooling or heating, T_m and T_{m0} are the melting temperatures 6 of confined liquid and bulk liquid, respectively.

7 If a porous material is filled with a liquid, and then the latter is frozen, the melting 8 temperature $T_{\rm m}$ of the liquid will not be the same for that confined in the pores and that in the 9 bulk. $T_{\rm m}$ for the liquid in the pores will be lower, and the difference between $T_{\rm m}$ and the bulk 10 liquid melting temperature provides the pore diameter according to Equation 4. Besides, 11 comparing data from freezing and melting phenomena leads to precious information regarding 12 the pore shape. The limitation of this technique is due to its principle: if the pore size is too 13 high, the liquid confined into the pores will act as a bulk liquid. Therefore, the melting peak 14 of the confined liquid will be hidden into the profile of the bulk liquid melting peak and no 15 differences will be observable. However, DSC-based thermoporometry has been proved to be 16 effective using various solvents, like water [118], benzene [118], cyclohexane [119] or 17 acetonitrile [120] that are commonly used solvents. Another variation of the technique relies 18 on the use of nuclear magnetic resonance (NMR) [121].

1 Table 4. Common techniques used for the characterization of pore diameter in porous

2 polymers and their characteristics.

3

4 Finally, pycnometry can be used to determine an "apparent density" (more precisely a 5 volume) of a porous solid, which is defined as the ratio between its mass and the total volume enclosed by an envelope of fluid. Pycnometry mostly uses gases, such as helium (He), but it 6 7 can also be achieved with liquids, such as water or xylene. A typical pycnometer consists of 8 two sealed chambers connected between them by a valve. The first chamber is used as a 9 reference and the second one holds the sample. The sample chamber is filled with the fluid, 10 while the other one is still under vacuum. Then, the valve is opened and the fluid is allowed to 11 expand into the second chamber at a precise temperature while the pressure is measured, thus giving the volume of the sample V_S , *i.e.* the open porosity volume using the Boyle-Mariotte 12 13 law (Equation 5) [122]:

$$V_{S} = V_{C} - \frac{V_{r}}{1 - \frac{P_{1}}{P_{2}}}$$
(5)

where V_C is the volume of the empty sample chamber, V_r is the volume of the second chamber, P_1 is the first pressure in the sample chamber and P_2 is the pressure after expansion into the combined volume of the chambers.

It is important to notice that pycnometry gives the volume of the open porosity. In the case of a closed porosity in the sample, the density will be an effective one. To give access to the closed porosity, two measurements are required: one with a porous system and another with a bulk system. The comparison between both gives access to the volume of the closed porosity [123]. This method has been extended to other porous polymeric systems to enable the characterization of polymer gels for instance.

11

3 Application of metallic nanoparticle immobilized on porous polymers as supported catalysts

14

3.1 Key features of nanoparticles

15 Nanoparticles have been widely used as catalysts in the past decade, as they offer large 16 surface area and consequently enhanced catalytic activity. Well-documented reviews 17 discussing both synthesis and catalysis aspects can be found in the literature [124, 125] and, in 18 most cases, these reviews focused on a sole metal type. The reader is kindly referred to the 19 reviews by Takale et al. [126] or Daniel & Astruc [127] for critical discussion about gold 20 nanoparticles (Au NPs) and their catalytic uses, while Gawande et al. [128] and Ranu et al. 21 [129] focused on copper nanoparticles (Cu NPs). Chen & Holt-Hindle [130] and Astruc [131] 22 detailed platinum (Pt NPs), and palladium (Pd NPs) nanoparticles, respectively. Herein, we 23 purposely restricted the discussion to the cases of metal NPs supported on organic porous polymers for catalysis in organic chemistry. Although supported catalysts have been much 24 25 less discussed, reviews present in the literature focused mainly on inorganic materials as supports [129]. More specifically, one may cite the comprehensive survey by Corma and
 Garcia [130] who exclusively summarized recent trends in nanogold supported onto inorganic
 supports as catalysts for organic synthesis as well as that from Campelo and coworkers [131]
 describing the synthesis and applications of nanoparticles of various metals.

5 Regarding the immobilization of nanoparticles onto solid supports, two main ways 6 have been reported to date in the literature, hereafter referred to as *ex-situ* and *in-situ* ways 7 (Fig. 6). It is crucial to mention that in order to achieve robust surface anchoring of metal 8 nanoparticles (MNPs), the supports may preferably bear accessible chemical moieties able to 9 induce specific interactions with the metal in its ionic or reduced forms. Amines, thiols, 10 cyanos, and carboxylic acids are representative examples ensuring strong interactions with 11 metals, such as gold, copper, palladium. In some cases, the interactions can occur between the 12 chemical units attached on solid surface and the stabilizing agent decorating the NP surface. 13 Porous polymers with chelating ability can be easily designed using monomers incorporating 14 functional side groups that may act as either chelation sites (for example 2-15 (dimethylamino)ethyl methacrylate) or reactive sites for post-polymerization 16 functionalization. In the latter case, one may cite GMA, 4-VBC, NAS, or GCMA.

The *ex-situ* way requires the synthesis of the NPs prior to their immobilization onto the pore surface. Well-established methods were typically applied for the synthesis of metal colloids. In a further step, the NPs are immobilized onto the solid supports. A major advantage of the *ex-situ* approach is that it offers the possibility to use commercially available nanoparticles. Although it makes easier the whole synthesis process and provides fine control over the size distribution and colloidal stability of the NPs, it may be restrictive in terms of available size and shape.

Fig. 6. Scheme representing the two main ways, namely *ex situ* and *in situ* ways, for the
immobilization of nanoparticles onto a porous support.

4

5 In contrast, the *in-situ* way implies the generation of the NPs in presence of the solid 6 supports and is thus a deposition precipitation process [132]. First, the support is immerged 7 into a solution containing the salt of the metal of interest for impregnation purpose. Then, the 8 metal is reduced to its zero state through a reduction step. Several reducing agents are 9 routinely used in organic synthesis (Table 5) and can be also envisaged for metal reduction, 10 like NaBH₄ [133, 134], citrates [135, 136] (in the so-called Turkevitch process), hydrazine 11 [137] or even H₂ [138, 139]. The choice of the reducing agent will depend on the size and 12 shape desired for the NPs and is crucial to achieve controlled synthesis. Indeed, depending on the metal - reducing agent pair, various levels of control on the shape, size and surface 13 14 distribution will be obtained. Other important parameters are the strength of the interaction between metal ions and the chemical groups at the surface of the support as well as the
 reducing agent/salt precursor ratio.

3

4 Table 5. Examples of common reducing agents used for the preparation of nanoparticles.
5 Typical conditions for reduction are also provided.

Reducing agent	Formula	Conditions	References
Sodium borohydride	$NaBH_4$	Aqueous solution, r.t.	[133, 134]
Sodium Citrate	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Aqueous solution, heat (reflux)	[135, 136]
Dihydrogen	H_2	Heat	[138, 139]
Hydrazine	H ₂ N-NH ₂	Aqueous solution, heat or ultrasound	[137, 140]

6

7 Although easy to implement, successful surface nanostructuration of porous polymers 8 with nanoparticles implies that the NPs are strongly anchored so that leaching phenomenon 9 does not occur. Indeed, the latter is detrimental to product purity as the presence of metal, 10 even at the trace levels, may induce toxicity to human beings. As such, the selection of the 11 chelating moiety is highly important and must be rationalized with respect to the nature of the 12 metal and stabilizing agents. Generally speaking, the stronger the interaction between the 13 support and the catalyst, the lower the possibility of leaching. One should of course keep in 14 mind that the conditions for the immobilization of the NPs may differ significantly from the 15 conditions for the catalysis applications. Changes such as solvent, pH and temperature may 16 affect the strength of the chelation. Finally, the supported catalyst may be in contact with a 17 variety of chemicals in the course of the catalytic cycles that may pollute the catalyst surface 18 and eventually affect the turnover number and frequency. Thus, regeneration is usually 19 required after several catalytic cycles.

1

3.2 Nanoparticles supported by macroporous polymers

Supported catalysts have not been widely described in the literature and this is particularly true in the case of porous polymer-based supports. Herein, we purposely opted for a discussion on the basis of the type of polymeric support rather than the type of the catalyzed reaction or nature of the metal NP (**Table 6**).

6

Table 6. Example of catalyzed reactions performed using metal nanoparticles supported on
polymers.

Name of the reaction	Reactant(s)	General conditions	Catalyst	Product(s)	References
Nitroarenes reduction		H2O, NaBH4, r.t.	Au, Ag, Cu, Pt, Pd	NH ₂	[31, 63, 66, 105, 106, 140-148]
Mizoroki-Heck coupling	$\mathbf{x}_{1} = \mathbf{x}_{2}$ $\mathbf{x}_{2} = \mathbf{I}, \mathbf{Br}$	DMF, Base, ≈ 100 °C	Pd	R ₁	[149-151]
Suzuki-Miyaura coupling	$\mathbf{X} = \mathbf{I}, \mathbf{Br}$	Ethanol or DMF, Base, ≈ 100 °C	Pd		[145, 150- 157]
Boronic homocoupling	R ₁ OH OH	Ethanol, Base, $\approx 65 ^\circ\text{C}$	Au	R ₁	[63]
Sonogashira coupling	$\mathbf{x} = \mathbf{I}, \mathbf{Br}$	H₂O and THF, Base, ≈ 50 °C	Pd		[151, 157]
Hydrosilylation	R R H-SÍ-R R	<i>n</i> -hexane, 45 °C	Pt	R R ₁ -Si-R R	[158]
Eosin Y reduction	Br Br Br Br Br	H ₂ O, NaBH ₄ , r.t.	Au	$Br \qquad Br \\ $	[100, 159]
Reduction of hexacyanoferrate(III)	Fe(CN)6 ³⁻	H ₂ O, NaBH ₄ or thiosulfate, r.t.	Au or Pd/Pt	Fe(CN)6 ⁴⁻	[20, 160]

Carbon dioxide conversion	CO ₂ SiH ₂	DMSO, r.t.	Pt	о нон н он н он _{and}	[161]
Hydrogenation of alcohol	$R_1 = H \text{ or } CH_3$ $R_2 = H \text{ or alkane group}$	THF, H ₂ pressure, r.t.	Pd	$R_1 = H \text{ or } CH_3$ $R_2 = H \text{ or alkane}$ group	[162, 163]
Reduction of hexavalent chrome	Cr ^{VⅡ}	H ₂ O, formic acid, 50 °C	Au, Pd	Cr ^{III}	[140, 164]
Reduction of U ^{VII}	U^{VI} $H_2O, \text{ formic}$ $acid, 50 °C$ Pd U^{IV}		$\mathbf{U}^{\mathbf{IV}}$	[140]	

1

2 As discussed above, macroporous polymers are essentially generated using a solvent as a 3 porogen [16]. Using such a process, many examples focused on the synthesis of monolithic polymers within microchannels. The as-generated monolithic-based microsystems can be 4 5 used after immobilization of metal nanoparticles either as sorbents for solid phase extraction 6 or separation purposes or as microreactors for flow through catalysis. One may briefly mention papers from teams of Svec, Buchmeiser, Connolly or Carbonnier who have extended 7 8 the concept of metal nanoparticules decorating monoliths as chromatographic microcolumns 9 to supported catalysts in continuous flow microreactors [18, 165-167]. In their pioneering 10 work, Nikbin, Ladlow & Ley described in 2007 the synthesis of a vinylbenzyl chloride-based 11 column and its subsequent functionalization with triethylamine to generate ammonium groups 12 at the pore surface [149]. The porous features of the obtained monolithic column were investigated both by MIP and BET techniques, showing a median pore size of 3.15 µm and a 13 surface area of about 5 m².g⁻¹. The available surface groups were used to immobilize Pd NPs 14 15 onto the pore surface through a deposition precipitation process. First, the porous polymer 16 was flushed with an aqueous solution of Na₂PdCl₄ (20 mM) followed by *in-situ* reduction of 17 the surface immobilized Pd ions with sodium borohydride. The reactor was used for the Mizoroki-Heck reaction of different iodobenzyls with styrene and acrylate derivatives 18

providing high yields above 80% (Table 7). The authors conclusively demonstrated that flowthrough processes were superior to batch reaction, notably because of the possibility of
processes automation.

4 The Buchmeiser group worked on the preparation of porous materials into chromatographic 5 columns based on Ring Opening Metathesis Polymerization (ROMP), and suggested several 6 potential applications. Restricting the discussion to supported catalysis, they developed 7 monoliths bearing platinum (Fig. 7A) or palladium-based nanoparticles, obtained through the 8 *in-situ* reduction of the corresponding salts, and proved their efficiency for several catalytic 9 reactions like hydrosilylation [158] and carbon dioxide conversion [161] or Mizoroki-Heck 10 [150], Suzuki-Miyaura [150] (Table 7) and Sonogashira [157] (Table 7). Of particular 11 interest, the authors reported high TurnOver Numbers (TONs, representing the number of 12 moles of reactants that a mole of catalyst can convert before decrease in the catalyst activity). 13 TONs values higher than 600 000 were reported for the hydrosilylation reaction.

2 Fig. 7. Examples of macroporous polymeric materials bearing metallic nanoparticles. (A) in-3 situ generated Pt NPs onto a ROMP-generated-matrix capillary. [158], Copyright 2012 4 (Reproduced with permission from the Royal Society of Chemistry). (B) ex-situ generated Au 5 NPs onto a NAS-matrix capillary. [146], Copyright 2017 (Reproduced with permission from 6 the Royal Society of Chemistry). (C) ex-situ generated Cu NPs onto a NAS-matrix capillary. 7 [31], Copyright 2015 (Reproduced with permission from Elsevier Ltd.). (D) in-situ generated 8 Au NPs onto a DSDMA bulk monolith. [159], Copyright 2017 (Reproduced with permission 9 from Elsevier Ltd.).

10

11 Connolly's team used glycidyl methacrylate- and vinyl azlactone-based monoliths to anchor 12 as-prepared gold nanoparticles [160] as well as bimetallic platinum/palladium nanoflowers 13 [20]. In both cases, the NPs were synthetized *ex-situ* according to literature protocols, and 14 then flushed directly into polymer-filled capillaries or pipette-tips. Amine moieties were 15 grafted onto the polymeric surface using ethylenediamine and were used to anchor both types 16 of nanoparticles. The as-designed supported catalysts were used to reduce a ferric complex, hexacyanoferrate $Fe(CN)_6^{3-}$, into $Fe(CN)_6^{4-}$ using NaBH₄ as a co-reagent. BET measurements performed on the GMA- and vinyl azlactone-based monoliths bearing gold and bimetallic nanoflowers showed a significant decrease in the surface area of the materials before and after adsorption of preformed nanoobjects from 40 to 12 m².g⁻¹. The authors explained these rather surprising results by a potential clogging of the porosity by the adsorbed 20-nm sized nanoflowers.

coupling	Sonogashira	Mizoroki-Heck coupling		-	Suzuki-Miyaura		Reaction
2 mmol DABCO, 130 °C, MW 300 W, 2 min	THF/H ₂ O (50/50 % v/v), 1.5 eq. <i>t</i> BuOK, 1 eq. NBu ₄ Br, 50 °C, 24 h	5mmol trimethylamine, 90 °C, MW 300 W	DMF, 0.3 mmol trimethylamine, 130 °C, flowrate: 0.05 mL.min ⁻¹	Dioxane, 0.6 mmol benzonitrile, 80- 130 °C, 72 h	EtOH; 2.5 eq. <i>t</i> BuOK, 50 °C, 24 h	THF/H ₂ O (50/50 % v/v), 1.5 eq. <i>t</i> BuOK, 1 eq. NBu ₄ Br, 50 °C, 24 h	Experimental conditions
Pd	Pd	Pd	Pd	Pd	Pd	Pd	Supported metal catalyst
>90 % to >99 %	2 % to 95 % (various haloarenes tested) TONs: 90 to 4130	Methyl acrylate <20 % to 83 % for t = 1 min 50 % to >99 % for t = 5 min Styrene 35 % to 85 % for t = 10 min	<50 % to 87 % (various pairs of reactants)	77 % to 100 %	96 %	54 % to 99 % (various haloarenes tested) TONs: 34 400 to 63 000	Yield

8 Table 7. Examples of C-C coupling reactions achieved using polymer-supported metal
9 nanoparticles. The reactions conditions and yields are also presented.

References [150] [152] [156] [149] [151] [157] [157]
--

1

2 Carbonnier's group contributed a lot to the field of flow-through supported catalysis by 3 developing a series of chemically modified monolithic supports based on NAS. The generic 4 monolith was initially synthesized within microsized channels and further chemically 5 modified by taking advantage of the reactive of the N-hydroxysuccinimide moieties towards 6 nucleophilic species. Such in-capillary monoliths displayed a pore size of 2.25 µm by MIP, a surface area lower than 10 m².g⁻¹ but a large porous volume of ca. 1.5 cm³.g⁻¹ [25]. One of the 7 8 first examples described the preparation of diacid-decorated porous monolith [31]. Such 9 carboxylic acids were used to anchor copper nanoparticles using two immobilization 10 processes. On the one hand, commercially available copper nanoparticles (with mean 11 diameter in the range 40-60 nm) were percolated into the monolithic structure and the microreactor used directly after a rinsing step. On the other hand, Cu²⁺ ions were initially 12 13 immobilized onto the surface of the functionalized monolith. In a second step, an aqueous NaBH₄ solution was injected in the monolith to generating the nanoparticles through 14 15 reduction. Both microreactors were used to catalyze hydride-mediated reduction of one nitroarene, the *o*-nitrophenol. The best yield (68.5 % at a flow rate of 0.3 μ L.min⁻¹) was 16 17 obtained when preformed NPs were used while the *in-situ* approach led to slightly lower yields (40 and 55 % for flow rates of 4 and 1.5 μ L.min⁻¹, respectively) (**Table 8**). 18

In another implementation, the NAS-based monolith was used as support for gold nanoparticles. As described in the work of Khalil *et al.* [147], ethylenediamine was grafted on the monolith surface. The resulting primary amines, in their protonated form, were used as ligands to immobilize Au colloids. Both ways of nanoparticles immobilization, namely *in-situ* and *ex-situ* pathways were investigated. In the former case, an aqueous solution of HAuCl4

was percolated to immobilize Au³⁺ ions followed by reduction using an aqueous NaBH₄ 1 2 solution. For the ex-situ way, commercially available Au NPs with a diameter of 20 nm and a 3 citrate stabilization layer were used. Interaction between the carboxylates of the citrates and 4 the ammonium form of the primary amines at the pore surface provided strong interfacial 5 interaction, leading to robust anchoring of the nanoparticles. The microreactors were used for 6 nitroarenes reduction, using *p*-nitroaniline, *o*-nitrophenol, *m*-nitrophenol and *p*-nitrophenol as 7 model molecules. Different parameters were investigated to optimize the reaction yields, like 8 the reactants concentration, the column length, the flow rate allowing for complete conversion 9 of the nitroarenes into the corresponding aromatic amines. Of particular interest, it was shown 10 that the *in-situ* approach provided higher reaction yields as compared to the *ex-situ* using the 11 same flow conditions.

12 An extension of this work was provided in the paper by Liu et al. [146] were NAS-based 13 monoliths were functionalized with amine moieties derived from histamine. Commercially 14 available Au NPs with different sizes 5 nm, 20 nm (Fig. 7B) and 100 nm were used. The 15 aggregation behavior of the NPs at the monolith surface as well as the coverage density were 16 found to depend on the chemical nature of the amine ligand and size of the nanoparticles. 17 While the higher diameters (100 and 20 nm) were the most homogeneously and densely 18 covered columns, difficulties were encountered with the 100 nm Au NPs in the filling and the 19 back pressure obtained from the capillary. The catalytic efficiency of these microreactors was 20 first established for *p*-nitrophenol and then extended to dinitro derivatives, namely 2,5-21 dinitrophenol, 2,4-dinitroaniline, 2,6-dinitroaniline and 3,5-dinitroaniline. Interestingly, the 22 best results were obtained for the 20 nm nanoparticles, instead of the 5 nm ones, and for a flowrate of 5 μ L.min⁻¹ (**Table 8**). 23

1 Table 8. Examples of nitro coupounds reactions achieved using polymer-supported metal

ted.
L

H ₂ O, [NaBH ₄] = 1.2×10^{-1} M	H_2O , [NaBH ₄] = 6.67 mM, 16 min	H_2O , $[NaBH_4] = 0.25$ M, 30 min	H_2O ; $[NaBH_4] = 2 \times 10^{-2}$ M, 25 min	H_2O , $[NaBH_4] = 1.2 \times 10^{-1}$ M, flowrate: 5 µL.min ⁻¹	H_2O , $[NaBH_4] = 1.2 \times 10^{-1} M$, flowrate: 2 µL.min ⁻¹	Acetonitrile/H ₂ O (70/30 % v/v), [NaBH ₄] = 1.2×10^{-1} M	Experimental conditions
Au	Pd	Ag	Au	Au	Pt	Cu	Metal catalyst
Macroporous 27 % at $t = 1$ h Nanoporous 25 % at $t = 1$ h 71 % at $t = 40$ min Biporous 93 % at $t = 1$ h 83 % at $t = 40$ min	100 %	100 %	95.4 %	100 % (various nitro and dinitro compounds)	100 %	68.5 % (ex situ) at 0.3 μL.min ⁻¹ 40 % (in situ) at 4 μL.min ⁻¹ 55 % (in situ) at 1.5 μL.min ⁻¹	Yield
[105, 106]	[140]	[142]	[143]	[146]	[141]	[31]	References

Moreover, Carbonnier's group developed a new monolithic matrix, based on glycerol
carbonate methacrylate [141]. Such a carbonate ring can be easily converted into a urethane
group when reacting with a suitably chosen amine-bearing molecule. A determination of the

pore size of these in-capillary monoliths was achieved using mercury intrusion porosimetry. The authors found an average pore size centered around 2.2 μ m but also another lower porosity level in the 50 nm range that was not visible by SEM because of the detection limit of the apparatus. Carboxylic acids were grafted at the surface *via* a two-step process and then used to chelate platinum ions. NaBH₄ was used as a reducing agent for the generation of Pt NPs directly onto the pore surface. The as-prepared supported catalyst was further used for the total reduction of *p*-nitrophenol (**Table 8**).

8 Beside the design of porous materials for flow-through applications, Poupart *et al.* also 9 prepared bulk polymeric materials using the porogenic solvent approach. A dimethacrylate 10 monomer bearing a disulfide bridge, namely bis(2-methacryloyl)oxyethyl disulfide 11 (DSDMA), was used with the aim to eventually produce thiol-containing monoliths [159]. 12 Such an approach was followed because of the difficulty to polymerize thiol-containing 13 monomers with the occurrence of chain transfer reactions. Herein, they used a protected thiol 14 in the form of disulfide. After polymerization with a dimethacrylate as a cross-linker and 15 using toluene as a porogenic agent, thiols were generated using D,L-dithiothreitol (DTT). 16 Several solvents were used as porogens (methanol, ethanol, a cyclohexanol/dodecanol 17 mixture as well as toluene). Mercury intrusion porosimetry was performed on all samples, 18 even after DTT-mediated cleavage of the disulfide bridge contained in the monoliths. Average 19 pore sizes of 6 and 0.5 µm were determined for methanol and ethanol, respectively. Similarly, 20 average pore sizes of 0.01 and 1 µm were obtained for the cyclohexanol/dodecanol mixture 21 and toluene, respectively. No significant variation of pore size or porosity ratio was found 22 upon selective cleavage of disulfide bridges. Gold ions were subsequently anchored to the 23 thiolated surface and further reduced using sodium borohydride to generate Au nanoparticles 24 (Fig. 7C). Although aggregation trends could be seen onto the SEM pictures, the as-prepared bulk catalysts were used to reduce an organic dye, Eosin Y. Up to six consecutives catalytic 25

cycles were tested with an average yield of about 60 %, thus ascertaining the reusability of the
 supported catalyst.

3

4

3.3 Nanoparticles supported by nanoporous polymers

5 As previously discussed, pore sizes of nanoporous materials are appealing for catalysis 6 applications, as they can provide a filtration phenomenon occurring simultaneously to the 7 catalytic activity. Few examples in the literature described the use of nanoporous polymers 8 arising from diblock copolymers. The first example of nanopore decoration with a metal was 9 reported by Ryu et al. [67] who generated gold nanorods at the interface of thiolated 10 polymers. Unfortunately, the authors did not mention any application. Recently, Grande's 11 group started to investigate how such pores could be decorated with nanoparticles and 12 considered the use of the resulting composite materials as supported catalysts.

13 In 2015, the synthesis of a diblock copolymer made of PS and PLA and bearing a disulfide 14 bridge junction between both blocks was first developed [66]. After the synthesis of the dual 15 initiator and both blocks by ATRP and ROP, an orientation step of the resulting functional 16 copolymer was implemented using a channel die process. Cleavage of the disulfide bridge 17 was achieved using triphenylphosphine (TPP), revealing the pores as well as the thiol moieties at the pore interface. Au³⁺ ions were then immobilized and further reduced with 18 19 NaBH₄. The as-obtained porous polymer-supported gold nanoparticles were used as efficient 20 catalysts to reduce p-nitrophenol. Reaction yields of \approx 70 % were calculated after 1 h of 21 reaction for five consecutive catalytic runs.

In another implementation, the same authors used an acetal junction between the two blocks [63]. The dual initiator was synthetized *via* a two-step process, and after the polymerization processes, orientation of the block copolymer structure was performed *via* solvent vapour annealing of films casted onto Si wafers. The acetal link between both blocks could be easily 1 cleaved with trifluoroacetic acid and then, functionalized with amine molecules after 2 reductive amination reaction. Amine-decorated pores were covered with *in-situ* generated 3 gold nanoparticles (**Fig. 8A**). First, boronic homocoupling and nitroarene reduction were 4 considered separately. Finally, the two reactions were coupled in a cascade reaction process 5 involving 3-nitrobenzene boronic acid. After formation of the 3,3'-dinitrobiphenyl through 6 homocoupling reaction, the nitro moieties were successfully reduced using NaBH₄-mediated 7 reduction yielding 3,3'-diaminobiphenyl as a major product.

Fig. 8. Examples of nanoporous polymeric materials bearing metallic nanoparticles. A) *in-situ*generated Au NPs onto a PS arising from diblock copolymers. [63], Copyright 2017
(Reproduced with permission from the American Chemical Society). B) *in-situ* generated Au
NPs within a cellulose membrane. [143], Copyright 2017 (Reproduced with permission from
Wiley VCH). C) *in-situ* generated Pd NPs onto a microporous polyheptazine. [155],
Copyright 2017 (Reproduced with permission from the American Chemical Society).

1 Besides the use of diblock copolymers, several authors have implemented polymer-based 2 membrane materials exhibiting nanoporosity to design supported catalysts. Remigy and Lahitte's group discussed the use of commercially available polyethersulfone membranes 3 4 with a pore size of 200 nm. The membranes were modified to anchor Pd NPs and further used 5 in several reactions, including nitrophenol reduction [144, 145], Suzuki-Miyaura cross 6 coupling [145, 152, 153] (**Table 7**) or hydrogenation of *trans*-4-phenyl-3-buten-2-one [163]. 7 Interesting comparison was performed considering the use of these membranes in batch mode 8 and under flow-through conditions. The latter conditions proved to be superior providing 9 faster reactions. Indeed, while the reactions could be performed within a 10 s range in flow 10 conditions, the batch mode required 6 h for full conversion. Another interesting result was 11 that no byproducts were observed in the flow-through mode. This was assumedly assigned to 12 a lower kinetic of formation of the side product.

13 Other research groups focused on using membranes with embedded nanoparticles. One may 14 cite the work from Mora-Tamez et al. [143] who considered the use of Au NPs immobilized 15 within cellulose triacetate-based membranes. The originality of the approach lies in the 16 extraction of Au^(III) ions by the membranes and their simultaneous in-situ reduction with a citrate solution (Fig. 8B). Such supports with embedded NPs were used for the reduction of p-17 18 nitrophenol. The authors mentioned reaction yield as high as 95.4 % after 25 min of reaction 19 (Table 8). Membranes were also characterized using BET and nitrogen adsorption/desorption isotherms. Specific surface area values ranging from 67 to 137 $m^2 g^{-1}$ and pore volume values 20 from 0.048 to 0.097 mL.g⁻¹ were found. 21

Likewise, Clark's group used biobased nanoporous polymers for catalysis purposes. Starchbased porous supports were obtained by solvent exchange between water and ethanol, and subsequently used to anchor palladium nanoparticles [151]. Palladium acetate was put in the presence of the starch-based materials acting simultaneously as reducing agent and support

1 for the resulting nanoparticles, seemingly self-reducing the precursory metallic ions. Such 2 polymeric materials, characterized by N₂ physisorption, exhibited a specific surface area of 190 m².g⁻¹ and an average pore size of 8.2 nm through the BET equations (Equation 2 and 3 4 Equation 3) as well as the BJH method, respectively. Mizoroki-Heck (Table 7), Sonogashira 5 (Table 7) and Suzuki-Miyaura reactions were performed under microwave irradiation using 6 the starch-supported Pd NPs. The microwave activation permitted to reduce the reaction time 7 as the reactions could be achieved in less than 10 min. In contrast, the authors provided a 8 comparison with other data published in the literature without the use of microwave and for 9 which the reaction times were in the range of 4-12 h. Although the authors concluded on the 10 superiority of the starch-based materials in terms of improved reaction yields, lower reaction 11 times, and renewability of the catalysts, a reliable comparison with traditional catalysts such 12 as Pd/C or silica-supported NPs is, to our point of view, very difficult because most of the 13 studies that the authors referred to did not mention the use of microwave activation.

14 Finally, microporous polymers (with pores below 2 nm) were used as catalytic supports. 15 Although most of examples in the literature mentioned the direct use of a polymer network as the heterogeneous catalyst due to a specific site like a specific chemical moiety [168] or a 16 17 metallo-organic complex [169], some examples about polymer-supported nanoparticles can 18 also be found. Zhang et al. [154] designed a porous network via a direct Sonogashira coupling 19 of an aromatic trialkyne and 1,4-dibromobenzene. The as-obtained nanoporous polymer was 20 further characterized using N₂ sorption. First, BET measurements gave a specific surface area of 421 m².g⁻¹ and a pore volume of 0.27 mL.g⁻¹. In this case, the pore size was not determined 21 22 using the BJH theory but was calculated by the nonlocal density functional theory (NLDFT), 23 a computational quantum mechanical modelling that allowed for highlighting the presence of 24 three populations of pores in such a material with sizes centered on 0.6, 1.3, and 3.1 nm. The polymeric material was subsequently immersed into an acetone solution of Pd(OAc)₂. After 25

1 stirring at 90 °C, a Pd NPs-loaded polymer was obtained. Different Suzuki-Miyaura C-C 2 coupling reactions were performed using a large panel of halogenoarenes (iodo and bromo) along with phenylboronic acid. High yields (> 85 %) and short reaction times (less than 4 h) 3 4 were obtained. Comparison with Pd/C catalysts suggested that such nano Pd-decorated frameworks allowed for a threefold decrease of the reaction times (from 9 h for Pd/C to 3 h) 5 6 to reach similar reaction yields. Five catalytic cycles were performed and only a limited 7 reduction in catalytic activity was observed as expressed by the decrease of a few percent of 8 the reaction yields, while leaching effect was quantified to be less than 1 % for each cycle.

9 In their interesting work, Du et al. [155] prepared polymer networks through a nucleophilic 10 substitution of chlorines pending on the cyameluric chloride monomer by amines of 11 piperazine. The as-obtained heptazine framework was immersed into an acetone solution of 12 palladium acetate under reflux, allowing for the generation of the Pd NPs by self-reduction 13 (Fig. 8c). Similarly to the studies achieved by Zhang et al. about microporous polymeric 14 materials, the surface area of their porous heptazine framework was also determined through BET measurements using nitrogen sorption. Surface area of 106 and 73 cm².g⁻¹ and pore 15 volume of 0.43 and 0.33 mL.g⁻¹ were found by the authors for the materials before and after 16 17 immobilization of Pd NPs, respectively. Such surface area values are rather unexpected; one 18 would indeed expect higher values for hybrid materials, likely due to the adsorption of 19 metallic nanoparticles at the pore surface of these polymeric frameworks. Pore size 20 distribution was also found in the 2-8 nm range. With such hybrid catalysts, Suzuki-Miyaura 21 couplings were performed using different pairs of bromoarenes derivatives and phenylboronic 22 acids. Yields above 80 % of conversion were obtained except for the 2-bromonaphtalene 23 along with the arylboronic acid as well as for the 4-nitrobenzene boronic acid along with bromobenzene, for which yields remained below 40 %. A tentative explanation for the 24 25 obtained yields was provided by the authors based on the large steric hindrance of 2bromonaphtalene as well as the poor solubility of 4-nitrobenzene boronic acid. Here again,
 five catalytic runs were performed consecutively showing a limited decrease of the catalytic
 activity and ICP measurements performed before and after the five cycles showed negligible
 leaching phenomena.

- 5
- 6

3.4 Nanoparticles supported by biporous polymers

7 Macroporous and nanoporous polymers are very different systems in terms or 8 permeability, porosity, surface area which are key features for catalysis applications. 9 Macroporous polymers possess large pores providing enhanced permeability for the liquid to 10 penetrate into the pores but a poor specific surface area. In contrast, nanoporous frameworks 11 afford a larger specific surface area, while a lower accessibility to the pores. A high 12 permeability may favor better accessibility of the reactants to the catalysts, while a large 13 specific surface area should allow for higher density of metal nanoparticles on the support 14 surface. If considered simultaneously, these two criteria may provide more efficient catalytic 15 processes. Based on this simple consideration, biporous materials containing both macropores 16 and nanopores may appear as attractive candidates for nanocatalyst supports.

17 An easy way of making biporous materials relies on the fabrication of polyHIPEs. One of the 18 pioneering groups in the field of polyHIPE preparation and use as catalysts is Deleuze's. In 19 2005, they described polystyrene- [162] and poly(vinylbenzyl chloride)-based [156] 20 polyHIPEs as supports for *in-situ* generated Pd NPs (Fig. 9A). Both styrene and VBC-based polymeric supports showed a specific surface area of 902 m².g⁻¹ as determined by BET, while 21 22 pore size distribution in the 10-80 nm range was induced by a porogenic solvent added to the 23 HIPE polymerization feed. The hybrid supports were used for the hydrogenation of an alkene, 24 *i.e.* allyl alcohol, and for Suzuki-Miyaura cross-coupling reactions (Table 7). The authors 25 reported reaction times of 1 h and 70 h for near-completion hydrogenation and coupling

1 reactions, respectively. The authors discussed their results with respect to other published 2 results obtained with catalysts such as Pd/C using the prepared supported catalysts in powder 3 forms. Polystyrene based polyHIPEs were also used by the same group as supports for gold 4 nanoparticles [100]. In this case, HAuCl₄ ions solutions were simply deposited and the PS 5 induced self-reduction. Supported Au NPs were then used for the reduction of a dye, Eosin Y, 6 and the reaction was repeated three times. Near-completion reactions were achieved within 7 one hour and under mild conditions (25 °C). Pores in the 200-291 µm range, were found for 8 such monoliths depending on the samples, while a porosity ratio of 82% was found by MIP.

9

Fig. 9. Examples of biporous polymeric materials bearing metallic nanoparticles. (A) *in-situ* generated Pd NPs onto a PS polyHIPE. [162], Copyright 2005 (Reproduced with permission from the American Chemical Society). (B) *in-situ* generated Ag NPs onto poly(acrylic acid) fibers. [142], Copyright 2012 (Reproduced with permission from the Royal Society of Chemistry). (C), (D) *in-situ* generated Au NPs onto a biporous poly(HEMA-*co*-EGDMA) bulk monolith. [104], Copyright 2016 (Reproduced with permission from Wiley VCH).

1 Another way to design nanostructured catalysts relies on the use of electrospun materials. The 2 as-obtained fibers possess several interesting properties for catalytic applications, such as a large surface to volume ratio and superior mechanical properties. Therefore, they are also 3 4 usually used as membrane-like materials, which can be beneficial to catalysis, as discussed 5 above. To date, electrospun materials have been mostly used for environmental catalytic applications, like hexavalent chromium (Cr^{VI}) or nitro group reduction. Nevertheless, as-6 7 prepared electrospun supports are not widely used as catalyst supports, as most reports in the 8 literature mentioned the use of the polymer mats as precursors for calcination for, as an 9 example, creating titania fibers. Most examples in the literature describe the use of polymer 10 fibers already containing chelating moieties like carboxylic acids or amines. Shi's group 11 described the use of polyethyleneimine (PEI) blended with poly(vinyl alcohol) (PVA) as mats 12 for the support of gold [148] and palladium [164] nanoparticles. Au NPs were used for the successful reduction of nitro compounds, while Pd NPs were applied to the generation of Cr^{III} 13 from Cr^{VI}, which is highly carcinogenic. In the same way, Xiao's group used a blend of 14 15 poly(acrylic acid) (PAA) and PVA to chelate in-situ generated (sodium borohydride as 16 reducing agent) Ag NPs (Fig. 9B) for the catalytic reduction of *p*-nitrophenol [142] (Table 8). 17 Another interesting recent work is that from Pandey's team [140], who used electrospinning 18 to prepare poly(ether sulfone) (PES) fibers and took advantage of the presence of the ether 19 sulfone moieties to perform photolysis under UV irradiation to initiate the growth of 20 polyGMA chains. The pendant oxirane groups were then opened with hydrazine providing 21 directly attachment of the reducing agents on the support surface. A palladium salt was put in 22 contact with the fibers via an aqueous solution of palladium chloride and self-reduced. Hybrid 23 fibers were applied to the reduction of hexavalent chromium as well as *p*-nitrophenol (**Table 8**) but also the less common reduction of hexavalent uranium (U^{VI}) to U^{IV} . 24

1 Last but not least, one may mention the use of the double porogen templating approach 2 allowing for easily combining two levels of porosity and broadening the range of accessible pore shape. Ly et al. recently designed doubly porous PHEMA-based materials as supports 3 4 for gold nanoparticles [105, 106] (Fig. 9C). They used fused NaCl particles as macroporogens and isopropanol as a porogenic solvent for the production of the nanopores. The obtained 5 6 monoliths, *i.e.* monoporous with the higher porosity level, monoporous with the lower 7 porosity level and biporous ones, have been thoroughly characterized through mercury 8 intrusion porosimetry by using the Washburn equation (Equation 1). Data gathered in this 9 study showed that average pore sizes of 42 µm, 9 µm, 40 µm, and 8 µm were obtained by 10 MIP for monoporous with the higher porosity level, monoporous with the lower porosity level 11 and biporous HEMA-based polymeric frameworks, respectively. More importantly, the 12 porosity ratio of such a biporous polymer was estimated to be 92 %, which could be of 13 upmost interest for heterogeneous supported catalysis applications. The surface of the 14 biporous polymers was chemically modified in order to have amines or thiols directly on the 15 surface. HAuCl₄ solution was used to load gold ions onto the surface and NaBH₄ was used as 16 a reducing agent. Reduction of 4-nitrophenol was performed in order to prove the catalytic 17 efficiency of the as-prepared hybrids. Differences in the size and/or distribution of the 18 nanoparticles were observed as a function of the nature of the chelating group (-NH₂ vs. -SH), 19 thus leading to differences in the reaction yields. It was shown that thiol functions led to 20 bigger nanoparticles, and also surprisingly to leaching of NPs. Monoporous materials were 21 also synthetized in order to highlight the superiority of such doubly porous materials. While 22 monomodal porous polymers, *i.e.* with macroporosity or nanoporosity only, showed rather 23 similar efficiency, the doubly porous homologues exhibited higher catalytic activity. The 24 higher density of nanoparticles associated with the latters along with their higher porosity

ratios as compared to the nanoporous and macroporous materials were assumed to account for
 such results (**Table 8**).

3

4 4 Critical appraisal of the different strategies

5 This review presented a critically selected overview of the various polymeric materials 6 so far implemented as potential supports for the adsorption of metallic nanoparticles meant for 7 supported heterogeneous catalysis. Each of these systems has inherent advantages/drawbacks 8 depending on their preparation conditions, *etc.* This section will bring a critical appraisal of 9 the different porous polymeric systems in terms of preparation, main characteristics, catalytic 10 properties, durability, *etc.* and of the related hybrid systems and their catalytic properties.

11 Fused silica capillaries filled with polymer monoliths are easy to prepare, dynamic loading of 12 the reactants in such microsystems being an undeniable advantage for the successful 13 functionalization of the pore surface with chemical grafts of interest and successive 14 immobilization of metallic nanoparticles through the *in situ* or *ex situ* strategies. In this way, 15 each preparation step is completed in a few hours or even in a few minutes. Supported 16 catalytic reactions operated in flow-through conditions have the major advantage to directly 17 give the desired product, without the need for any further purification step, provided of course 18 that no byproduct(s) is (are) generated during the catalytic reaction. More interestingly, such 19 microsystems are supposed to be easily scaled up and might be used in automation processes, 20 as mentioned by Nikbin et al. [149], that is to say that a chromatographic-column sized 21 catalytic reactor would be able to do what a tiny in-capillary microreactor can do. Such a 22 scale-up process would definitely solve the major issue regarding in-capillary monolithic hybrid reactors, such as slow flow rates (about a few µL.min⁻¹) due to rather high 23 24 backpressures and limited quantities of reactants that can be converted, *i.e.* generally a few 25 milligrams, due to microcolumns size/volume. Too high backpressures dramatically decrease the lifetime of the column, reducing its reusability/durability. Moreover, such important
 backpressure phenomena might lead to a higher leaching of adsorbed metallic nanoparticles,
 which would be detrimental to further flow-through supported catalytic processes.

4 Nanoporous polymers arising from diblock copolymers can lead to different controlled 5 accessible morphologies (from cylinders to gyroids or to lamellae), thus enabling to tune the 6 porosity of the support. Nevertheless, a non-negligible series of not trivial synthetic steps is 7 required to produce them, which could be detrimental for their transfer to industrial processes. 8 Besides, depending on the alignment procedure and on the quantities of copolymer needed, 9 the orientation procedure time can be dramatically increased. For channel die processing, a 10 few hundreds of milligrams of copolymers are required to determine the best orientation 11 conditions, while for solvent vapour annealing, a diluted copolymer solution is enough for 12 film nanostructuration on silicon wafers. Yet, there is no widespread use of these nanoporous 13 materials for catalysis purposes.

14 Polymeric membranes seem to be the candidates of choice for efficient supported catalytic 15 reactions. However, some drawbacks could be found [170]. First, they need a specifically 16 designed and optimized reactor. Unfortunately, the production costs for a specific reactor 17 chamber must be added to the efforts for creating catalytic membranes, which are not trivial. 18 Moreover, as with capillary-based microreactors, a specific adjustment of the flow rate of 19 reactant solution to reach optimized reaction rates is necessary. Finally, one should keep in 20 mind that polymeric membranes are known to have a limited durability, depending especially 21 on their thermal, chemical, and mechanical properties. Indeed, the harsher the catalytic 22 reaction conditions, the quicker they degrade, adding higher costs of renewal, even if some 23 improvements have been achieved regarding the durability of such polymer-based 24 membranes.

Microporous networks have one major advantage, namely their specific surface area. Indeed, the pores consist in voids generated by the monomer assembly, and are in the micropore range. This could logically lead to catalytic supports declined for reactions in the gas phase. Yet, examples of catalytic reactions in liquid media still exist with such polymer-based microporous supports. However, they have a low permeability, and this is especially true for pure carbon-based networks [171]. This limitation could notably prevent catalytic reactions from occurring efficiently.

8 PolyHIPEs display a really well-accessible high porosity with interconnected pores that 9 enable high flow-through processes. However, since the void size is large (cavities are in the 10 tens/hundreds of micrometers range), specific surface areas are quite low [172]. Works 11 achieved by Sherrington's group attempted to overcome this issue [173], notably by using 12 porogenic solvents in addition to the HIPE process. However, resulting porous polymers 13 faced a new limitation, *i.e.* poor mechanical resistance of the monolith during flow-through 14 processes or even collapse of the porous structure.

15 Electrospun materials have risen since the mid 1990's, period during which such polymeric 16 fibers could be implemented for nanotechnology applications. As catalytic support, they offer 17 an interconnected porosity resulting from their engineering process. Moreover, they are 18 already used to prepared filtration membranes, which may lead to flow-through catalytic 19 reactors. Nevertheless, some limitations still exist. One may mention the difficulty to produce 20 uniform mats with a fiber diameter lower than 50 nm [174]. Indeed, a smaller diameter of 21 polymeric fiber would lead to a smaller volume of these fibers, thus enhancing the surface to 22 volume ratio. Progress is already on the way to overcome this issue by studying the solvent 23 evaporation during the electrospinning process, among others.

Finally, the double porogen approach affords high porosity ratios (> 90%) and interconnected porosities, provided that the porogens are suitably chosen. However, further investigation still

needs to be performed to clearly correlate the pore morphology to the mass transfer properties of the resulting materials. Very few of such doubly porous crosslinked polymers have been used so far in the area of heterogeneous supported catalysis, only bringing limited information in the field. Finally, no mechanical characterization data have been published yet on such catalytic supports, which could bring some interesting information on their resistance to different experimental conditions.

7

8 5 Conclusions and prospects

9 In conclusion, this review critically overviews the main types of polymers used as 10 potentially interesting supports for metallic nanoparticle immobilization. The as-prepared 11 hybrid materials seem to constitute candidates of choice in the area of heterogeneous 12 supported catalysis, as demonstrated by some notable works performed gathered in this 13 review article. Production costs for these porous polymers remain rather low, when compared 14 to their inorganic counterparts, while their preparation is rapid, making them suitable for 15 various applications, including heterogeneous supported catalysis. However, progress for 16 optimizing such polymer-based supports remains a milestone in order to optimize the 17 resulting hybrid materials. For instance, the optimization of specific surface area of such 18 porous polymers is of upmost importance, as it would definitely bring such organic materials 19 a step forward when compared to their inorganic counterparts. It was recently demonstrated 20 that HEMA-based porous polymers arising from reversed HIPEs can be further 21 hypercrosslinked through a two-step synthetic pathway to generate porous polymers with largely enhanced surface area of about 1500 m².g⁻¹ [175]. Another very promising research 22 23 area could rely on the development of porous metallic nanoparticles. Indeed, such nanometals can develop a very large specific surface area, e.g. $8973 \text{ m}^2 \text{.g}^{-1}$ for the outer surface area and 24 58724 m².g⁻¹ for the inner surface area of 80 nm hollow porous gold nanoparticles, and thus 25

constitute promising candidates for the development of adsorbed catalysts at the surface of
porous polymers. The Holy Grail of such research area would rely on the preparation of
advanced hybrid systems that would be constituted of both high surface area counterparts, *i.e.*porous nanometal and porous polymer support. Other morphologies of metallic nanoparticles
could also be largely envisioned as they could also lead to enhanced activities of the resulting
supported nanocatalysts [176].

7 Based on this overview concerning porous polymers meant for heterogeneous supported 8 catalysis, different key experimental parameters have to be indeed carefully taken into 9 consideration and especially porosity range and morphology of the materials as well as nature 10 of chemical moieties exposed at the pore surface so as to optimize the interactions between 11 the support and the metal (precursor). The catalytic processes involved, namely batch or flow-12 through, but also the envisioned catalytic reaction are crucial parameters that matter for the 13 appropriate selection of the supports, notably regarding the stability and durability of the 14 hybrid systems in diverse experimental conditions (temperature, pressure, solvent nature, 15 etc.). Beyond the application of such hybrid systems in supported heterogeneous catalysis, it 16 is essential noticing that they could also be used as sensors or sorbents in analytical sciences, 17 filters for CO₂ sorption, or nanoreactors for the capture and release of biomolecules such as 18 cysteine-bearing peptides/proteins, for instance.

- 19
- 20

21 Acknowledgments

Financial support from CNRS and UPEC is gratefully acknowledged. The authors areindebted to UPEC for providing R. Poupart with a Ph.D. grant.

1 References

2

[1] Van Leeuwen PW. Homogeneous catalysis: understanding the art: Springer Science &
 Business Media; 2006.

- 5 [2] Widegren JA, Finke RG. A review of the problem of distinguishing true homogeneous
- 6 catalysis from soluble or other metal-particle heterogeneous catalysis under reducing
- 7 conditions. J Mol Catal A: Chem 2003; 198: 317-41.
- [3] Herrmann WA, Kohlpaintner CW, Manetsberger RB, Bahrmann H, Kottmann H. Watersoluble metal complexes and catalysts. J Mol Catal A: Chem 1995; 97: 65-72.
- 10 [4] Pirkanniemi K, Sillanpää M. Heterogeneous water phase catalysis as an environmental 11 application: a review. Chemosphere 2002; 48: 1047-60.
- 11 application: a review. Chemosphere 2002, 48: 1047-00.
- 12 [5] Bell AT. The Impact of Nanoscience on Heterogeneous Catalysis. Science 2003; 299:13 1688.
- 14 [6] Copéret C, Chabanas M, Petroff Saint-Arroman R, Basset J-M. Homogeneous and
- Heterogeneous Catalysis: Bridging the Gap through Surface Organometallic Chemistry.Angew Chem Int Ed 2003; 42: 156-81.
- [7] Lu A-H, Salabas EL, Schüth F. Magnetic Nanoparticles: Synthesis, Protection,
 Functionalization, and Application. Angew Chem Int Ed 2007; 46: 1222-44.
- 19 [8] Sachtler WMH, Zhang Z. Zeolite-Supported Transition Metal Catalysts*. In: D.D. Eley
- 20 HP, Paul BW, editors. Advances in Catalysis: Academic Press; 1993. p. 129-220.
- [9] Opanasenko M, Stepnicka P, Cejka J. Heterogeneous Pd catalysts supported on silica
 matrices. RSC Adv 2014; 4: 65137-62.
- 23 [10] Zhao D, Huo Q, Feng J, Chmelka BF, Stucky GD. Nonionic Triblock and Star Diblock
- Copolymer and Oligomeric Surfactant Syntheses of Highly Ordered, Hydrothermally Stable,
 Mesoporous Silica Structures. J Am Chem Soc 1998; 120: 6024-36.
- [11] Wildgoose GG, Banks CE, Compton RG. Metal Nanoparticles and Related Materials
 Supported on Carbon Nanotubes: Methods and Applications. Small 2006; 2: 182-93.
- 28 [12] Liu J, Chen L, Cui H, Zhang J, Zhang L, Su C-Y. Applications of metal-organic
- frameworks in heterogeneous supramolecular catalysis. Chem Soc Rev 2014; 43: 6011-61.
- [13] Vikrant K, Kumar V, Kim K-H, Kukkar D. Metal–organic frameworks (MOFs):
 potential and challenges for capture and abatement of ammonia. J Mater Chem A 2017; 5:
 22877-96.
- [14] Wu D, Xu F, Sun B, Fu R, He H, Matyjaszewski K. Design and Preparation of Porous
 Polymers. Chem Rev 2012; 112: 3959-4015.
- 35 [15] Seidl J, Malinský J, Dušek K, Heitz W. Makroporöse Styrol-Divinylbenzol-Copolymere
- 36 und ihre Verwendung in der Chromatographie und zur Darstellung von Ionenaustauschern.
- Fortschritte der Hochpolymeren-Forschung. Berlin, Heidelberg: Springer Berlin Heidelberg;
 1967. p. 113-213.
- 39 [16] Svec F, Fréchet JMJ. New Designs of Macroporous Polymers and Supports: From
 40 Separation to Biocatalysis. Science 1996; 273: 205-11.
- 41 [17] Svec F, Fréchet JMJ. Modified poly(glycidyl methacrylate-co-ethylene dimethacrylate)
- 42 continuous rod columns for preparative-scale ion-exchange chromatography of proteins. J
 43 Chromatogr A 1995; 702: 89-95.
- 44 [18] Xu Y, Cao Q, Svec F, Fréchet JMJ. Porous Polymer Monolithic Column with Surface-
- 45 Bound Gold Nanoparticles for the Capture and Separation of Cysteine-Containing Peptides.
- 46 Anal Chem 2010; 82: 3352-8.
- 47 [19] Luo Q, Zou H, Xiao X, Guo Z, Kong L, Mao X. Chromatographic separation of proteins
- 48 on metal immobilized iminodiacetic acid-bound molded monolithic rods of macroporous
- 49 poly(glycidyl methacrylate–co-ethylene dimethacrylate). J Chromatogr A 2001; 926: 255-64.

- 1 [20] Floris P, Twamley B, Nesterenko PN, Paull B, Connolly D. Agglomerated polymer 2 monoliths with bimetallic nano-particles as flow-through micro-reactors. Microchim Acta 3 2012; 179: 149-56.
- 4 [21] Gusev I, Huang X, Horváth C. Capillary columns with in situ formed porous monolithic 5 packing for micro high-performance liquid chromatography and capillary 6 electrochromatography I Chromatography 255: 273-00
- 6 electrochromatography. J Chromatogr A 1999; 855: 273-90.
- 7 [22] Lv Y, Lin Z, Svec F. Hypercrosslinked Large Surface Area Porous Polymer Monoliths
- 8 for Hydrophilic Interaction Liquid Chromatography of Small Molecules Featuring
- 9 Zwitterionic Functionalities Attached to Gold Nanoparticles Held in Layered Structure. Anal10 Chem 2012; 84: 8457-60.
- [23] Xie S, Svec F, Fréchet JMJ. Design of reactive porous polymer supports for high
 throughput bioreactors: Poly(2-vinyl-4,4-dimethylazlactone-co-acrylamide-co-ethylene
 dimethacrylate) monoliths. Biotechnol Bioeng 1999; 62: 30-5.
- 14 [24] Guerrouache M, Carbonnier B, Vidal-Madjar C, Millot M-C. In situ functionalization of
- 15 N-acryloxysuccinimide-based monolith for reversed-phase electrochromatography. J
- 16 Chromatogr A 2007; 1149: 368-76.
- 17 [25] Guerrouache M, Millot M-C, Carbonnier B. Functionalization of Macroporous Organic
- 18 Polymer Monolith Based on Succinimide Ester Reactivity for Chiral Capillary
- 19 Chromatography: A Cyclodextrin Click Approach. Macromol Rapid Commun 2009; 30: 109-20 13.
- 20 13. 21 [26] Guerrouache M, Millot MC, Carbonnier B. Capillary columns for reversed-phase CEC
- prepared via surface functionalization of polymer monolith with aromatic selectors. J Sep Sci
- 23 2011; 34: 2271-8.
- [27] Dao TTH, Guerrouache M, Carbonnier B. Thiol-yne Click Adamantane Monolithic
 Stationary Phase for Capillary Electrochromatography. Chin J Chem 2012; 30: 2281-4.
- [28] Tijunelyte I, Babinot J, Guerrouache M, Valincius G, Carbonnier B. Hydrophilic
 monolith with ethylene glycol-based grafts prepared via surface confined thiol-ene click
 photoaddition. Polymer 2012; 53: 29-36.
- [29] Kebe SI, Ben Boubaker M, Guerrouache M, Carbonnier B. Thiol-ene click chemistry for
 the design of diol porous monoliths with hydrophilic surface interaction ability: a capillary
 electrochromatography study. New J Chem 2016; 40: 6916-23.
- 32 [30] Mekhalif T, Kebe SI, Guerrouache M, Belattar N, Millot MC, Carbonnier B. Novel
- 33 Monolithic Stationary Phase with Surface-Grafted Triphenyl Selector for Reversed-Phase
- Capillary Electrochromatography. Chromatographia 2016; 79: 1333-41.
- 35 [31] Poupart R, Le Droumaguet B, Guerrouache M, Carbonnier B. Copper nanoparticles
- 36 supported on permeable monolith with carboxylic acid surface functionality: Stability and
- 37 catalytic properties under reductive conditions. Mater Chem Phys 2015; 163: 446-52.
- [32] Lav T-X, Carbonnier B, Guerrouache M, Grande D. Porous polystyrene-based
 monolithic materials templated by semi-interpenetrating polymer networks for capillary
 electrochromatography. Polymer 2010; 51: 5890-4.
- 41 [33] Lav T-X, Grande D, Gaillet C, Guerrouache M, Carbonnier B. Porous Poly(styrene-co-
- 42 divinylbenzene) Neutral Monolith: From Design and Characterization to Reversed-Phase
 43 Capillary Electrochromatography Applications. Macromol Chem Phys 2012; 213: 64-71.
- 45 Capitary Electrochromatography Applications. Macromol Chem Phys 2012; 213: 64-71. 44 [34] Zhang J, Wu L, Jing D, Ding J. A comparative study of porous scaffolds with cubic and
- 45 spherical macropores. Polymer 2005; 46: 4979-85.
- 46 [35] Le Droumaguet B, Lacombe R, Ly H-B, Guerrouache M, Carbonnier B, Grande D.
- 47 Engineering functional doubly porous PHEMA-based materials. Polymer 2014; 55: 373-9.
- 48 [36] Lin H-R, Kuo C-J, Yang CY, Shaw S-Y, Wu Y-J. Preparation of macroporous
- 49 biodegradable PLGA scaffolds for cell attachment with the use of mixed salts as porogen
- 50 additives. J Biomed Mater Res 2002; 63: 271-9.

- 1 [37] Chow KS, Khor E. Novel Fabrication of Open-Pore Chitin Matrixes. Biomacromolecules 2000; 1: 61-7.
- 3 [38] LaNasa SM, Hoffecker IT, Bryant SJ. Presence of pores and hydrogel composition
- 4 influence tensile properties of scaffolds fabricated from well-defined sphere templates. J
 5 Biomed Mater Res B 2011; 96B: 294-302.
- 6 [39] Apel P. Track etching technique in membrane technology. Radiat Meas 2001; 34: 559-66.
- [40] Matsen MW, Bates FS. Unifying Weak- and Strong-Segregation Block Copolymer
 9 Theories. Macromolecules 1996; 29: 1091-8.
- 10 [41] Bates FS, Fredrickson G. Block copolymers-designer soft materials. Physics Today 11 1999; 52: 32-8.
- [42] Cochran EW, Garcia-Cervera CJ, Fredrickson GH. Stability of the Gyroid Phase in
 Diblock Copolymers at Strong Segregation. Macromolecules 2006; 39: 2449-51.
- [43] Lynd NA, Hillmyer MA. Influence of polydispersity on the self-assembly of diblockcopolymers. Macromolecules 2005; 38: 8803-10.
- 16 [44] Lee JS, Hirao A, Nakahama S. Polymerization of monomers containing functional silyl
- groups. 5. Synthesis of new porous membranes with functional groups. Macromolecules18 1988; 21: 274-6.
- 19 [45] Grande D, Le Droumaguet B. Design of functional nanoporous polymeric materials from
- sel-organized block copolymers. In: Morton T, editor. Nanopores and nanoporous materials:
 New Science Publishers 2016, r. 1.26
- 21 Nova Science Publishers; 2016. p. 1-26.
- 22 [46] Gorzolnik B, Davidson P, Beurroies I, Denoyel R, Grande D. Novel Functional
- Mesoporous Materials Obtained from Nanostructured Diblock Copolymers. Macromol Symp
 2010; 287: 127-34.
- [47] Gorzolnik B, Penelle J, Grande D. Design of Mesoporous Materials with Controlled
 Porosity and Functionality from Nanostructured Diblock Copolymers. Polym Mater: Sci Eng
- 27 2007; 97: 223-4.
- 28 [48] Chuma A, Horn HW, Swope WC, Pratt RC, Zhang L, Lohmeijer BGG, et al. The 29 Reaction Mechanism for the Organocatalytic Ring-Opening Polymerization of 1-Lactide
- Weachon Wechanism for the Organocatarytic King-Opening Forymenzation of 1-Lactude
 Using a Guanidine-Based Catalyst: Hydrogen-Bonded or Covalently Bound? J Am Chem Soc
 2008; 130: 6749-54.
- 32 [49] Cross ED, Allan LEN, Decken A, Shaver MP. Aluminum salen and salan complexes in
- 33 the ring-opening polymerization of cyclic esters: Controlled immortal and copolymerization
- 34 of rac-β-butyrolactone and rac-lactide. J Polym Sci, Part A: Polym Chem 2013; 51: 1137-46.
- [50] Zalusky AS, Olayo-Valles R, Taylor CJ, Hillmyer MA. Mesoporous Polystyrene
 Monoliths. J Am Chem Soc 2001; 123: 1519-20.
- [51] Grande D, Penelle J, Davidson P, Beurroies I, Denoyel R. Functionalized ordered
 nanoporous polymeric materials: From the synthesis of diblock copolymers to their
 nanostructuration and their selective degradation. Microporous Mesoporous Mater 2011; 140:
 34-9.
- 41 [52] Majdoub R, Antoun T, Droumaguet BL, Benzina M, Grande D. Original route to
- 42 polylactide–polystyrene diblock copolymers containing a sulfonyl group at the junction
- 43 between both blocks as precursors to functional nanoporous materials. React Funct Polym
- 44 2012; 72: 495-502.
- 45 [53] Sarkar A, Stefik M. Robust porous polymers enabled by a fast trifluoroacetic acid etch
- 46 with improved selectivity for polylactide. Materials Chemistry Frontiers 2017; 1: 1526-33.
- 47 [54] Kuhn P, Antonietti M, Thomas A. Porous, Covalent Triazine-Based Frameworks
 48 Prepared by Ionothermal Synthesis. Angew Chem Int Ed 2008; 47: 3450-3.

- 1 [55] Goldbach JT, Russell TP, Penelle J. Synthesis and Thin Film Characterization of 2 Poly(styrene-block-methyl methacrylate) Containing an Anthracene Dimer Photocleavable
- 3 Junction Point. Macromolecules 2002; 35: 4271-6.
- 4 [56] Yurt S, Anyanwu UK, Scheintaub JR, Coughlin EB, Venkataraman D. Scission of
- 5 Diblock Copolymers into Their Constituent Blocks. Macromolecules 2006; 39: 1670-2.
- 6 [57] Zhang M, Yang L, Yurt S, Misner MJ, Chen JT, Coughlin EB, et al. Highly Ordered 7 Nanoporous Thin Films from Cleavable Polystyrene-block-poly(ethylene oxide). Adv Mater
- 8 2007; 19: 1571-6.
- 9 [58] Kang M, Moon B. Synthesis of Photocleavable Poly(styrene-block-ethylene oxide) and
- 10 Its Self-Assembly into Nanoporous Thin Films. Macromolecules 2009; 42: 455-8.
- [59] Schumers J-M, Gohy J-F, Fustin C-A. A versatile strategy for the synthesis of block 11 copolymers bearing a photocleavable junction. Polym Chem 2010; 1: 161-3. 12
- [60] Zhao H, Gu W, Sterner E, Russell TP, Coughlin EB, Theato P. Highly Ordered 13
- Nanoporous Thin Films from Photocleavable Block Copolymers. Macromolecules 2011; 44: 14
- 15 6433-40.
- 16 [61] Gamys CG, Schumers J-M, Vlad A, Fustin C-A, Gohy J-F. Amine-functionalized 17 nanoporous thin films from a poly(ethylene oxide)-block-polystyrene diblock copolymer bearing a photocleavable o-nitrobenzyl carbamate junction. Soft Matter 2012; 8: 4486-93. 18
- 19 [62] Ouchi M, Konishi A, Takenaka M, Sawamoto M. Consecutive living polymerization 20 from cationic to radical: a straightforward yet versatile methodology for the precision synthesis of "cleavable" block copolymers with a hemiacetal ester junction. Polym Chem 21 22 2012; 3: 2193-9.
- 23 [63] Poupart R, Benlahoues A, Le Droumaguet B, Grande D. Porous Gold Nanoparticle-
- 24 Decorated Nanoreactors Prepared from Smartly Designed Functional Polystyrene-block-25 Poly(d,l-Lactide) Diblock Copolymers: Toward Efficient Systems for Catalytic Cascade Reaction Processes. ACS Appl Mater Interfaces 2017; 9: 31279-90. 26
- 27 [64] Satoh K, Poelma JE, Campos LM, Stahl B, Hawker CJ. A facile synthesis of clickable
- 28 and acid-cleavable PEO for acid-degradable block copolymers. Polym Chem 2012; 3: 1890-8.
- 29 [65] Goldbach JT, Lavery KA, Penelle J, Russell TP. Nano- to Macro-Sized Heterogeneities
- 30 Using Cleavable Diblock Copolymers. Macromolecules 2004; 37: 9639-45.
- 31 [66] Le Droumaguet B, Poupart R, Grande D. "Clickable" thiol-functionalized nanoporous
- 32 polymers: from their synthesis to further adsorption of gold nanoparticles and subsequent use 33 as efficient catalytic supports. Polym Chem 2015; 6: 8105-11.
- [67] Ryu J-H, Park S, Kim B, Klaikherd A, Russell TP, Thayumanavan S. Highly Ordered 34
- 35 Gold Nanotubes Using Thiols at a Cleavable Block Copolymer Interface. J Am Chem Soc 36 2009; 131: 9870-1.
- 37 [68] Rao J, De S, Khan A. Synthesis and self-assembly of dynamic covalent block
- copolymers: towards a general route to pore-functionalized membranes. Chem Commun 38 39 2012; 48: 3427-9.
- 40 [69] Glassner M, Blinco JP, Barner-Kowollik C. Formation of nanoporous materials via mild 41 retro-Diels-Alder chemistry. Polym Chem 2011; 2: 83-7.
- [70] Fustin CA, Lohmeijer BGG, Duwez AS, Jonas AM, Schubert US, Gohy JF. Nanoporous 42
- 43 Thin Films from Self-Assembled Metallo- Supramolecular Block Copolymers. Adv Mater
- 44 2005; 17: 1162-5.
- 45 [71] Mugemana C, Gohy J-F, Fustin C-A. Functionalized Nanoporous Thin Films from 46 Metallo-Supramolecular Diblock Copolymers. Langmuir 2012; 28: 3018-23.
- 47 [72] Yu H, Stoffelbach F, Detrembleur C, Fustin C-A, Gohy J-F. Nanoporous thin films from
- 48 ionically connected diblock copolymers. Eur Polym J 2012; 48: 940-4.

- 1 [73] Montarnal D, Delbosc N, Chamignon C, Virolleaud M-A, Luo Y, Hawker CJ, et al.
- 2 Highly Ordered Nanoporous Films from Supramolecular Diblock Copolymers with
- 3 Hydrogen-Bonding Junctions. Angew Chem Int Ed 2015; 54: 11117-21.
- 4 [74] Zhao H, Gu W, Thielke MW, Sterner E, Tsai T, Russell TP, et al. Functionalized
- 5 Nanoporous Thin Films and Fibers from Photocleavable Block Copolymers Featuring
 6 Activated Esters. Macromolecules 2013; 46: 5195-201.
- [75] Dawson R, Cooper AI, Adams DJ. Nanoporous organic polymer networks. Prog Polym
 Sci 2012; 37: 530-63.
- 9 [76] McKeown NB, Budd PM. Polymers of intrinsic microporosity (PIMs): organic materials
- 10 for membrane separations, heterogeneous catalysis and hydrogen storage. Chem Soc Rev 11 2006; 35: 675-83.
- [77] Sakaushi K, Antonietti M. Carbon- and Nitrogen-Based Organic Frameworks. Acc ChemRes 2015; 48: 1591-600.
- 14 [78] Shen C, Yu H, Wang Z. Synthesis of 1,3,5,7-tetrakis(4-cyanatophenyl)adamantane and
- its microporous polycyanurate network for adsorption of organic vapors, hydrogen and carbondioxide. Chem Commun 2014; 50: 11238-41.
- 17 [79] Zhang Y, Riduan SN, Ying JY. Microporous Polyisocyanurate and Its Application in
- 18 Heterogeneous Catalysis. Chem Eur J 2009; 15: 1077-81.
- [80] Dey SK, de Sousa Amadeu N, Janiak C. Microporous polyurethane material for size
 selective heterogeneous catalysis of the Knoevenagel reaction. Chem Commun 2016; 52:
 7834-7.
- 22 [81] Carta M, Croad M, Bugler K, Msayib KJ, McKeown NB. Heterogeneous organocatalysts
- composed of microporous polymer networks assembled by Tröger's base formation. Polym
 Chem 2014; 5: 5262-6.
- [82] Ben T, Ren H, Ma S, Cao D, Lan J, Jing X, et al. Targeted Synthesis of a Porous
 Aromatic Framework with High Stability and Exceptionally High Surface Area. Angew
- 27 Chem Int Ed 2009; 48: 9457-60.
- [83] Verde-Sesto E, Pintado-Sierra M, Corma A, Maya EM, de la Campa JG, Iglesias M, et
 al. First Pre-Functionalised Polymeric Aromatic Framework from
 Mononitrotetrakis(iodophenyl)methane and its Applications. Chem Eur J 2014; 20: 5111-20.
- 31 [84] Zeltinger J, Sherwood JK, Graham DA, Müeller R, Griffith LG. Effect of pore size and
- void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng 2001; 7: 557-72.
- [85] Ruiz JAR, Marc-Tallon J, Pedros M, Dumon M. Two-step micro cellular foaming of
 amorphous polymers in supercritical CO2. J Supercrit Fluids 2011; 57: 87-94.
- 36 [86] Ly HB, Le Droumaguet B, Monchiet V, Grande D. Tailoring doubly porous poly(2-
- hydroxyethyl methacrylate)-based materials via thermally induced phase separation. Polymer
 2016; 86: 138-46.
- 39 [87] Huang Z-M, Zhang YZ, Kotaki M, Ramakrishna S. A review on polymer nanofibers by
- electrospinning and their applications in nanocomposites. Compos Sci Technol 2003; 63:
 2223-53.
- 42 [88] Formhals A. Process and apparatus for preparing artificial threads. USA1934.
- 43 [89] Reneker DH, Chun I. Nanometre diameter fibres of polymer, produced by 44 electrospinning. Nanotechnology 1996; 7: 216-23.
- 45 [90] Reneker DH, Yarin AL, Zussman E, Xu H. Electrospinning of Nanofibers from Polymer
- Solutions and Melts. In: Aref H, van der Giessen E, editors. Advances in Applied Mechanics:
 Elsevier; 2007. p. 43-346.
- 48 [91] Villarreal-Gómez LJ, Cornejo-Bravo JM, Vera-Graziano R, Grande D. Electrospinning
- 49 as a powerful technique for biomedical applications: a critically selected survey. J Biomat Sci,
- 50 Polym Ed 2016; 27: 157-76.

- [92] Bognitzki M, Czado W, Frese T, Schaper A, Hellwig M, Steinhart M, et al.
 Nanostructured Fibers via Electrospinning. Adv Mater 2001; 13: 70-2.
- 3 [93] Cameron NR, Sherrington DC. Non-aqueous high internal phase emulsions. Preparation
- 4 and stability. J Chem Soc, Faraday Trans 1996; 92: 1543-7.
- 5 [94] Silverstein MS, Cameron NR. PolyHIPEs Porous Polymers from High Internal Phase 6 Emulsions – Encyclopedia of Polymer Science and Technology: John Wiley & Sons Juse:
- 6 Emulsions. Encyclopedia of Polymer Science and Technology: John Wiley & Sons, Inc.;7 2002.
- 8 [95] Barby D, Haq Z. Low density porous cross-linked polymeric materials and their 9 preparation. Google Patents; 1982.
- [96] Krajnc P, Brown JF, Cameron NR. Monolithic Scavenger Resins by Amine
 Functionalizations of Poly(4-vinylbenzyl chloride-co-divinylbenzene) PolyHIPE Materials.
- 12 Org Lett 2002; 4: 2497-500.
- [97] Krajnc P, Štefanec D, Pulko I. Acrylic Acid "Reversed" PolyHIPEs. Macromol Rapid
 Commun 2005; 26: 1289-93.
- 15 [98] Kot E, Shirshova N, Bismarck A, Steinke JHG. Non-aqueous high internal phase
- 16 emulsion templates for synthesis of macroporous polymers in situ filled with cyclic carbonate
- 17 electrolytes. RSC Adv 2014; 4: 11512-9.
- 18 [99] R. Cameron N, C. Sherrington D. Preparation and glass transition temperatures of 19 elastomeric PolyHIPE materials. J Mater Chem 1997; 7: 2209-12.
- 20 [100] Féral-Martin C, Birot M, Deleuze H, Desforges A, Backov R. Integrative chemistry
- toward the first spontaneous generation of gold nanoparticles within macrocellular polyHIPE
- supports (Au@polyHIPE) and their application to eosin reduction. React Funct Polym 2007;
- 23 67: 1072-82.
- 24 [101] Mehraban M, Zadhoush A, Abdolkarim Hosseini Ravandi S, Bagheri R, Heidarkhan
- Tehrani A. Preparation of porous nanofibers from electrospun polyacrylonitrile/calcium
 carbonate composite nanofibers using porogen leaching technique. J Appl Polym Sci 2013;
- 128: 926-33.
- [102] Ly H-B, Le Droumaguet B, Monchiet V, Grande D. Designing and modeling doubly
 porous polymeric materials. Eur Phys J Spec Top 2015; 224: 1689-706.
- [103] Ly HB, Le Droumaguet B, Monchiet V, Grande D. Facile fabrication of doubly porous
 polymeric materials with controlled nano- and macro-porosity. Polymer 2015; 78: 13-21.
- 32 [104] Ly HB, Halbardier L, Grande D. Biporous Crosslinked Polymers With Controlled Pore
- 33 Size and Connectivity. Macromol Symp 2016; 365: 49-58.
- 34 [105] Ly HB, Poupart R, Halbardier L, Grande D. Functionalized Doubly Porous Networks:
- 35 From Synthesis to Application in Heterogeneous Catalysis. Macromol Symp 2016; 365: 40-8.
- 36 [106] Ly HB, Poupart R, Carbonnier B, Monchiet V, Le Droumaguet B, Grande D. Versatile
- 37 functionalization platform of biporous poly(2-hydroxyethyl methacrylate)-based materials:
- 38 Application in heterogeneous supported catalysis. React Funct Polym 2017; 121: 91-100.
- 39 [107] Webb PA, Orr C. Analytical methods in fine particle technology: Micromeritics40 Instrument Corp; 1997.
- 41 [108] Washburn EW. Note on a Method of Determining the Distribution of Pore Sizes in a
- 42 Porous Material. Proc Natl Acad Sci USA 1921; 7: 115-6.
- 43 [109] Moura MJ, Ferreira PJ, Figueiredo MM. Mercury intrusion porosimetry in pulp and 44 paper technology. Powder Technol 2005; 160: 61-6.
- 45 [110] Winslow DN. Advances in Experimental Techniques for Mercury Intrusion
- 46 Porosimetry. In: Matijević E, Good RJ, editors. Surface and Colloid Science: Volume 13.
 47 Boston, MA: Springer US; 1984. p. 259-82.
- 48 [111] Rouquerol J, Avnir D, Fairbridge C, Everett D, Haynes J, Pernicone N, et al.
- 49 Recommendations for the characterization of porous solids (Technical Report). Pure Appl
- 50 Chem 1994; 66: 1739-58.

- 1 [112] Feller C, Schouller E, Thomas F, Rouiller J, Herbillon AJ. N2-BET Specific Surface
- 2 Areas of Some Low Activity Clay Soils and Their Relationships With Secondary Constituents
- 3 and Organic Matter Contents. Soil Sci 1992; 153: 293-9.
- 4 [113] Kim KC, Yoon T-U, Bae Y-S. Applicability of using CO2 adsorption isotherms to
- determine BET surface areas of microporous materials. Microporous Mesoporous Mater
 2016; 224: 294-301.
- [114] Yanazawa H, Ohshika K, Matsuzawa T. Precision Evaluation in Kr Adsorption for
 Small BET Surface Area Measurements of Less Than 1 m2. Adsorption 2000; 6: 73-7.
- 9 [115] Brunauer S, Emmett PH, Teller E. Adsorption of Gases in Multimolecular Layers. J Am
- 10 Chem Soc 1938; 60: 309-19.
- 11 [116] Barrett EP, Joyner LG, Halenda PP. The Determination of Pore Volume and Area
- Distributions in Porous Substances. I. Computations from Nitrogen Isotherms. J Am ChemSoc 1951; 73: 373-80.
- 14 [117] Iza M, Woerly S, Danumah C, Kaliaguine S, Bousmina M. Determination of pore size
- distribution for mesoporous materials and polymeric gels by means of DSC measurements:thermoporometry. Polymer 2000; 41: 5885-93.
- 17 [118] Brun M, Lallemand A, Quinson J-F, Eyraud C. A new method for the simultaneous
- determination of the size and shape of pores: the thermoporometry. Thermochim Acta 1977;21: 59-88.
- [119] Jones BH, Lodge TP. Nanoporous Materials Derived from Polymeric Bicontinuous
 Microemulsions. Chem Mater 2010; 22: 1279-81.
- [120] Wulff M. Pore size determination by thermoporometry using acetonitrile. Thermochim
 Acta 2004; 419: 291-4.
- [121] Strange JH, Mitchell J, Webber JBW. Pore surface exploration by NMR. Magn Reson
 Imaging 2003; 21: 221-6.
- [122] Dlapka M, Danninger H, Gierl C, Lindqvist B. Defining the pores in PM components.
 Metal Powder Report 2010; 65: 30-3.
- [123] Vakifahmetoglu C, Colombo P. A Direct Method for the Fabrication of Macro-Porous
 SiOC Ceramics from Preceramic Polymers. Adv Eng Mater 2008; 10: 256-9.
- [124] Moreno-Mañas M, Pleixats R. Formation of Carbon–Carbon Bonds under Catalysis by
 Transition-Metal Nanoparticles. Acc Chem Res 2003; 36: 638-43.
- 32 [125] Astruc D, Lu F, Aranzaes JR. Nanoparticles as Recyclable Catalysts: The Frontier
- between Homogeneous and Heterogeneous Catalysis. Angew Chem Int Ed 2005; 44: 7852-72.
- [126] Takale BS, Bao M, Yamamoto Y. Gold nanoparticle (AuNPs) and gold nanopore
 (AuNPore) catalysts in organic synthesis. Org Biomol Chem 2014; 12: 2005-27.
- 37 [127] Daniel M-C, Astruc D. Gold Nanoparticles: Assembly, Supramolecular Chemistry,
- 38 Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and 39 Nanotechnology. Chem Rev 2004; 104: 293-346.
- 40 [128] Gawande MB, Goswami A, Felpin F-X, Asefa T, Huang X, Silva R, et al. Cu and Cu-
- Based Nanoparticles: Synthesis and Applications in Catalysis. Chem Rev 2016; 116: 3722811.
- 43 [129] Ranu BC, Dey R, Chatterjee T, Ahammed S. Copper Nanoparticle-Catalyzed 44 Carbon Carbon and Carbon Heteroatom Bond Formation with a Greener Perspective.
- 45 ChemSusChem 2012; 5: 22-44.
- [130] Chen A, Holt-Hindle P. Platinum-Based Nanostructured Materials: Synthesis,
 Properties, and Applications. Chem Rev 2010; 110: 3767-804.
- 48 [131] Astruc D. Palladium Nanoparticles as Efficient Green Homogeneous and
- 49 Heterogeneous Carbon–Carbon Coupling Precatalysts: A Unifying View. Inorg Chem 2007;
- 50 46: 1884-94.

- 1 [132] Munnik P, de Jongh PE, de Jong KP. Recent Developments in the Synthesis of 2 Supported Catalysts. Chem Rev 2015; 115: 6687-718.
- 3 [133] Wuithschick M, Paul B, Bienert R, Sarfraz A, Vainio U, Sztucki M, et al. Size-
- 4 Controlled Synthesis of Colloidal Silver Nanoparticles Based on Mechanistic Understanding.
- 5 Chem Mater 2013; 25: 4679-89.
- 6 [134] Wuithschick M, Witte S, Kettemann F, Rademann K, Polte J. Illustrating the formation
- 7 of metal nanoparticles with a growth concept based on colloidal stability. Phys Chem Chem
- 8 Phys 2015; 17: 19895-900.
- 9 [135] Wuithschick M, Birnbaum A, Witte S, Sztucki M, Vainio U, Pinna N, et al. Turkevich
- in New Robes: Key Questions Answered for the Most Common Gold Nanoparticle Synthesis.
 ACS Nano 2015; 9: 7052-71.
- 12 [136] Kettemann F, Birnbaum A, Witte S, Wuithschick M, Pinna N, Kraehnert R, et al.
- Missing Piece of the Mechanism of the Turkevich Method: The Critical Role of CitrateProtonation. Chem Mater 2016; 28: 4072-81.
- [137] Boutonnet M, Kizling J, Stenius P, Maire G. The preparation of monodisperse colloidal
 metal particles from microemulsions. Colloid Surface 1982; 5: 209-25.
- 17 [138] Shim I-W, Kim J-Y, Kim D-Y, Choi S. Preparation of Rh-containing polycarbonate
- films and the study of their chemical properties in the polymer. React Funct Polym 2000; 43: 71-8.
- 20 [139] Groppo E, Agostini G, Borfecchia E, Wei L, Giannici F, Portale G, et al. Formation and
- Growth of Pd Nanoparticles Inside a Highly Cross-Linked Polystyrene Support: Role of the
 Reducing Agent. J Phys Chem C 2014; 118: 8406-15.
- 23 [140] Chappa S, Bharath RS, Oommen C, Pandey AK. Dual-Functional Grafted Electrospun
- Polymer Microfiber Scaffold Hosted Palladium Nanoparticles for Catalyzing Redox
 Reactions. Macromol Chem Phys 2017; 218: 1600555.
- 26 [141] Poupart R, Nour El Houda D, Chellapermal D, Guerrouache M, Carbonnier B, Le
- 27 Droumaguet B. Novel in-capillary polymeric monoliths arising from glycerol carbonate
- methacrylate for flow-through catalytic and chromatographic applications. RSC Adv 2016; 6:
 13614-7.
- [142] Xiao S, Xu W, Ma H, Fang X. Size-tunable Ag nanoparticles immobilized in
 electrospun nanofibers: synthesis, characterization, and application for catalytic reduction of
 4-nitrophenol. RSC Adv 2012; 2: 319-27.
- 33 [143] Mora-Tamez L, Esquivel-Peña V, Ocampo AL, Rodríguez de San Miguel E, Grande D,
- 34 de Gyves J. Simultaneous AuIII Extraction and In Situ Formation of Polymeric Membrane-
- 35 Supported Au Nanoparticles: A Sustainable Process with Application in Catalysis. 36 ChemSusChem 2017: 10: 1/82-93
- 36 ChemSusChem 2017; 10: 1482-93.
- [144] Emin C, Remigy J-C, Lahitte J-F. Influence of UV grafting conditions and gel
 formation on the loading and stabilization of palladium nanoparticles in photografted
 polyethersulfone membrane for catalytic reactions. J Membr Sci 2014; 455: 55-63.
- 40 [145] Gu Y, Emin C, Remigy J-C, Favier I, Gómez M, Noble RD, et al. Hybrid Catalytic
- 41 Membranes: Tunable and Versatile Materials for Fine Chemistry Applications. Mater Today-
- 42 Proc 2016; 3: 419-23.
- 43 [146] Liu Y, Guerrouache M, Kebe SI, Carbonnier B, Le Droumaguet B. Gold nanoparticles-
- 44 supported histamine-grafted monolithic capillaries as efficient microreactors for flow-through
- 45 reduction of nitro-containing compounds. J Mater Chem A 2017; 5: 11805-14.
- 46 [147] Khalil AM, Georgiadou V, Guerrouache M, Mahouche-Chergui S, Dendrinou-Samara
- 47 C, Chehimi MM, et al. Gold-decorated polymeric monoliths: In-situ vs ex-situ immobilization
- 48 strategies and flow through catalytic applications towards nitrophenols reduction. Polymer
- 49 2015; 77: 218-26.

- 1 [148] Fang X, Ma H, Xiao S, Shen M, Guo R, Cao X, et al. Facile immobilization of gold 2 nanoparticles into electrospun polyethyleneimine/polyvinyl alcohol nanofibers for catalytic
- 3 applications. J Mater Chem 2011; 21: 4493-501.
- 4 [149] Nikbin N, Ladlow M, Ley SV. Continuous Flow Ligand-Free Heck Reactions Using
- 5 Monolithic Pd [0] Nanoparticles. Org Process Res Dev 2007; 11: 458-62.
- 6 [150] Bandari R, Höche T, Prager A, Dirnberger K, Buchmeiser MR. Ring-Opening
- 7 Metathesis Polymerization Based Pore-Size-Selective Functionalization of Glycidyl
- Methacrylate Based Monolithic Media: Access to Size-Stable Nanoparticles for Ligand-Free
 Metal Catalysis. Chem Eur J 2010; 16: 4650-8.
- 10 [151] Budarin VL, Clark JH, Luque R, Macquarrie DJ, White RJ. Palladium nanoparticles on 11 polysaccharide-derived mesoporous materials and their catalytic performance in C–C
- 12 coupling reactions. Green Chem 2008; 10: 382-7.
- 13 [152] Gu Y, Favier I, Pradel C, Gin DL, Lahitte J-F, Noble RD, et al. High catalytic 14 efficiency of palladium nanoparticles immobilized in a polymer membrane containing
- 15 poly(ionic liquid) in Suzuki–Miyaura cross-coupling reaction. J Membr Sci 2015; 492: 331-9.
- 16 [153] Gu Y, Bacchin P, Lahitte J-F, Remigy J-C, Favier I, Gómez M, et al. Catalytic 17 membrane reactor for Suzuki-Miyaura C-C cross-coupling: Explanation for its high
- 18 efficiency via modeling. AlChE J 2017; 63: 698-704.
- 19 [154] Zhang P, Weng Z, Guo J, Wang C. Solution-Dispersible, Colloidal, Conjugated Porous
- Polymer Networks with Entrapped Palladium Nanocrystals for Heterogeneous Catalysis of
 the Suzuki–Miyaura Coupling Reaction. Chem Mater 2011; 23: 5243-9.
- 22 [155] Du Z-L, Dang Q-Q, Zhang X-M. Heptazine-Based Porous Framework Supported
- Palladium Nanoparticles for Green Suzuki–Miyaura Reaction. Ind Eng Chem Res 2017; 56:
 4275-80.
- 25 [156] Desforges A, Backov R, Deleuze H, Mondain-Monval O. Generation of Palladium
- 26 Nanoparticles within Macrocellular Polymeric Supports: Application to Heterogeneous
- 27 Catalysis of the Suzuki–Miyaura Coupling Reaction. Adv Funct Mater 2005; 15: 1689-95.
- 28 [157] Bandari R, Prager A, Höche T, Buchmeiser MR. Formation of Pd-Nanoparticles within
- 29 the Pores of Ring Opening Metathesis Polymerization-Derived Polymeric Monoliths
- 30 for Use in Organometallic Catalysis. ARKIVOC 2011.
- 31 [158] Bandari R, Buchmeiser MR. Polymeric monolith supported Pt-nanoparticles as ligand-
- free catalysts for olefin hydrosilylation under batch and continuous conditions. Catal Sci Technol 2012; 2: 220-6.
- [159] Poupart R, Le Droumaguet B, Guerrouache M, Grande D, Carbonnier B. Gold
 nanoparticles immobilized on porous monoliths obtained from disulfide-based
 dimethacrylate: Application to supported catalysis. Polymer 2017; 126: 455-62.
- 37 [160] Floris P, Twamley B, Nesterenko PN, Paull B, Connolly D. Fabrication and
- characterisation of gold nano-particle modified polymer monoliths for flow-through catalytic
 reactions and their application in the reduction of hexacyanoferrate. Microchim Acta 2014;
- 40 181: 249-56.
- 41 [161] Taori VP, Bandari R, Buchmeiser MR. Selective Reduction of CO2 with Silanes over
- 42 Platinum Nanoparticles Immobilised on a Polymeric Monolithic Support under Ambient 43 Conditions Chem Fur I 2014: 20: 3292-6
- 43 Conditions. Chem Eur J 2014; 20: 3292-6.
- 44 [162] Desforges A, Deleuze H, Mondain-Monval O, Backov R. Palladium Nanoparticle
- 45 Generation within Microcellular Polymeric Foam and Size Dependence under Synthetic 46 Conditions. Ind Eng Chem Res 2005; 44: 8521-9.
- 47 [163] Gu YY, Remigy JC, Favier I, Gomez M, Noble RD, Lahitte JF. Membrane Reactor
- 48 Based on Hybrid Nanomaterials for Process Intensification of Catalytic Hydrogenation
- 49 Reaction: an Example of Reduction of the Environmental Footprint of Chemical Synthesis
- 50 from a Batch to a Continuous Flow Chemistry Process. In: Chianese A, DiPalma L, Petrucci

- 1 E, Stoller M, editors. International Conference on Nanotechnology Based Innovative 2 Applications for the Environment2016. p. 367-72.
- [164] Huang Y, Ma H, Wang S, Shen M, Guo R, Cao X, et al. Efficient Catalytic Reduction 3
- 4 of Hexavalent Chromium Using Palladium Nanoparticle-Immobilized Electrospun Polymer
- 5 Nanofibers. ACS Appl Mater Interfaces 2012; 4: 3054-61.
- 6 [165] Cao Q, Xu Y, Liu F, Svec F, Fréchet JMJ. Polymer Monoliths with Exchangeable
- 7 Chemistries: Use of Gold Nanoparticles As Intermediate Ligands for Capillary Columns with
- 8 Varying Surface Functionalities. Anal Chem 2010; 82: 7416-21.
- 9 [166] Connolly D, Twamley B, Paull B. High-capacity gold nanoparticle functionalised 10 polymer monoliths. Chem Commun 2010; 46: 2109-11.
- 11
- [167] Guerrouache M, Mahouche-Chergui S, Chehimi MM, Carbonnier B. Site-specific immobilisation of gold nanoparticles on a porous monolith surface by using a thiol-yne click 12 13 photopatterning approach. Chem Commun 2012; 48: 7486-8.
- [168] Merino E, Verde-Sesto E, Maya EM, Corma A, Iglesias M, Sánchez F. Mono-14
- 15 functionalization of porous aromatic frameworks to use as compatible heterogeneous catalysts
- 16 in one-pot cascade reactions. Appl Catal, A 2014; 469: 206-12.
- 17 [169] Xie Z, Wang C, deKrafft KE, Lin W. Highly Stable and Porous Cross-Linked Polymers
- for Efficient Photocatalysis. J Am Chem Soc 2011; 133: 2056-9. 18
- 19 [170] Vankelecom IFJ. Polymeric Membranes in Catalytic Reactors. Chem Rev 2002; 102: 20 3779-810.
- [171] Cheng G, Hasell T, Trewin A, Adams DJ, Cooper AI. Soluble Conjugated Microporous 21 22 Polymers. Angew Chem Int Ed 2012; 51: 12727-31.
- 23 [172] Cameron NR. High internal phase emulsion templating as a route to well-defined 24 porous polymers. Polymer 2005; 46: 1439-49.
- 25 [173] Hainey P, Huxham IM, Rowatt B, Sherrington DC, Tetley L. Synthesis and
- ultrastructural studies of styrene-divinylbenzene Polyhipe polymers. Macromolecules 1991; 26 27 24: 117-21.
- 28 [174] Dzenis Y. Spinning Continuous Fibers for Nanotechnology. Science 2004; 304: 1917-9.
- 29 [175] Mezhoud S, Paljevac M, Koler A, Le Droumaguet B, Grande D, Krajnc P. Novel
- 30 hypercrosslinking approach toward high surface area functional 2-hydroxyethyl methacrylate-31 based polyHIPEs. React Funct Polym 2018; 132: 51-9.
- [176] Zeng J, Zhang Q, Chen J, Xia Y. A Comparison Study of the Catalytic Properties of 32
- 33 Au-Based Nanocages, Nanoboxes, and Nanoparticles. Nano Lett 2010; 10: 30-5.
- 34