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Abstract

Statisticd modeling of the speed signa has been widely used in speaker recognition. The
performance obtained with this type of modeling is excdlent in laboratories but deaeases
dramaticdly for telephore or noisy speed. Moreover, it is difficult to knowv which pieceof
information is taken into acourt by the system. In order to solve this problem and to improve
the arrent systems, a better understanding of the nature of the information used by statisticd
methods is needed. This knowledge shoud allow to seled only the relevant information a to
add rew sources of information.

Thefirst part of this paper presents experiments that aim at locdi zing the most useful acustic
events for speaker recognition. The relation between the discriminant ability and the speed's
events nature is dudied. Particularly, the phoretic content, the signal stability and the
frequency domain are explored. Finally, the potential of dynamic information contained in the
relation between aframe anditsp neighbousisinvestigated.

In the second part, the aithors siggest a new seledion procedure designed to seled the
pertinent feaures. Conventional feaure seledion techniques (ascendant seledion, knak-out)
alow only global and a pasteriori knowledge adou the relevance of an information source
However, some speedt clusters may be very efficient to reaognize a particular speder,
whereas they can be non informative for ancther one. Moreover, some information classes

may be crrupted o even misdng for particular recording condtions. This necessty for



spedker spedfic processng and for adaptability to the ewvironment (with no a priori
knowledge of the degradation affeding the signal) leads the authors to propose asystem that
automaticdly seleds the most discriminant parts of a speed uterance

The proposed architedure divides the signal into dfferent time-frequency blocks. The
likelihoodis cdculated after dynamicaly seleding the most useful blocks. This information
seledion leads to a significative eror rate reduction (up to 41% of relative aror rate deaease
on TIMIT) for short training and test durations. Finally, experiments in the cae of smulated
noise degradation show that this approach is a very efficient way to ded with partialy

corrupted speed.

Résumé

La moddlisation statistique du signal de parole aété largement utilisée & reconnaissance
automatique du locuteur. Les performances obtenues avec cette approche sont excdl entes, en
laboratoire. Cependant, une dégradation significative des performances est observéeavecde la
parole de qualité téléphorique ou kruitée Pour palier ce probléme, il est nécessaire de mieux
comprendre la nature de I'information spédfique du locuteur exploitée par ces méthodes
statistiques. Cette conreissaance doit permettre de mieux prendre en compte I'information
pertinente @/ou e mettre a ontribution de nouwelles ources d'information.

La premiéere partie de cet article reporte des expériences visant a spédfier les événements
aoustiques les plus utiles a la reconraissance du locuteur. Les liens entre le contenu
phorétique du message, I’ emplacement fréquentiel des informations, la stabilit € du signal et
les cgpadtés de discrimination dulocuteur sont successvement explorés. Enfin, la posshilit &
d’ exploiter I'information dynamique contenue dans la relation entre une trame d les p

suivantes est évaluée



Dans une semnde partie, les auteurs propcsent une nouwelle procé&ure de séledion e
I"information spédfique du locuteur. En effet, les méthodes conventionrell es de séledion e
paramétres (séledion ascendante, méhode du knak-out) ne permettent dévaluer la
pertinence d' une source d’information que de fagon globale @ a posteriori. Cependant,
certains locuteurs sont mieux caradérises par une source d information que d’ autres. De plus,
la pertinence des sources d'information dépend ck la qualité de I’ échantill on ce test. Face ace
besoin de traitements spédfiques suivant le locuteur et d’ adaptation a |’ environnement, nous
proposons un systéme permettant de séledionrer automatiquement les parties les plus
discriminantes d’ une portion ce parole.

L’architedure proposée divise le signal de test en blocs temps-fréquence Le score de
vraisemblance correspondant est cadculé en séledionrant dynamiquement les blocs temps-
fréquence les plus pertinents. Une réduction significaive du taux de mauvaise identificaion
(jusqua 41% de réduction relative du taux de mauvaise identificaion sur TIMIT) est
observée Finalement, des expériences rédisées dans le cas d’un kruit simulé, montrent le

potentiel de cette méthode pour traiter des signaux de parole partiell ement dégradés.



List of symbols

X i

yt }JstsN

yi }tT+JsistT+T

—~

Ly
likelihoodratio)
Hf

H(X,Y)

u (X,Y)
subband

Dev(yt)

Vi

Pages
Tables
Figures

Keywords

mean vedor of spesker x

covariance matrix of spe&er x

sequenceof N vedors uttered by spesker Y

t-th segment (of T frames) extraded from the speed sequence {y, }
likelihood d amustic vedor v,

likelihood d acoustic vedor y, onthe k-th sublband

average log-likelihood d the t-th segment

average log-likelihood d the t-th segment and d the k-th subband
normalized score of the t-th segment (homogeneous to a minus log-

I<t<N

normali zed score of the t-th segment and o the k-th subband
similarity measure between spedker X and speaker Y
similarity measure between spedker X and spe&er Y on the k-th

stability criterion o acmustic vedor y, (framet)
i-th comporent of acmustic vedor vy, (framet)

#37
#7
#8

speer reaognition, spesker spedfic information, online seledion,
pruning, statisticd modeling, time-frequency architecure



Table 1.

1. INTRODUCTION
A spe&er reaognition processcan be basicdly divided into two main tasks. First, a speaker

modedl is built from speed samples pronourced by a given person. Seaondy, the probability
that a speedt recording corresponds to a given model is estimated and the final dedsion is
made using this probability as well as information available a priori. Although this dedsion
step is crucial for the performance of the system (many papers ded with the subjed [9] [15]
[18]), spesker spedfic information liable to influence the dedsion is aso intrinsicdly
contained in the spesker models. Therefore, it is worth trying to understand the nature of this
information.

Statisticd models are mainly used in spe&ker reaognition. Most of them are based on the
Hidden Markov Model (HMM) formalism. The different approadhes can be derived with an
increasing reduction in the number of models, the number of states per model and the number
of gausdan densities per state. In that way, statisticd approadies can move from large
vocabulary continuows eed reagnition-based models (LVCSR) towards monagaussan
models (MGMs), which are made of a single state with orly one gaussan. Gaussan mixture
models (GMMs) sean to be an excdlent compromise between performance and complexity
and lea to the best recognition rates in text independent mode [25].

The spedker identificaion performance obtained with MGMs remains comparable to the one
obtained with more cmplex models, like GMMs, for short training and test durations [6].
However, these basic models an lessefficient than GMMs for longer durations. Moreover,
results obtained with statisticd methods deteriorate dramaticdly for telephore speed (Table

1) or speet corrupted by noise (Figure 1).



Figure 1.

In [6], experiments on TIMIT, FTIMIT (arestricted telephore bandwidth version d TIMIT)
and NTIMIT (red telephore quality) have shown that bandimiti ng is not the only problem for
telephore speed; noisy environment as well as the difference between training and testing
condtions in transmisson channels and handsets are dso afador of degradation [28§].

The fad that many environmental fadors play an important role in the performance of a
system shows that the information wsed may not be & edker spedfic e expeded. For
instance, the microphore, the dannel and the remrding condtions influence the final

dedsionsignificantly.

In this work, the aithors dudy the nature of the speser spedfic information wsed by the
models. This knowledge shoud allow to seled only the useful information conveyed by the
speed signa or to add rew sources of information. MGMs, which are eay to implement and
computationally efficient, are used. Moreover, the experiments will be performed with very
short training and, as explained previously, more complex models canna be implemented
since not enough speed materia is available to lean them corredly. However, it can be
reasonably suppased that speaker spedfic information captured by an MGM will be caight by
more @mplex models too. Conwersely, a gain oltained with an MGM will not be
systematicdly significant with more complex models.

The first part of this paper reports experiments aimed at locdizing the most useful acoustic
events for speaker recognition. These events differ, among other things, in their positionin the
time-frequency domain. At the tempora level, a former study on the discriminant ability of
different phoremes is reported. Investigations aim at determining whether the most speeker
spedfic information is rather situated in the transitions between phoremes or in the phoreme

stable zones (targets). At the frequency level, speeker identificdion tests are cnducted



independently on dfferent subbands to know which pert of the frequency domain is the most
spedker spedfic. Finally, we propcse to exploit the dynamic information contained in the
relation between aframe anditsp neighbous.

In the second part, the authors suggest a new seledion pocedure to ded with the redundancy
observed between the various classes of information. Conventional fedure seledion
techniques (ascendant seledion, Knock-out [26]) allow only global and approximate
knowledge aou the relevance of an information source However, the relevance of speed
cues is geer dependent rather than absolute [24], i.e. some speed clusters may be very
useful to reaognize aparticular speker, whereas they can be noninformative for ancther one.
Moreover, some parts of the information may be @rrupted o even missng for particular
reaording condtions.

Thus, anew seledion procedure is proposed to perform spegker spedfic processng and all ow
adaptability to changing aooustic environments. The most discriminant parts of a speed
utterance ae seleded “onrline” with a maximum likelihood criterion, whereas the least
informative parts are diminated (pruning).

Sedion 2 describes the experimental condtions. Sedion 3is dedicaed to the study of the
speker spedfic information used by these models. In Sedion 4 the “online” seledion
method is detailed and then experimented with for the speda case of a time-frequency
architedure in Sedion 5 Sedion 6 concludes this work and shows that the propased approach
allows interesting feadbadk on the locdization o speser spedfic information when an a

posteriori analysis of the rejeded speed partsis performed.



2. REFERENCE SYSTEM

2.1 Monogaussan Modeling o Speakers
The monagaussan modeling is the starting point of the proposed system. It is more predsely

described in [6].
Let {x},.,., be asequence of M vedors resulting from the p-dimensional acoustic analysis of

a speedt signal uttered by speaker X. These vedors are summarized by mean vedor x and

covariance matrix X:

_1M o AT
x and X =—75 (% -X)% -X)' @
1 M =1

MZ

_ 1
X =—
M ¢

Similarly, for a speedt signal uttered by spedker Y, a sequence of N vedors {yt}1stSN can be

extraded.
By suppasing that all acoustic vedors extraded from the speed signal uttered by speeker x

are distributed like aGausgan function, the likelihood d asingle vedor vy, uttered by spesker
Y is

1 T X %)

I, = e
b (2m)P2(detX )2

@
Asaiming that all vedors y, are independent observations, the average log-likelihood d

{yt}JstsN can be written:

log(l,) ®3)

Mz

C=1
N ¢

1

The simil arity measure between test utterance {y, } of spe&ker Y and the model of spesker

I<t<N

X is defined as;

H(X.Y) = u(X,y') = -L @



This measure is equivalent to the standard gaussan likelihood measure (asymmetric L)
defined in [6]. The following symmetric version d this measure (g symmetrisation [6]) is
defined as:

M. U(X,Y) + N.U(Y,X)

IJG[ﬁMN] (X.¥)= M + N ®

The symmetric version d the measure is used sinceit is siown in [6] that symmetrisation hes
a positive dfed when little speed materia is available (up to 30% of error reduction with

short training and testing).

2.2 Experimental Conditions

2.2.1 Databases
TIMIT and NTIMIT databases are used duing the various experiments. Even if these

databases are mono sesson, they offer the advantages of being largely used in the literature
for comparison, keing suited to text independent task, and proposing a large number of
spekers.

TIMIT database [10] contains 630 spe&kers (438 male and 192female spe&kers), ead o them
having uttered 10sentences. The speed signal is recorded through a high quality microphore,
in avery quiet environment, with a 0-8 kHz bandwidth. All recordings took dacein asingle
sesson (contemporaneous peed).

The NTIMIT database [17] was obtained by playing TIMIT speed signal through an artificia
mouth installed in front of the microphore of a fixed handset and by transmitting this inpu
signal through atelephore line. For ead spedker, there ae 6 dfferent telephore lines (locd or

long distance network), but half of the speder fil es are transmitted through the sameline. The



signal is sampled at 16 kHz, bu its useful bandwidth is limited to telephore bandwidth
(approximately 300-3400Hz).

2.2.2Signal Analysis

The speedt analysis modue extrads filterbank coefficients in the foll owing way: a Winograd
Fourier Transform is computed on Hamming windowed signal frames of 31.5ms (i.e. 504
samples) a a frame rate of 10 ms. For eadh frame, spedral vedors of 24 Mel-Scde
Triangular-Filter Bank coefficients (24 channels) are cdculated from the Fourier Transform
power spedrum and expressed in logarithmic scae'. Covariance matrices and mean vedors
are omputed from these spedral vedors. For NTIMIT, thefirst 2 channels and the last 7 ores
are discarded since the useful bandwidth is 330-340(Hz for these data. These analysis
condtions are identicd to thase used in [2] [3] [4] [5] [6].

Finally, it can be noticed that a subset of filterbank coefficients can be diredly interpreted as a
frequency subband. Thus, spe&ker identification experiments on independent subbands can be
conducted easily.

2.2.3Training and Test Protocols
In the propaosed protocol, training or test durations are rigorously the same for ead speer.

For the training of a given spedker, al 5 'sx' sentences of TIMIT (or NTIMIT) are
concaenated together and the first M samples correspondng to the training duration required
(6s here) are taken into acourt. For the test of a given spe&er, al 'sa and 'si* sentences (5in
total) are randamly concatenated together and Hocks of N samples correspondng to the test
duration required are extraded urtil there is nat enough speed data avallable (limited to a
maximum number of test blocks per spedker).

The reference and test patterns are thus computed from exadly the same number of samples

for ead spedker. These exadly identicd durations were required orly for the pruning
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experiments reported in Sedion 5 however, this new protocol is used in al experiments
presented in this paper. This protocol yields results comparable to thase obtained with the
regular protocol used onTIMIT (“phrase by phrase” protocol) [5].

All the tests are dore within the framework of text-independent closed-set spedker

identification.

3. TRACKING SPEAKER SPECIFIC INFORMATION

3.1 Phonemes
In [19], the aithors observed that the speeker identificaion performance (obtained with

MGMs) changes acording to the phoretic label of the speed segments used. These results
tend to show that the spedker dependent information captured by MGMs is consistently
common to al phoretic dasses and that the phoretic homogeneity of the test material may
improve the quality of the estimates. Thus, speeker spedfic information extraded with the
MGMs is nat equally distributed in the speed signal. A large redundancy in the information
conveyed by the different phoremes is observed. All classes of phoremes give good results
alone. Therefore, an intelligent use and seledion d these different sources of information
shoud authorize significant performance enhancement.

3.2 Stability

The studies reported in the previous dion show that the use of phoreticdly homogeneous
segments improves performance. Two hypotheses, which are nat conflicting, can explain this
result. On the one hand, the phoretic content of segments is important. This is confirmed by
the difference in performance observed in [7] [14] [19] [20], between various phoretic
segments. On the other hand, the homogeneity of segments can aso contribute to increasing
performance since the modeling used is based on statisticd methods. Indeed, this kind o
methods determines the relevance of a pieceof information from its repetitive nature. In the

11



case of this gudy (gaussan mixture-based models relying on spedral feaure vedors), it can
be reasonably assumed that very unstable zones of speed signal, such as transitions between
phoremes, may be less finedly modeled than stable zones, independently of the amourt of
spedker spedfic informationinitialy present in the speed signal.

Consequently, this sdion aims at determining whether the seledion d stable zones of the
speed signal, which correspond mainly to phoreme kernels (but also to silence zones and
ocdusions), can lead to performanceimprovement.

Therefore, two kinds of experiments have been condwcted. The first one studies the global
performance of the identification system acrding to the quantity of “stable” zones used. The
second ore hasto demonstrate aposshble crrelation between the stability level of atest frame
uttered by a given spedker X and the likelihoodestimation ketween this frame and the speaker
mode.

In these two contexts, the same stability criterion, which al owsto assgn a stability coefficient
to eat frame, is used. The aiterionis based onthe behavior of framet compared to the one
of (N/2-1) frames aroundit. In pradice, assuming that a mean spedrum is computed from an

N frame time window centered on frame t, stability criterion Dev(y;), defined in (6), is the
distance between p-dimensional vedor y, assciated with frame t and that mean spedrum

represented by p-dimensional vedor vy:

1 p .
Dev(y;) =" 5 (vi-y'")? (6)
Pi=1
ith v 1 2N+1
with y=— =~
YooN+ tglyt @
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3.2.1 Experiments
The first experiment consists in reporting the identificaion rates obtained acwrding to the

amourt of the most stable frames sleded during test and acwrding to the training protocol

used. Two kinds of training protocols are proposed:

1. a classcal training duing which al the training data ae used: 6s of speed signal
correspondng to 600frames.

2. a“stable’ training during which the models are estimated by using a reduced amount of
training data cmpaosed o the 300 o 500 most stable frames sleded among the 600initi al
training frames.

In order to evaluate the potential of stable frame seledion, similar experiments have been

condwcted by seleding frames of speed signal randamly.

Table 2.

Table 2 reports identification rates obtained by using one of the threetraining types: classcd,

“stable” or randam (300 a 500 stable/randam frames sleded) and by seleding 50, 150, 300

stable/randam frames during testing. The pair “Clasdcd training (600/300 frame-based

testing” is considered as the reference system.

Different remarks can be made:

» With classcd training, nogain is observed by seleding the most stable zones during test,
compared to results obtained with randam zones.

» Similarly, seleding stable zones during training does not improve performance e/en if the
seledion d the most stable zones is aso applied duing test. Besides, results are biased by
the reduction in training data - mainly observed with the 300-stable-frame-based training
protocol -, which involves a dramatic deaease in performance due to a bad estimate of

models.
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» Sdleding unstable zones during test (in the same training condtions) gives worse
identification rates which are not provided here.

During the second experiment, still based onidentificalion test and onclasscd training, the
numericd pair, stability ocoefficient and likdihood, is computed for eat test frame. The
estimate of the arrelation rate between the two dstributions, stability ooefficient vs.
Likdihood,leads to a mean result of -0.06. Therefore, no apparent correlation exists between
the stability level of aframe andits discriminant power.

3.2.2Conclusion

As observed duing the previous experiments, stable zones of the speed signa do nd seem to
convey more spedfic information than zones sleded randamly. Thistendsto confirm that the
phoretic nature of speed segments (both test and training segments) is more important for
spedker charaderization than the homogeneity of segments. But it isimportant to bea in mind

that stable zones also include silence and acdusion perts of the speed samples.

3.3 Frequency Subbands

3.3.1 Subband M odeling
The following ‘K-subband model of speeker X can be obtained from the initial full-band

moae!:

My (K) ={(x* %) (xE x9) L (x< %<} @

where speaker X is modeled onthe k-th subband with covariance matrix x* and mean vedor
xk. X* isasub-block of covariancematrix X and x* isasub-vedor of mean vedor x (X and
x being computed onthe whole spedra domain).

Therefore, the quantities defined in (2) (3) and (4) can be respedively written for the k-th
subband:

-1¢ likelihood d amustic vedor y, onthe k-th subband,

14



Figure 2.

-[* averagelog-likelihood d {y,}..._, onthek-th subkand,

t<N

- u*(X,Y) similarity measure between spedker X and speker Y onthe k-th subband.

3.3.2Experiments on Isolated Subbands
Spedker identification tests are independently conduwcted on 21subbands consisting of four

conseautive channels with band-overlap (subband 1 channels 1 to 4 , subband 2 channels 2
to 5..., ..subband 21 channels 21 to 24). The simil arity measure used is the one defined in (5)
and applied to ead subband.

Figure 2 shows the spedker identification performance obtained onead isolated subband for
6straining/3stest on TIMIT and NTIMIT databases.

Large differences between subbands are observed, which shows that spedker spedfic
information is not equally distributed on the spedra domain. Experiments on TIMIT show
that the low-frequency subbands (f<600Hz) and the high-frequency subbands (f>3000Hz) are
more spesker spedfic than midde-frequency ones. This confirms the sharp performance
deaease generally observed on NTIMIT for which the most criticd subbands are removed
(channels 1-2 and 1819-20-21-22-23-24) because of the bandimiting (300-3400 Hz). The
identification rates are dso lower on NTIMIT for the subbands between 30Hz and 3400Hz.
This could be due to telephore network nase andto signal distortions.

3.3.3Channel Seledion

A channel sedledion method is propased to estimate more predsely the relative dfediveness
of ead part of the frequency domain. The method wsed is the ‘knock-out’ procedure [26]. The
method kegins by evaluating the dfedivenessof ead o the N=24 channel subsets compaosed

of N-1 channels. The most effedive subset is then determined and the channel not included in

15



Table 3.

this subset is defined as the least important channel. This channel is then eliminated (or
‘knocked-out’) and the descending procedure ntinues urtil all the dhannels are 'knocked-out'
from consideration.

Table 3 shows the spedker identification rates obtained with the best set of channelson TIMIT
(630 speekers) compared to the full-band results. The results obtained with half of the
channels and with channels representing half of the frequency domain are dso reported in this

table.

The best identification results are obtained with 18 channels’ on TIMIT (94.3%)
correspondng to 80% of the whale frequency domain. These results represent a slight error
rate reduction compared to the same full-band test (93.7®%6). However, this improvement may
be only considered as an a-posteriori optimization d the results onthe arrent database.

Good performance is dill obtained when using only haf of the cannels®: 89.5%
identificaionrate on TIMIT for 12 well-chasen channels; the main part of the speaker spedfic
informationis thus condensed in abou 60% of the total frequency domain.

3.4 Dynamic Information

Many studies have been dedicated to the exploitation d dynamic information in speeker
reaognition systems [1] [13] [21] [23] [27]. They have shown the interest of this kind d data
as another source of information, since they obtain performance similar to static information
one and they are more robust in ndsy environments.

Various approadhes are proposed in the literature to exploit dynamic information: extradion
of derivatives of the function time of instantaneous feaures during the parameterization
(Delta and Délta-Delta wefficients), use of predictive models or static methods applied to

dynamic information... However, these methods do nd alow to fully exploit dynamic

16



information on a large time windonv withou involving some @mputation complexity
problems or requiring atoolarge anourt of datato train models.

This gudy aims at considering a sufficient time window (100ms of speed signal) to exploit
dynamic information in depth by using methods suited to cope with the previous problems
(training data and processng complexity).

3.4.1 "“Dynamic” Modeling

The method popaosed here is based on statisticd methods applied to dynamic vedors
stemming from the concaenation d T conseautive frames of speed signal [11]. This method
is asciated with the multi-band approadh in arder to significantly reduce @mputation
complexity problems. Indedl, in pradice afull band approach will | ead to consider dynamic
vedors of 240 coefficients if a time windowv of 10 successve frames (parameterized by 24-
dimensional vedors) is considered, whereas a multi band approad, besed on 6 subbands,
leads to processindividua dynamic vedors of 40 coefficients ead.

3.4.2Dynamic experiments and results

Table 4 (third column) provides the identification rates of experiments condwcted on d/namic
subbands presented in the previous sdion. Results obtained onstatic subbands are dso given
for comparison.

It can be observed that results differ between the subbands. Dynamic subbends: 13-16, 1720
and 2124 show a slight performance improvement, whereas dynamic subbands: 1-4, 58 and
9-12 lead to performance deaease if compared to identificaion rates obtained by static
subbands.

This may be due to the @mncaenation d successve frames of speed signa (required to
exploit dynamic information), which involves taking a large anourt of fegures into acourt

and leadsto grea information redundancy.
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Table4.

The seledion d useful dynamic information can be asolution to cope with this problem. The
next sedion presents the methods used and the results obtained after seledion.

3.4.3 Sdledion of dynamic coefficients and results
The goal of the seledion procedure is to extrad an ogimum subset from a set of dynamic

coefficients, (assciated with an individual subband), which will leal to enhance the
identificaion system. In this perspedive, an ascendant method [8] (variant of the knock-out
seledion procedure [26] ) associated with a seledion criterion based onthe identificaion rate
isapplied onead subband [11].

Experiments for the seledion o optimum subsets’ are @nducted ona development set of 135
tests (stemming from the first 63 males of TIMIT) and the fourth column of Table 4 gives
identification rates obtained using these same optimum subsets applied to a second set of 2639
tests (stemming from spedkers of TIMIT withou the previous 63 spe&kers). During training,
the 630spedkers of TIMIT are used.

These results $how, on ead individual subband, a significant performance improvement
compared to dynamic subbands withou seledion and to static ones.

This highlights the necesgty for a seledion d the useful information and demonstrates the

patential of dynamic information to charaderize speaker in this sledion context.

3.4.4 Remmbination of dynamic subbands
The fina step of a multiband approacd consists in recombining individual measures obtained

onead subbandin order to yield afina deasionfor the recogniti on task.
Thisfusion step is applied to the dynamic sublband measures obtained with the seledion d the

best coefficients as e in the previous ®dion. A basic aithmetic mean is chosen in arder to
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Tableb.

recombine dynamic subband results sncethe main interest of this fusionisto demonstrate the

patential of dynamic subbands and nd to ogtimize the system.

Table 5, which provides recmbination results of dynamic subbands, shows a significant

degradation d performanceif compared to recombination results of static subbands.

The increase in performance observed individually on ead dynamic subband daes nat all ow

to improve the global recognition dedsion. This could be explained by:

» alargeredundancy of information between the diff erent subbands

» the necessty for a more “clever” recombination method (than a smple aithmetic mean).
For example, a frame-based recombination (with a weight acording to the dynamic nature
of the block) shoud yield better results.

» anda wefficient seledion criterion more suitable for the reambination step.

3.4.5 Application in the NIST 99 speaker recognition evaluation campaign
The dynamic gpproad, couded with the seledion d relevant fedures, as described in the

previous dion, was implemented in the framework of speer verificaion and evauated
during the NIST 99 spe&er recogniti on evaluation campaign.

In this evaluation context, the database was made up d speed signal reardings issued from
Switchbeard database and bult from concaenated telephore conversation segments.
Threediff erent recognizer schemes were evaluated:

» SFB referring to asimple static Full Band;

» SFB+DSB composed o a Static Full Band associated with three Dynamic SubBands;
 DFB+DSB compased of a Dynamic Full Band and three Dynamic SubBands.

Both of them were quite different from the system baseli ne described in this paper. First, they
consisted of cepstrum parameter-based recognizers. Besides, EM trained GMMs were used to
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Figure 3.

model eat speaker since sufficient speed material (more than ore minute) is available for
the training (a 16 gaussan mixture summarized by full covariance matrix for the static full
band and a 128 gausgan mixture summarized by diagonal covariance matrix for the dynamic
full band and subkends).

Finally, it hasto be naticed that pertinent feaure seledion was used for the dynamic subbands
only and was caried ou through an MGM-based identification system, using a separate data

set (extraded from the NIST 98 evaluation campaign data).

Figure 3 provides a cmparison, in terms of DET curves, between the three different
reaognizer architedures presented above: SFB, SFB+DSB, and DFB+DSB.

It can be observed that both dynamic and static reaognizers (SFB+DSB) lead to some
performance improvement if compared to the static recognizer alone (SFB). On the other
hand, the fully dynamic system (DFB+DSB) outperforms the two athers.

These results highlight the well-known robustness of dynamic information [13][27] in a
telephore and nasy environment.

Nevertheless they do nd demonstrate the gain in terms of performance involved by the

feaure seledion. Thislast point shoud be investigated in future work.

4. SELECTION OF THE SPEECH SEGMENTS

4.1 Motivation
In the previous fdion, conventional procedures are used to seled the most useful spedral

information (sedion 3.3.3 or to ded with the redundancy induced by a dynamic goproad
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(sedion 3.4. However, it seams that these tedhniques (ascendant seledion, knak-out
method) allow only a global and approximate knowledge &ou the relevance of a set of
fedures. Indeal, some speed clusters may be very useful to recognize aparticular spesker,
whereas they can be non informative for another one. Moreover, acording to the recrding
conditions, some types of information may be @rrupted o even missng.

To cope with these various problems, a system which dynamicdly seleds the best speet

parts of atest utterance, acrding to the speaker model concerned, is proposed.

4.2 “On-line’ Sdedion with Maximum Likelihood Criterion

4.2.1Principle
Severd likelihoodscores (S (X))..,, can be cdculated from the different parts of a given test

utterance, compared to the model of spedker X. Instead of averaging these scores, some of
them are diminated (pruning) and the final dedsion is made with alimited number of partia
scores.

The likelihoodscores correspondto dfferent events and they must be first normalized in order
to make comparison ketween them meaningful. In fag, if the likelihoodscore of a speed part
is lower than the likelihood score of ancther one, it does not necessarily mean that the first
speeth part is less informative than the second ore, becaise both parts conwey different
information and there is no kasis for ameaningful comparison ketween them.

Consequently, alog-likelihoodratio is used as a normali zed score, as defined in [16]:

log Snorm=1log S (X)- rygt(xlog S(Z) 9)

In the experiments, namalizing speders Z, for a given person X, will be chosen among the
other reference spedkers rather than among a wmpletely separate group. Speeers are thus

normalized by eat ather.
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Then, the pruning processis based onthe asumption that the maximum likelihood scores
resulting in corred identificaions are in general higher than the maximum likelihood scores
resulting in inacarate identificaions. In aher words, when a part of the speed signa is
error-prone (i.e. when the true spe&ker is not identified onthis particular speed event), it is
not due to a nontarget spesker model matching the speed part well, bu rather to the true

spedker model performing badly.

For convenience a minus-log-likelihoodratio H, , which is equivalent to a distance measure,
IS used:

H, =-log Snorm (10)

H, is aso cdled discriminant function [12] (p.52 sinceif H, <0, spesker X scores higher
than everyone dse on the given speed part and so spedker X is recognized onthe single part;
if H,>0,the speaker reaognized onthis part is not spesker X.

4.2.2 Potential of the ML Criterion

The potential of the maximum likelihood criterion is illustrated by Figure 4 where the
distributions of normali zed frame scores H, (here, 1 speed part=1 frame) are represented for
speeker models which score higher than everyone dse on a given frame (i.e. negative values
of H,). Two types of frames are distinguished: frames on which the target spesker would be
reagnized if the dedsion was made on a single frame (succesful frames) and frames on
which a nontarget spedker would be recognized (unsuccesful frames). The distributions of

both classes are eguivalent to the density functions of H, and can be noted respedively

pa(H/x) @Nd p (H/X).
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Figure 4.

Figure5.

It can be observed that the frames may have lower minus log-likelihoodratios H, for the true
spe&ker (p,(H/x)) than for nontarget speekers (p, (H/x)), which tends to prove the need for a

pruning processto seled the lowest values of H, and thus eliminate eror-prone frame scores.

5. PRUNING EXPERIMENTS

5.1 Block-based Architedure
The results obtained in sedion 3 have shown that speaker spedfic information is nat equally

distributed bah at the temporal and frequency levels. However, instead of using an analyticd
approad to extrad the different speed parts at the input of the seledion system, an arbitrary
division d aspeed uteranceinto several time-frequency blocks has been chaosen.

A test utteranceis thus lit into ‘n’ time segments and into ‘K’ fr equency subbands (Figure
5), with apossble overlap between subbands. For eat pair (t,k), correspondng to segment ‘t’

and subband ‘k’, an average log-likelihoodscore i+ can be cdculated:

_k _ 1 T K
Lt -?izllc’g(ltni) (11)

A log-likelihoodratio is then used as a normali zed score, as defined in (9):
Eknorm:Lf(X)—rpg(fo(Z) 12
and the minus-log-likelihoodratio F*, equivaent to a distance measure, beames:

HX =-Lfnorm (13

Pruning is then achieved onthese normali zed scores; the final scoreis:

A
H =m|nZZHtk (14)
p.q
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Figure 6.

The p*q lowest block scores are averaged for eat spedker, with p<n (n number of segments
in the test utterance) and g<K (K number of subbands in the achitedure) ; p and g do nd
have senceindependently sincethe product pq spedfies the seleded blocksratio.

Finaly, two spedal cases can be derived from this general formalism:

- K=1 and n>1 correspondto a "segment level normalization approadh” [22] and orly time
pruning is considered [3],

- n=1 and K>1 correspond to a "multiband approach” [2] and orly frequency pruning is
considered.

Note that the blocks ssleded in the sum can vary acrding to the speaker model considered.
5.2 TimePruning

The speda case K=1 (full-band model) is considered here. The influence on the performance
of the number of seleded (i.e not discarded) segments (p) is investigated when a segment is
compaosed of a single frame (T=1). The results are reported in Figure 6 (300 frames / test
utterance).

For both databases, optimum results are obtained when some frames are pruned: id.=100% for
p=150 onTIMIT and id.=43% for p=260 onNTIMIT. This showsthat information seledionis
important since some frames in a test utterance can contaminate the final score. Moreover, it
isinteresting to nde that areasonably good performanceis obtained onTIMIT when asingle
frame per speker iskept (71.6301d.), i.e. when an extremely small amourt of speed is used
for ead speaker to make the final dedsion! (This part of speed signal being often dfferent

from one spe&er to anather).
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Figure 7.

Table 6.

5.3 Time-frequency Pruning
An architedure of 24 subbands of 20 channels eat (24x20) is experimented with for TIMIT

and an architedure of 15 subbands of 11 channels ead (15x11) for NTIMIT. The segment
sizeis T=1 (i.e. 1 segment=1frame). For a 3s test duration (300 frames), the total number of
time-frequency blocks is then 7200on TIMIT and 4500 onNTIMIT. The influence of the
number of blocks sleded pqisinvestigated. The results are reported in Figure 7.

For both databases, the best results are obtained when some blocks are pruned: id.=100% for
pag=3500 o 4500 onTIMIT andid.=41.99% for pg=3900 onNTIMIT. However, it is difficult
to seethe red benefit of the joint time and frequency pruning processin comparison with the

single time-pruning technique.

5.4 Validation
The best values of p (time pruning, Sedion 5.2 and pq (time-frequency pruning, Sedion 5.3

obtained for 63 speskerson TIMIT and NTIMIT are used to vali date the benefit of the pruning
procedure for spedker recognition. Spedker identification tests are @wnduwted on the 567
remaining spe&kers of TIMIT and NTIMIT. The final test set is completely distinct from the
tuning set from which the optimal values of p and pq are evaluated. The identification results
obtained are presented in Table 6. For both databases, performance improvement is
significant. The time-frequency pruning procedure leals to a 41% error rate reduction on
TIMIT, compared with the conventional monogaussan classfier. However, the benefit of the
joint time and frequency pruning procedure in comparison with the single time pruning

processislessevident on NTIMIT.
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Table?.

5.5 Noisy environment
To evauate the gain in terms of robustness an experiment is condiwcted in a noisy

environment. For this experiment, a noise was added to the TIMIT test signal. A simulated

noise was chasen in order to make the experiment easy to reproduce

Some remarks resume the protocol used:

* Both the modd training and the meta parameter tuning of the system were performed on
clean speed signal.

* Noapriori knowledge @ou noiseis used.

* The noise is unpredictable and dstributed on the whole spedrum as follows: for eadh
frame, C (C=2 o 3) frequency channels among 24 (dimension d the full-band acoustic
vedor) were randamly seleded and degraded for different SNRs.

The patentia of the pruning processisill ustrated by resultsin Table 7. In every case, the time-

frequency pruning approach widely outperforms the conventional one, which seansto be very

promising. It can be naticed that, in this case, the models and the optima number of blocks
pruned (pg) were leaned on clean speed material, which shows the alaptability of the
pruning procedure withou a priori knowledge on the degradation affeding the test signal.

Obvioudly, thisrelative gain hasto be cnfirmed in nonsimulated (red) noisy condtions.

6. CONCLUSION

6.1 Summary
In this paper, the nature of the spe&ker spedfic information wsed by statisticd models has been

discussd. The various investigations demonstrate the difficulty in highlighting this
information. For example, it can be intuitively suppcsed that the most stable zones of speeh

signal would be more finely modeled by statisticd approaches and consequently shoud lead
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to enhance system performance if they could be isolated. Nevertheless experiments in this
way do nd show significant results. However, independently of performance, it is necessary
to know the nature of the information classes used.

It has been shown that this information is nat equally distributed acerding to the phoretic
content of speed segments and in the time-frequency domain. A large redundancy is observed
between the various classes of information in many cases (even though a more complex
approadh is proposed such as dynamic modeling). Therefore, this demonstrates the necessty
of seleding the useful part of information conveyed by the speed signal.

The seledion methods suggested in this paper (Knock-out, ascendant method..) enhance
reagnition performance For example, the channel seledion (see sedion 3.3.3 alows to
read an optimum identification rate of 94,3% (on TIMIT) by seleding only 83,26 of the
frequency domain. But, these cnwentional seledion techniques allow only globa and
approximate knowledge @ou the relevance of a set of fedures. Nevertheless some speed
clusters may prove very useful to recmgnize aparticular speaer, whereas they can be non
informative for ancther one. Moreover, ac@rding to the recording condtions, some types of
information may be arrupted ar even missng.

We have propased a system which seleds the best parts of the speed signal dynamicdly
during test acording to the speeker model concerned. The seledion was based ona maximum
likelihoodcriterion.

This “online” seledion pocedure was experimented with for the speda case of time-
frequency architedure. The results obtained have shown that this technique can significantly
increase the performance of a speder identificaion system in namal or noisy (simulated)
condtions. Nevertheless further investigations have to be conduwted in order to test the

robustnessof this approad against noisein red condtions.
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Figure 8.

6.2 Knowledge gathered from the result analysis
The originality of the propcsed seledion tedhnique is that the speed parts sleded ona same

test utterance ca vary from one spes&ker model to ancther. The analysis of the rgeded (or
seleded) parts allows interesting feedbad. This analysis was made for the particular case of
time pruning (sedion 5.2. Figure 8 shows the distribution d the frames acording to their
frequency of seledion when the final score is computed with orly half of the frames. In ather
words, if Nseled=63, the @rrespondng frames were used by al 63 spe&ker models; if
Nseled=0, the crrespondng frames were rejeded by all spesker models, duing the

recogniti on stage.

The profil e of the results suggests two dfferent conclusions:

* a mherence «istsin the information conveyed by the frames, i.e. when aframe is rejeded
(or seleded) by a spesker model, it isregeded (or seleded) by the majority (parts 1 and 3),

* however, it is aso clea that the speedt frames ®leded are different from one speder to
ancther (part 2), which confirms that spedfic informationis not the same acording to the
spe&ker concerned. The inadequacy of conventional seledion processs is then clealy
pointed ou by thisanalysis.

6.3 Outlook

To go further, it would be interesting to know the phoretic label of the frames kept and the

frames rejeded. Performing a more systematic post anaysis will alow to further investigate

the phoretic asped of spedker identification.

Finally, we dso intend to apply the “on-line” seledion method duing the training phase,

which shoud be an interesting approach to refine the speaker models.
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TIMIT

NTIMIT

93.7%d.

16.20id.

1. comparison d speaker identification performance between TIMIT and NTIMIT databases
(normal andtelephore qudity) — MGMs — 24 filterbark coeff. (TIMIT) or 17 (NTIMIT) - 6s

training/ 3stest - 630speaker’s - 2925tests - [ 5]

Test
% ldentificaion % ldentificaion
acording to number of | acwording to number of
the most stable frames || randam frames sleded
sdeded
Training 50 150 300 50 150 300

Clasgcd (600 | 77.3 93 94.8 89.5 94.8| 94.8
Stable (300 72.4 76.9 67.5 60.1 62.9 67.4
Stable (500 77.6 92.7 94.8 84.6 94.1] 94.8
Randam (300) 71.3 81.1 82.9 74.5 80.8 82.9
Randam (500 75.2 92.3 94.1 86.7 92.3 94.1

2. |ldentification rates (in %) obtained according to dfferent types of training andvarious
numbers of stable andrandan frames sleded duringtest (630speakers - 286tests)

FuLL BEST RESULTS | HALFOFTHE HALF OF THE
BAND CHANNELS FREQ. DOMAIN
Number of 24 18 12 9
channels
% of the full 100.0% 83.2%% 64.%% 50.0%
freq. danain
Id. % 93.7%06 94.3% 89.5% 79.%%

3. Main identification results with the dhanrel seledion procedure - TIMIT (6s training/3s
test - 630 speakers - 2925tests)
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Static SB Dynamic SB Dynamic SB
withou Seledion with Seledion

SB % Id. % Id. % Id.

1-4 21.4 19 23.9

5-8 8.3 6.4 8.8
9-12 4.9 4.1 53
1316 10.8 11.4 12.6
17-20 24.3 24.6 27.8
21-24 22.2 25 26.6

4. ldentification rates obtained by using static subband, dynamic subband withou any
seledion (integrating the 40 coefficients) and dmamic subbang with seledion d best

coefficients (6s training/3s test - 567 speakers - 2639tests).

Id. rate dter recombining static
subband measures

Id. rate dter recombining
dynamic subband measures

76.4

5. ldentification rates obtained after recombining the measures of dynamic subbang and

those of static subband (6straining/3s test - 567 speakers - 2639tests).

BASELINE TIME PRUNING | TIME-FREQUENCY
NO PRUNING PRUNING

TIMIT n=1, K=1 K=1;, p=150 T=1 | K=24; pg=450Q T=1
Id. % 91.66 94.20 95.14

NTIMIT n=1; K=1 K=1;p=260T=1 K=15, pg=390Q T=1
Id. % 15.91 18.64 17.77

6. Validation d the pruning pocedure on TIMIT and NTIMIT (6s training/3s test - 567

speakers - 2639tests)

Number of corrupted BASELINE T-F PRUNING
channels SNR (dB) n=1; K=1 PeE450Q T=1
3 10 13.28 71.67
2 10 23.07 84.26
3 20 44 .4 95.1
2 20 58.04 98.25

7. Spake identification results in the ase of speed corrupted
distributed onthe whole spedral domain (63 speake's, 286tests).
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1. speaker identification performance on speed corrupted with nase at different SNRs —
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2. isolated subbandidentification rates on TIMIT and NTIMIT (6s training/3s test - 630
speakers - 2925tests)
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7. Time-frequency pruning - 6s training/3s test - architedure 24x20 for TIMIT and
architedure 15x11for NTIMIT - T=1 - 63 speakers - 286tests
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8. Frame distribution according to their frequency of seledion - TIMIT - p=150 (half of the
frames rgjeded) - 63 speakers
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! Central frequencies of filters (in Hz): 47, 147, 257, 378, 510, 655, 813, 987, 1178, 1386,
1615, 1866, 2141, 2442, 2772, 3133, 3529, 3964, 4440, 4961, 5533, 6159, 6845, 7597.
% The likelihood d aframe't, uttered by speaker Y is computed from vedor y, and spesker
Y’smode.

% Channels 1,2,3,4,6,8,9,13,15,16,17,18,19,20,21,22,23,24

% Channels 1,3,6,13,16,17,18,19,21,22,23,24

®> Seleded feaures per subband (notation: f-c with f and c referring respedively to frame
(fopa10) and channel (copig). SB1-4: 1-1, 1-2, 1-3, 1-4, 32, 33, 34, 41, 61, 94. SB5-8: 1-
1, 1:2, 1-3, 1-4, 23, 24, 82, 83, 84, 91. SB9-12 1-1, 1-2, 1-3, 1-4, 23, 24, 32, 33, 51,
6-1.SB13-16: 1-1, 1-2, 1-3, 1-4, 32, 33, 44, 63, -2, 92, 94. SB17-20: 1-1, 1-2, 1-3, 1-4,
2-1, 22, 23, 24, 31, 34, 42, 44, 52, 63, 81. SB21-24: 1-1, 1-2, 1-3, 1-4, 21, 22, 2-3,

2-4, 31, 33, 34, 41, 44,51, 53, 7-3.
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