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Abstract

Statistical modeling of the speech signal has been widely used in speaker recognition. The

performance obtained with this type of modeling is excellent in laboratories but decreases

dramatically for telephone or noisy speech. Moreover, it is diff icult to know which piece of

information is taken into account by the system. In order to solve this problem and to improve

the current systems, a better understanding of the nature of the information used by statistical

methods is needed. This knowledge should allow to select only the relevant information or to

add new sources of information.

The first part of this paper presents experiments that aim at localizing the most useful acoustic

events for speaker recognition. The relation between the discriminant abilit y and the speech's

events nature is studied. Particularly, the phonetic content, the signal stabilit y and the

frequency domain are explored. Finally, the potential of dynamic information contained in the

relation between a frame and its p neighbours is investigated.

In the second part, the authors suggest a new selection procedure designed to select the

pertinent features. Conventional feature selection techniques (ascendant selection, knock-out)

allow only global and a posteriori knowledge about the relevance of an information source.

However, some speech clusters may be very eff icient to recognize a particular speaker,

whereas they can be non informative for another one. Moreover, some information classes

may be corrupted or even missing for particular recording conditions. This necessity for
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speaker specific processing and for adaptabilit y to the environment (with no a priori

knowledge of the degradation affecting the signal) leads the authors to propose a system that

automatically selects the most discriminant parts of a speech utterance.

The proposed architecture divides the signal into different time-frequency blocks. The

likelihood is calculated after dynamically selecting the most useful blocks. This information

selection leads to a significative error rate reduction (up to 41% of relative error rate decrease

on TIMIT) for short training and test durations. Finally, experiments in the case of simulated

noise degradation show that this approach is a very eff icient way to deal with partially

corrupted speech.

Résumé

La modélisation statistique du signal de parole a été largement utili sée en reconnaissance

automatique du locuteur. Les performances obtenues avec cette approche sont excellentes, en

laboratoire. Cependant, une dégradation significative des performances est observée avec de la

parole de qualité téléphonique ou bruitée. Pour palier ce problème, il est nécessaire de mieux

comprendre la nature de l’ information spécifique du locuteur exploitée par ces méthodes

statistiques. Cette connaissance doit permettre de mieux prendre en compte l’ information

pertinente et/ou de mettre à contribution de nouvelles sources d’ information.

La première partie de cet article reporte des expériences visant à spécifier les événements

acoustiques les plus utiles à la reconnaissance du locuteur. Les liens entre le contenu

phonétique du message, l’emplacement fréquentiel des informations, la stabilit é du signal et

les capacités de discrimination du locuteur sont successivement explorés. Enfin, la possibilit é

d’exploiter l’ information dynamique contenue dans la relation entre une trame et les p

suivantes est évaluée.
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Dans une seconde partie, les auteurs proposent une nouvelle procédure de sélection de

l’ information spécifique du locuteur. En effet, les méthodes conventionnelles de sélection de

paramètres (sélection ascendante, méthode du knock-out) ne permettent d’évaluer la

pertinence d’une source d’ information que de façon globale et a posteriori. Cependant,

certains locuteurs sont mieux caractérisés par une source d’ information que d’autres. De plus,

la pertinence des sources d’ information dépend de la qualité de l’échantill on de test. Face à ce

besoin de traitements spécifiques suivant le locuteur et d’adaptation à l’environnement, nous

proposons un système permettant de sélectionner automatiquement les parties les plus

discriminantes d’une portion de parole.

L’architecture proposée divise le signal de test en blocs temps-fréquence. Le score de

vraisemblance correspondant est calculé en sélectionnant dynamiquement les blocs temps-

fréquence les plus pertinents. Une réduction significative du taux de mauvaise identification

(jusqu’à 41% de réduction relative du taux de mauvaise identification sur TIMIT) est

observée. Finalement, des expériences réalisées dans le cas d’un bruit simulé, montrent le

potentiel de cette méthode pour traiter des signaux de parole partiellement dégradés.
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x  mean vector of speaker X

X covariance matrix of speaker X

{ } Nt1ty ≤≤ sequence of N vectors uttered by speaker Y

{ } TtTi1tTiy +≤≤+ t-th segment (of T frames) extracted from the speech sequence { } Nt1ty ≤≤

tl li kelihood of acoustic vector ty
k
tl  li kelihood of acoustic vector ty  on the k-th subband

tL average log-likelihood of the t-th segment
k
tL average log-likelihood of the t-th segment and of the k-th subband

tH normalized score of the t-th segment (homogeneous to a minus log-
likelihood ratio)

k
tH normalized score of the t-th segment and of the k-th subband

)( YX,µ similarity measure between speaker X and speaker Y
)(k YX,µ similarity measure between speaker X and speaker Y on the k-th

subband
Dev yt( ) stabilit y criterion of acoustic vector ty  (frame t)
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i i-th component of acoustic vector ty  (frame t)
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1. INTRODUCTION

A speaker recognition process can be basically divided into two main tasks. First, a speaker

model is built from speech samples pronounced by a given person. Secondly, the probabilit y

that a speech recording corresponds to a given model is estimated and the final decision is

made using this probabilit y as well as information available a priori. Although this decision

step is crucial for the performance of the system (many papers deal with the subject [9] [15]

[18]), speaker specific information liable to influence the decision is also intrinsically

contained in the speaker models. Therefore, it is worth trying to understand the nature of this

information.

Statistical models are mainly used in speaker recognition. Most of them are based on the

Hidden Markov Model (HMM) formalism. The different approaches can be derived with an

increasing reduction in the number of models, the number of states per model and the number

of gaussian densities per state. In that way, statistical approaches can move from large

vocabulary continuous speech recognition-based models (LVCSR) towards monogaussian

models (MGMs), which are made of a single state with only one gaussian. Gaussian mixture

models (GMMs) seem to be an excellent compromise between performance and complexity

and lead to the best recognition rates in text independent mode [25].

The speaker identification performance obtained with MGMs remains comparable to the one

obtained with more complex models, li ke GMMs, for short training and test durations [6].

However, these basic models seem less eff icient than GMMs for longer durations. Moreover,

results obtained with statistical methods deteriorate dramatically for telephone speech (Table

1) or speech corrupted by noise (Figure 1).

Table 1.
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In [6], experiments on TIMIT, FTIMIT (a restricted telephone bandwidth version of TIMIT)

and NTIMIT (real telephone quality) have shown that bandlimiti ng is not the only problem for

telephone speech; noisy environment as well as the difference between training and testing

conditions in transmission channels and handsets are also a factor of degradation [28].

The fact that many environmental factors play an important role in the performance of a

system shows that the information used may not be as speaker specific as expected. For

instance, the microphone, the channel and the recording conditions influence the final

decision significantly.

Figure 1.

In this work, the authors study the nature of the speaker specific information used by the

models. This knowledge should allow to select only the useful information conveyed by the

speech signal or to add new sources of information. MGMs, which are easy to implement and

computationally eff icient, are used. Moreover, the experiments will be performed with very

short training and, as explained previously, more complex models cannot be implemented

since not enough speech material is available to learn them correctly. However, it can be

reasonably supposed that speaker specific information captured by an MGM will be caught by

more complex models too. Conversely, a gain obtained with an MGM will not be

systematically significant with more complex models.

The first part of this paper reports experiments aimed at localizing the most useful acoustic

events for speaker recognition. These events differ, among other things, in their position in the

time-frequency domain. At the temporal level, a former study on the discriminant abilit y of

different phonemes is reported. Investigations aim at determining whether the most speaker

specific information is rather situated in the transitions between phonemes or in the phoneme

stable zones (targets). At the frequency level, speaker identification tests are conducted
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independently on different subbands to know which part of the frequency domain is the most

speaker specific. Finally, we propose to exploit the dynamic information contained in the

relation between a frame and its p neighbours.

In the second part, the authors suggest a new selection procedure to deal with the redundancy

observed between the various classes of information. Conventional feature selection

techniques (ascendant selection, Knock-out [26]) allow only global and approximate

knowledge about the relevance of an information source. However, the relevance of speech

cues is speaker dependent rather than absolute [24], i.e. some speech clusters may be very

useful to recognize a particular speaker, whereas they can be non informative for another one.

Moreover, some parts of the information may be corrupted or even missing for particular

recording conditions.

Thus, a new selection procedure is proposed to perform speaker specific processing and allow

adaptabilit y to changing acoustic environments. The most discriminant parts of a speech

utterance are selected “on-line” with a maximum likelihood criterion, whereas the least

informative parts are eliminated (pruning).

Section 2 describes the experimental conditions. Section 3 is dedicated to the study of the

speaker specific information used by these models. In Section 4, the “on-line” selection

method is detailed and then experimented with for the special case of a time-frequency

architecture in Section 5. Section 6 concludes this work and shows that the proposed approach

allows interesting feedback on the localization of speaker specific information when an a

posteriori analysis of the rejected speech parts is performed.
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2. REFERENCE SYSTEM

2.1 Monogaussian Modeling of Speakers

The monogaussian modeling is the starting point of the proposed system. It is more precisely

described in [6].

Let { }xt t M1≤ ≤
be a sequence of M vectors resulting from the p-dimensional acoustic analysis of

a speech signal uttered by speaker X . These vectors are summarized by mean vector x  and

covariance matrix X:

x
M

xt
t

M
= ∑

=

1

1
 and X

M
x x x xt t

T

t

M
= − −∑

=

1

1
( )( ) (1)

Similarly, for a speech signal uttered by speaker Y , a sequence of N vectors { }yt t N1≤ ≤
 can be

extracted.

By supposing that all acoustic vectors extracted from the speech signal uttered by speaker X

are distributed like a Gaussian function, the likelihood of a single vector yt  uttered by speaker

Y  is:

)xy(X)xy(
2

1

2/1

t
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t
e

)X(det
l

−−− −

p/2t
)(2

1
=

π
(2)

Assuming that all vectors yt  are independent observations, the average log-likelihood of

{ } Nt1ty ≤≤  can be written:

)l(log
N

1
L t

N

1t
∑
=

= (3)

The similarity measure between test utterance { } Nt1ty ≤≤  of speaker Y and the model of speaker

X is defined as:

µ µ( , ) ( , )X Y X= = −y LN
1 (4)
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This measure is equivalent to the standard gaussian likelihood measure (asymmetric µG )

defined in [6]. The following symmetric version of this measure (β  symmetrisation [6]) is

defined as:

[ ]
µ µ µ

β
G

MN

M N

M N
( , )

. ( , ) . ( , )
X Y

X Y Y X
=

+
+

(5)

The symmetric version of the measure is used since it is shown in [6] that symmetrisation has

a positive effect when littl e speech material is available (up to 30% of error reduction with

short training and testing).

2.2 Experimental Conditions

2.2.1 Databases

TIMIT and NTIMIT databases are used during the various experiments. Even if these

databases are mono session, they offer the advantages of being largely used in the literature

for comparison, being suited to text independent task, and proposing a large number of

speakers.

TIMIT database [10] contains 630 speakers (438 male and 192 female speakers), each of them

having uttered 10 sentences. The speech signal is recorded through a high quality microphone,

in a very quiet environment, with a 0-8 kHz bandwidth. All recordings took place in a single

session (contemporaneous speech).

The NTIMIT database [17] was obtained by playing TIMIT speech signal through an artificial

mouth installed in front of the microphone of a fixed handset and by transmitting this input

signal through a telephone line. For each speaker, there are 6 different telephone lines (local or

long distance network), but half of the speaker files are transmitted through the same line. The
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signal is sampled at 16 kHz, but its useful bandwidth is limited to telephone bandwidth

(approximately 300-3400 Hz).

2.2.2Signal Analysis

The speech analysis module extracts filterbank coeff icients in the following way: a Winograd

Fourier Transform is computed on Hamming windowed signal frames of 31.5 ms (i.e. 504

samples) at a frame rate of 10 ms. For each frame, spectral vectors of 24 Mel-Scale

Triangular-Filter Bank coeff icients (24 channels) are calculated from the Fourier Transform

power spectrum and expressed in logarithmic scale1. Covariance matrices and mean vectors

are computed from these spectral vectors. For NTIMIT, the first 2 channels and the last 7 ones

are discarded since the useful bandwidth is 330-3400Hz for these data. These analysis

conditions are identical to those used in [2] [3] [4] [5] [6].

Finally, it can be noticed that a subset of filterbank coeff icients can be directly interpreted as a

frequency subband. Thus, speaker identification experiments on independent subbands can be

conducted easily.

2.2.3Training and Test Protocols

In the proposed protocol, training or test durations are rigorously the same for each speaker.

For the training of a given speaker, all 5 'sx' sentences of TIMIT (or NTIMIT) are

concatenated together and the first M samples corresponding to the training duration required

(6s here) are taken into account. For the test of a given speaker, all 'sa' and 'si' sentences (5 in

total) are randomly concatenated together and blocks of N samples corresponding to the test

duration required are extracted until there is not enough speech data available (limited to a

maximum number of test blocks per speaker).

The reference and test patterns are thus computed from exactly the same number of samples

for each speaker. These exactly identical durations were required only for the pruning
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experiments reported in Section 5; however, this new protocol is used in all experiments

presented in this paper. This protocol yields results comparable to those obtained with the

regular protocol used on TIMIT (“phrase by phrase” protocol) [5].

All the tests are done within the framework of text-independent closed-set speaker

identification.

3. TRACKING SPEAKER SPECIFIC INFORMATION

3.1 Phonemes

In [19], the authors observed that the speaker identification performance (obtained with

MGMs) changes according to the phonetic label of the speech segments used. These results

tend to show that the speaker dependent information captured by MGMs is consistently

common to all phonetic classes and that the phonetic homogeneity of the test material may

improve the quality of the estimates. Thus, speaker specific information extracted with the

MGMs is not equally distributed in the speech signal. A large redundancy in the information

conveyed by the different phonemes is observed. All classes of phonemes give good results

alone. Therefore, an intelli gent use and selection of these different sources of information

should authorize significant performance enhancement.

3.2 Stabili ty

The studies reported in the previous section show that the use of phonetically homogeneous

segments improves performance. Two hypotheses, which are not conflicting, can explain this

result. On the one hand, the phonetic content of segments is important. This is confirmed by

the difference in performance, observed in [7] [14] [19] [20], between various phonetic

segments. On the other hand, the homogeneity of segments can also contribute to increasing

performance since the modeling used is based on statistical methods. Indeed, this kind of

methods determines the relevance of a piece of information from its repetiti ve nature. In the
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case of this study (gaussian mixture-based models relying on spectral feature vectors), it can

be reasonably assumed that very unstable zones of speech signal, such as transitions between

phonemes, may be less finely modeled than stable zones, independently of the amount of

speaker specific information initially present in the speech signal.

Consequently, this section aims at determining whether the selection of stable zones of the

speech signal, which correspond mainly to phoneme kernels (but also to silence zones and

occlusions), can lead to performance improvement.

Therefore, two kinds of experiments have been conducted. The first one studies the global

performance of the identification system according to the quantity of “stable” zones used. The

second one has to demonstrate a possible correlation between the stabilit y level of a test frame

uttered by a given speaker X and the likelihood estimation between this frame and the speaker

model.

In these two contexts, the same stabilit y criterion, which allows to assign a stabilit y coeff icient

to each frame, is used. The criterion is based on the behavior of frame t compared to the one

of (N/2-1) frames around it. In practice, assuming that a mean spectrum is computed from an

N frame time window centered on frame t, stabilit y criterion Dev yt( ) , defined in (6), is the

distance between p-dimensional vector yt  associated with frame t and that mean spectrum

represented by p-dimensional vector y:

Dev yt p
yt
i yi

i

p
( ) ( )= −

=
∑

1 2

1
(6)

with y
N

yt
t

N
=

+ =

+
∑

1

2 1 1

2 1
(7)
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3.2.1Experiments

The first experiment consists in reporting the identification rates obtained according to the

amount of the most stable frames selected during test and according to the training protocol

used. Two kinds of training protocols are proposed:

1. a classical training during which all the training data are used: 6s of speech signal

corresponding to 600 frames.

2. a “ stable” training during which the models are estimated by using a reduced amount of

training data composed of the 300 or 500 most stable frames selected among the 600 initial

training frames.

In order to evaluate the potential of stable frame selection, similar experiments have been

conducted by selecting frames of speech signal randomly.

Table 2.

Table 2 reports identification rates obtained by using one of the three training types: classical,

“stable” or random (300 or 500 stable/random frames selected) and by selecting 50, 150, 300

stable/random frames during testing. The pair “Classical training (600)/300 frame-based

testing” is considered as the reference system.

Different remarks can be made:

• With classical training, no gain is observed by selecting the most stable zones during test,

compared to results obtained with random zones.

• Similarly, selecting stable zones during training does not improve performance even if the

selection of the most stable zones is also applied during test. Besides, results are biased by

the reduction in training data - mainly observed with the 300-stable-frame-based training

protocol -, which involves a dramatic decrease in performance due to a bad estimate of

models.
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• Selecting unstable zones during test (in the same training conditions) gives worse

identification rates which are not provided here.

During the second experiment, still based on identification test and on classical training, the

numerical pair, stabilit y coefficient and likelihood2, is computed for each test frame. The

estimate of the correlation rate between the two distributions, stabilit y coefficient vs.

Likelihood, leads to a mean result of -0.06. Therefore, no apparent correlation exists between

the stabilit y level of a frame and its discriminant power.

3.2.2Conclusion

As observed during the previous experiments, stable zones of the speech signal do not seem to

convey more specific information than zones selected randomly. This tends to confirm that the

phonetic nature of speech segments (both test and training segments) is more important for

speaker characterization than the homogeneity of segments. But it is important to bear in mind

that stable zones also include silence and occlusion parts of the speech samples.

3.3 Frequency Subbands

3.3.1Subband Modeling

The following ‘K-subband’ model of speaker X can be obtained from the initial full -band

model:

( ) ( ) ( ){ }KKkk11 x,X,...,x,X,...,x,X)K(M =X (8)

where speaker X is modeled on the k-th subband with covariance matrix X k  and mean vector

x k . kX  is a sub-block of covariance matrix X and x k  is a sub-vector of mean vector x  (X and

x  being computed on the whole spectral domain).

Therefore, the quantities defined in (2) (3) and (4) can be respectively written for the k-th

subband:

- k
tl  li kelihood of acoustic vector ty  on the k-th subband,
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- kL  average log-likelihood of { }
Nt1ty ≤≤  on the k-th subband,

- )(k YX,µ  similarity measure between speaker X and speaker Y on the k-th subband.

Figure 2.

3.3.2Experiments on Isolated Subbands

Speaker identification tests are independently conducted on 21 subbands consisting of four

consecutive channels with band-overlap (subband 1: channels 1 to 4 , subband 2: channels 2

to 5..., ... subband 21: channels 21 to 24). The similarity measure used is the one defined in (5)

and applied to each subband.

Figure 2 shows the speaker identification performance obtained on each isolated subband for

6s training/3s test on TIMIT and NTIMIT databases.

Large differences between subbands are observed, which shows that speaker specific

information is not equally distributed on the spectral domain. Experiments on TIMIT show

that the low-frequency subbands (f<600Hz) and the high-frequency subbands (f>3000Hz) are

more speaker specific than middle-frequency ones. This confirms the sharp performance

decrease generally observed on NTIMIT for which the most criti cal subbands are removed

(channels 1-2 and 18-19-20-21-22-23-24) because of the bandlimiti ng (300-3400 Hz). The

identification rates are also lower on NTIMIT for the subbands between 300Hz and 3400 Hz.

This could be due to telephone network noise and to signal distortions.

3.3.3Channel Selection

A channel selection method is proposed to estimate more precisely the relative effectiveness

of each part of the frequency domain. The method used is the ‘knock-out’ procedure [26]. The

method begins by evaluating the effectiveness of each of the N=24 channel subsets composed

of N-1 channels. The most effective subset is then determined and the channel not included in



16

this subset is defined as the least important channel. This channel is then eliminated (or

‘knocked-out’) and the descending procedure continues until all the channels are 'knocked-out'

from consideration.

Table 3 shows the speaker identification rates obtained with the best set of channels on TIMIT

(630 speakers) compared to the full -band results. The results obtained with half of the

channels and with channels representing half of the frequency domain are also reported in this

table.

Table 3.

The best identification results are obtained with 18 channels3 on TIMIT (94.3%)

corresponding to 80% of the whole frequency domain. These results represent a slight error

rate reduction compared to the same full -band test (93.7%). However, this improvement may

be only considered as an a-posteriori optimization of the results on the current database.

Good performance is still obtained when using only half of the channels4: 89.5%

identification rate on TIMIT for 12 well -chosen channels; the main part of the speaker specific

information is thus condensed in about 60% of the total frequency domain.

3.4 Dynamic Information

Many studies have been dedicated to the exploitation of dynamic information in speaker

recognition systems [1] [13] [21] [23] [27]. They have shown the interest of this kind of data

as another source of information, since they obtain performance similar to static information

one and they are more robust in noisy environments.

Various approaches are proposed in the literature to exploit dynamic information: extraction

of  derivatives of the function time of instantaneous features during the parameterization

(Delta and Delta-Delta coeff icients), use of predictive models or static methods applied to

dynamic information… However, these methods do not allow to fully exploit dynamic
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information on a large time window without involving some computation complexity

problems or requiring a too large amount of data to train models.

This study aims at considering a suff icient time window (100ms of speech signal) to exploit

dynamic information in depth by using methods suited to cope with the previous problems

(training data and processing complexity).

3.4.1 “Dynamic” Modeling

The method proposed here is based on statistical methods applied to dynamic vectors

stemming from the concatenation of T consecutive frames of speech signal [11]. This method

is associated with the multi -band approach in order to significantly reduce computation

complexity problems. Indeed, in practice, a full band approach will l ead to consider dynamic

vectors of 240 coeff icients if a time window of 10 successive frames (parameterized by 24-

dimensional vectors) is considered, whereas a multi band approach, based on 6 subbands,

leads to process individual dynamic vectors of 40 coeff icients each.

3.4.2Dynamic experiments and results

Table 4 (third column) provides the identification rates of experiments conducted on dynamic

subbands presented in the previous section. Results obtained on static subbands are also given

for comparison.

It can be observed that results differ between the subbands. Dynamic subbands: 13-16, 17-20

and 21-24 show a slight performance improvement, whereas dynamic subbands: 1-4, 5-8 and

9-12 lead to performance decrease if compared to identification rates obtained by static

subbands.

This may be due to the concatenation of successive frames of speech signal (required to

exploit dynamic information), which involves taking a large amount of features into account

and leads to great information redundancy.
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The selection of useful dynamic information can be a solution to cope with this problem. The

next section presents the methods used and the results obtained after selection.

3.4.3Selection of dynamic coeff icients and results

The goal of the selection procedure is to extract an optimum subset from a set of dynamic

coeff icients, (associated with an individual subband), which will l ead to enhance the

identification system. In this perspective, an ascendant method [8] (variant of the knock-out

selection procedure [26] ) associated with a selection criterion based on the identification rate

is applied on each subband [11].

Experiments for the selection of optimum subsets5 are conducted on a development set of 135

tests (stemming from the first 63 males of TIMIT) and the fourth column of Table 4 gives

identification rates obtained using these same optimum subsets applied to a second set of 2639

tests (stemming from speakers of TIMIT without the previous 63 speakers). During training,

the 630 speakers of TIMIT are used.

These results show, on each individual subband, a significant performance improvement

compared to dynamic subbands without selection and to static ones.

This highlights the necessity for a selection of the useful information and demonstrates the

potential of dynamic information to characterize speaker in this selection context.

Table 4.

3.4.4Recombination of dynamic subbands

The final step of a multiband approach consists in recombining individual measures obtained

on each subband in order to yield a final decision for the recognition task.

This fusion step is applied to the dynamic subband measures obtained with the selection of the

best coeff icients as seen in the previous section. A basic arithmetic mean is chosen in order to
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recombine dynamic subband results since the main interest of this fusion is to demonstrate the

potential of dynamic subbands and not to optimize the system.

Table 5, which provides recombination results of dynamic subbands, shows a significant

degradation of performance if compared to recombination results of static subbands.

The increase in performance observed individually on each dynamic subband does not allow

to improve the global recognition decision. This could be explained by:

• a large redundancy of information between the different subbands

• the necessity for a more “clever” recombination method (than a simple arithmetic mean).

For example, a frame-based recombination (with a weight according to the dynamic nature

of the block) should yield better results.

• and a coeff icient selection criterion more suitable for the recombination step.

Table 5.

3.4.5 Application in the NIST 99 speaker recognition evaluation campaign

The dynamic approach, coupled with the selection of relevant features, as described in the

previous section, was implemented in the framework of speaker verification and evaluated

during the NIST 99 speaker recognition evaluation campaign.

In this evaluation context, the database was made up of speech signal recordings issued from

Switchboard database and built from concatenated telephone conversation segments.

Three different recognizer schemes were evaluated:

• SFB referring to a simple static Full Band;

• SFB+DSB composed of a Static Full Band associated with three Dynamic SubBands;

• DFB+DSB composed of a Dynamic Full Band and three Dynamic SubBands.

Both of them were quite different from the system baseline described in this paper. First, they

consisted of cepstrum parameter-based recognizers. Besides, EM trained GMMs were used to
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model each speaker since suff icient speech material (more than one minute) is available for

the training (a 16 gaussian mixture summarized by full covariance matrix for the static full

band and a 128 gaussian mixture summarized by diagonal covariance matrix for the dynamic

full band and subbands).

Finally, it has to be noticed that pertinent feature selection was used for the dynamic subbands

only and was carried out through an MGM-based identification system, using a separate data

set (extracted from the NIST 98 evaluation campaign data).

Figure 3 provides a comparison, in terms of DET curves, between the three different

recognizer architectures presented above: SFB, SFB+DSB, and DFB+DSB.

It can be observed that both dynamic and static recognizers (SFB+DSB) lead to some

performance improvement if compared to the static recognizer alone (SFB). On the other

hand, the fully dynamic system (DFB+DSB) outperforms the two others.

These results highlight the well -known robustness of dynamic information [13][27] in a

telephone and noisy environment.

Nevertheless, they do not demonstrate the gain in terms of performance involved by the

feature selection. This last point should be investigated in future work.

Figure 3.

4. SELECTION OF THE SPEECH SEGMENTS

4.1 Motivation

In the previous section, conventional procedures are used to select the most useful spectral

information (section 3.3.3) or to deal with the redundancy induced by a dynamic approach
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(section 3.4). However, it seems that these techniques (ascendant selection, knock-out

method) allow only a global and approximate knowledge about the relevance of a set of

features. Indeed, some speech clusters may be very useful to recognize a particular speaker,

whereas they can be non informative for another one. Moreover, according to the recording

conditions, some types of information may be corrupted or even missing.

To cope with these various problems, a system which dynamically selects the best speech

parts of a test utterance, according to the speaker model concerned, is proposed.

4.2 “On-line” Selection with Maximum Likelihood Cr iterion

4.2.1Pr inciple

Several li kelihood scores I..1ii ))(S( =X  can be calculated from the different parts of a given test

utterance, compared to the model of speaker X. Instead of averaging these scores, some of

them are eliminated (pruning) and the final decision is made with a limited number of partial

scores.

The likelihood scores correspond to different events and they must be first normalized in order

to make comparison between them meaningful. In fact, if the likelihood score of a speech part

is lower than the likelihood score of another one, it does not necessarily mean that the first

speech part is less informative than the second one, because both parts convey different

information and there is no basis for a meaningful comparison between them.

Consequently, a log-likelihood ratio is used as a normalized score, as defined in [16]:

)(Slogmax)(SlognormSlog iii ZX
XZ≠

−= (9)

In the experiments, normalizing speakers Z, for a given person X, will be chosen among the

other reference speakers rather than among a completely separate group. Speakers are thus

normalized by each other.
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Then, the pruning process is based on the assumption that the maximum likelihood scores

resulting in correct identifications are in general higher than the maximum likelihood scores

resulting in inaccurate identifications. In other words, when a part of the speech signal is

error-prone (i.e. when the true speaker is not identified on this particular speech event), it is

not due to a non-target speaker model matching the speech part well , but rather to the true

speaker model performing badly.

For convenience, a minus-log-likelihood ratio iH , which is equivalent to a distance measure,

is used:

normSlogH ii −= (10)

iH  is also called discriminant function [12] (p.52) since if iH <0, speaker X scores higher

than everyone else on the given speech part and so speaker X is recognized on the single part;

if iH >0, the speaker recognized on this part is not speaker X.

4.2.2Potential of the ML Cr iterion

The potential of the maximum likelihood criterion is ill ustrated by Figure 4 where the

distributions of normalized frame scores tH  (here, 1 speech part=1 frame) are represented for

speaker models which score higher than everyone else on a given frame (i.e. negative values

of tH ). Two types of frames are distinguished: frames on which the target speaker would be

recognized if the decision was made on a single frame (successful frames) and frames on

which a non-target speaker would be recognized (unsuccessful frames). The distributions of

both classes are equivalent to the density functions of tH  and can be noted respectively

)/H(pH X  and )/H(pH X .
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It can be observed that the frames may have lower minus log-likelihood ratios tH  for the true

speaker ( )/H(pH X ) than for non-target speakers ( )/H(pH X ), which tends to prove the need for a

pruning process to select the lowest values of tH  and thus eliminate error-prone frame scores.

Figure 4.

5. PRUNING EXPERIMENTS

5.1 Block-based Architecture

The results obtained in section 3 have shown that speaker specific information is not equally

distributed both at the temporal and frequency levels. However, instead of using an analytical

approach to extract the different speech parts at the input of the selection system, an arbitrary

division of a speech utterance into several time-frequency blocks has been chosen.

A test utterance is thus split i nto ‘n’ time segments and into ‘K’ fr equency subbands (Figure

5), with a possible overlap between subbands. For each pair (t,k), corresponding to segment ‘ t’

and subband ‘k’ , an average log-likelihood score k
tL  can be calculated:

∑
=

+=
T

1i

k
itT )llog(L

T

1k
t

    (11)

Figure 5.

A log-likelihood ratio is then used as a normalized score, as defined in (9):

)(L max)(LnormL k
t

k
t

k
t ZX

XZ≠
−= (12)

and the minus-log-likelihood ratio k
tH , equivalent to a distance measure, becomes:

normLH k
t

k
t −= (13)

Pruning is then achieved on these normalized scores; the final score is:

∑∑=
p q

k
t

p,q
HH

1 1

min (14)
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The p*q lowest block scores are averaged for each speaker, with p<n (n number of segments

in the test utterance) and q<K (K number of subbands in the architecture) ; p and q do not

have sence independently since the product pq specifies the selected blocks ratio.

Finally, two special cases can be derived from this general formalism:

- K=1 and n>1 correspond to a "segment level normalization approach" [22] and only time

pruning is considered [3],

- n=1 and K>1 correspond to a "multiband approach" [2] and only frequency pruning is

considered.

Note that the blocks selected in the sum can vary according to the speaker model considered.

5.2  Time Pruning

The special case K=1 (full -band model) is considered here. The influence on the performance

of the number of selected (i.e not discarded) segments (p) is investigated when a segment is

composed of a single frame (T=1). The results are reported in Figure 6 (300 frames / test

utterance).

For both databases, optimum results are obtained when some frames are pruned: id.=100% for

p=150 on TIMIT and id.=43% for p=260 on NTIMIT. This shows that information selection is

important since some frames in a test utterance can contaminate the final score. Moreover, it

is interesting to note that a reasonably  good performance is obtained on TIMIT when a single

frame per speaker is kept (71.63% id.), i.e. when an extremely small amount of speech is used

for each speaker to make the final decision ! (This part of speech signal being often different

from one speaker to another).

Figure 6.
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5.3 Time-frequency Pruning

An architecture of 24 subbands of 20 channels each (24x20) is experimented with for TIMIT

and an architecture of 15 subbands of 11 channels each (15x11) for NTIMIT. The segment

size is T=1 (i.e. 1 segment=1frame). For a 3s test duration (300 frames), the total number of

time-frequency blocks is then 7200 on TIMIT and 4500 on NTIMIT. The influence of the

number of blocks selected pq is investigated. The results are reported in Figure 7.

For both databases, the best results are obtained when some blocks are pruned: id.=100% for

pq=3500 or 4500 on TIMIT and id.=41.95% for pq=3900 on NTIMIT. However, it is diff icult

to see the real benefit of the joint time and frequency pruning process in comparison with the

single time-pruning technique.

Figure 7.

5.4 Validation

The best values of p (time pruning, Section 5.2) and pq (time-frequency pruning, Section 5.3)

obtained for 63 speakers on TIMIT and NTIMIT are used to validate the benefit of the pruning

procedure for speaker recognition. Speaker identification tests are conducted on the 567

remaining speakers of TIMIT and NTIMIT. The final test set is completely distinct from the

tuning set from which the optimal values of p and pq are evaluated. The identification results

obtained are presented in Table 6. For both databases, performance improvement is

significant. The time-frequency pruning procedure leads to a 41% error rate reduction on

TIMIT, compared with the conventional monogaussian classifier. However, the benefit of the

joint time and frequency pruning procedure in comparison with the single time pruning

process is less evident on NTIMIT.

Table 6.
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5.5 Noisy environment

To evaluate the gain in terms of robustness, an experiment is conducted in a noisy

environment. For this experiment, a noise was added to the TIMIT test signal. A simulated

noise was chosen in order to make the experiment easy to reproduce.

Some remarks resume the protocol used:

• Both the model training and the meta parameter tuning of the system were performed on

clean speech signal.

• No a priori knowledge about noise is used.

• The noise is unpredictable and distributed on the whole spectrum as follows: for each

frame, C (C=2 or 3) frequency channels among 24 (dimension of the full -band acoustic

vector) were randomly selected and degraded for different SNRs.

The potential of the pruning process is ill ustrated by results in Table 7. In every case, the time-

frequency pruning approach widely outperforms the conventional one, which seems to be very

promising. It can be noticed that, in this case, the models and the optimal number of blocks

pruned (pq) were learned on clean speech material, which shows the adaptabilit y of the

pruning procedure without a priori knowledge on the degradation affecting the test signal.

Obviously, this relative gain has to be confirmed in non-simulated (real) noisy conditions.

Table 7.

6. CONCLUSION

6.1 Summary

In this paper, the nature of the speaker specific information used by statistical models has been

discussed. The various investigations demonstrate the diff iculty in highlighting this

information. For example, it can be intuitively supposed that the most stable zones of speech

signal would be more finely modeled by statistical approaches and consequently should lead
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to enhance system performance if they could be isolated. Nevertheless, experiments in this

way do not show significant results. However, independently of performance, it is necessary

to know the nature of the information classes used.

It has been shown that this information is not equally distributed according to the phonetic

content of speech segments and in the time-frequency domain. A large redundancy is observed

between the various classes of information in many cases (even though a more complex

approach is proposed such as dynamic modeling). Therefore, this demonstrates the necessity

of selecting the useful part of information conveyed by the speech signal.

The selection methods suggested in this paper (Knock-out, ascendant method…) enhance

recognition performance. For example, the channel selection (see section 3.3.3) allows to

reach an optimum identification rate of 94,3% (on TIMIT) by selecting only 83,2% of the

frequency domain. But, these conventional selection techniques allow only global and

approximate knowledge about the relevance of a set of features. Nevertheless, some speech

clusters may prove very useful to recognize a particular speaker, whereas they can be non-

informative for another one. Moreover, according to the recording conditions, some types of

information may be corrupted or even missing.

We have proposed a system which selects the best parts of the speech signal dynamically

during test according to the speaker model concerned. The selection was based on a maximum

likelihood criterion.

This “on-line” selection procedure was experimented with for the special case of time-

frequency architecture. The results obtained have shown that this technique can significantly

increase the performance of a speaker identification system in normal or noisy (simulated)

conditions. Nevertheless, further investigations have to be conducted in order to test the

robustness of this approach against noise in real conditions.
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6.2 Knowledge gathered from the result analysis

The originality of the proposed selection technique is that the speech parts selected on a same

test utterance can vary from one speaker model to another. The analysis of the rejected (or

selected) parts allows interesting feedback. This analysis was made for the particular case of

time pruning (section 5.2). Figure 8 shows the distribution of the frames according to their

frequency of selection when the final score is computed with only half of the frames. In other

words, if Nselect=63, the corresponding frames were used by all 63 speaker models; if

Nselect=0, the corresponding frames were rejected by all speaker models, during the

recognition stage.

Figure 8.
The profile of the results suggests two different conclusions:

• a coherence exists in the information conveyed by the frames, i.e. when a frame is rejected

(or selected) by a speaker model, it is rejected (or selected) by the majority (parts 1 and 3),

• however, it is also clear that the speech frames selected are different from one speaker to

another (part 2), which confirms that specific information is not the same according to the

speaker concerned. The inadequacy of conventional selection processes is then clearly

pointed out by this analysis.

6.3 Outlook

To go further, it would be interesting to know the phonetic label of the frames kept and the

frames rejected. Performing a more systematic post analysis will allow to further investigate

the phonetic aspect of speaker identification.

Finally, we also intend to apply the “on-line” selection method during the training phase,

which should be an interesting approach to refine the speaker models.
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List of Tables.

TIMIT NTIMIT
93.7 % id. 16.7% id.

1. comparison of speaker identifi cation performance between TIMIT and NTIMIT databases
(normal and telephone quality) – MGMs – 24 filterbank coeff. (TIMIT) or 17 (NTIMIT) - 6s
training / 3s test - 630 speakers - 2925 tests - [5]

Test
% Identification

according to number of
the most stable frames

selected

% Identification
according to number of
random frames selected

Training 50 150 300 50 150 300
Classical (600) 77.3 93 94.8 89.5 94.8 94.8

Stable (300) 72.4 76.9 67.5 60.1 62.9 67.4
Stable (500) 77.6 92.7 94.8 84.6 94.1 94.8

Random (300) 71.3 81.1 82.9 74.5 80.8 82.9
Random (500) 75.2 92.3 94.1 86.7 92.3 94.1

2. Identifi cation rates (in %) obtained according to different types of training and various
numbers of stable and random frames selected during test (630 speakers - 286 tests)

FULL

BAND

BEST RESULTS HALF OF THE

CHANNELS

HALF OF THE

FREQ. DOMAIN

Number of
channels

24 18 12 9

% of the full
freq. domain

100.0% 83.2% 64.4% 50.0%

Id. % 93.7% 94.3% 89.5% 79.4%

3. Main identifi cation results with the channel selection procedure - TIMIT (6s training/3s
test - 630 speakers - 2925 tests)
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Static SB Dynamic SB
without Selection

Dynamic SB
with Selection

SB % Id. % Id. % Id.
1-4 21.4 19 23.9
5-8 8.3 6.4 8.8
9-12 4.9 4.1 5.3
13-16 10.8 11.4 12.6
17-20 24.3 24.6 27.8
21-24 22.2 25 26.6

4. Identifi cation rates obtained by using static subbands, dynamic subbands without any
selection (integrating the 40 coefficients) and dynamic subbands with selection of  best
coefficients (6s training/3s test - 567 speakers - 2639 tests).

Id. rate after recombining static
subband measures

Id. rate after recombining
dynamic subband measures

79.4 76.4

5. Identifi cation rates obtained after recombining the measures of dynamic subbands and
those of static subbands (6s training/3s test - 567 speakers - 2639 tests).

BASELINE
NO PRUNING

TIME PRUNING TIME-FREQUENCY
PRUNING

TIMIT n=1; K=1 K=1; p=150; T=1 K=24; pq=4500; T=1
Id. % 91.66 94.20 95.14

NTIMIT n=1; K=1 K=1;p=260;T=1 K=15; pq=3900; T=1
Id. % 15.91 18.64 17.77

6. Validation of the pruning procedure on TIMIT and NTIMIT (6s training/3s test - 567
speakers - 2639 tests)

Number of corrupted
channels SNR (dB)

BASELINE
n=1; K=1

T-F PRUNING
pq=4500; T=1

3 10 13.28 71.67
2 10 23.07 84.26
3 20 44.4 95.1
2 20 58.04 98.25

7. Speaker identifi cation results in the case of speech corrupted by a noise randomly
distributed on the whole spectral domain (63 speakers, 286 tests).
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3: DET curves of different recognizer architectures: Static Full Band (SFB), Static Full
Band+Dynamic Subbands (SFB+DSB), Dynamic Full Band+Dynamic Subbands
(DFB+DSB).
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1 Central frequencies of f ilters (in Hz): 47, 147, 257, 378, 510, 655, 813, 987, 1178, 1386,

1615, 1866, 2141, 2442, 2772, 3133, 3529, 3964, 4440, 4961, 5533, 6159, 6845, 7597.

2 The likelihood of a frame t, uttered by speaker Y  is computed from vector yt  and speaker

Y ’s model.

3 Channels 1,2,3,4,6,8,9,13,15,16,17,18,19,20,21,22,23,24

4 Channels 1,3,6,13,16,17,18,19,21,22,23,24

5 Selected features per subband (notation: f-c with f and c referring respectively to frame

( f ∈[ , ]110 ) and channel ( c ∈[ , ]14 ). SB1-4: 1-1, 1-2, 1-3, 1-4, 3-2, 3-3, 3-4, 4-1, 6-1, 9-4. SB5-8: 1-

1, 1-2, 1-3, 1-4, 2-3, 2-4, 8-2, 8-3, 8-4, 9-1. SB9-12: 1-1, 1-2, 1-3, 1-4, 2-3, 2-4, 3-2, 3-3, 5-1,

6-1. SB13-16: 1-1, 1-2, 1-3, 1-4, 3-2, 3-3, 4-4, 6-3, 7-2, 9-2, 9-4. SB17-20: 1-1, 1-2, 1-3, 1-4,

2-1, 2-2, 2-3, 2-4, 3-1, 3-4, 4-2, 4-4, 5-2, 6-3, 8-1. SB21-24: 1-1, 1-2, 1-3, 1-4, 2-1, 2-2, 2-3,

2-4, 3-1, 3-3, 3-4, 4-1, 4-4, 5-1, 5-3, 7-3.


