
HAL Id: hal-02157125
https://hal.science/hal-02157125

Submitted on 15 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Building the Universal Archive of Source Code A global
collaborative project for the benefit of all

Jean-François Abramatic, Roberto Di Cosmo, Stefano Zacchiroli

To cite this version:
Jean-François Abramatic, Roberto Di Cosmo, Stefano Zacchiroli. Building the Universal Archive of
Source Code A global collaborative project for the benefit of all. Communications of the ACM, 2018,
61 (10), pp.29-31. �10.1145/3183558�. �hal-02157125�

https://hal.science/hal-02157125
https://hal.archives-ouvertes.fr

Building the Universal Archive of Source Code
A global collaborative project for the benefit of all
By Jean-François Abramatic, Roberto Di Cosmo, Stefano Zacchiroli

Software is becoming the fabric that binds our personal and social lives, embodying a vast
part of the technological knowledge that powers our industry, and fuels innovation. Software
is a pillar of most scientific research activities in all fields, from mathematics to physics, from
chemistry to biology, from finance to social sciences. Software is also an essential mediator
for accessing any digital information.

In short, a rapidly increasing part of our collective knowledge is embodied in, or dependent
on software artifacts. Our ability to design, use, understand, adapt, and evolve systems and
devices on which our lives have come to depend relies on our ability to understand, adapt,
and evolve the source code of the software that controls them.

Software source code is a precious, unique form of knowledge. It can be readily translated
into a form executable by a machine, and yet it is human readable: Harold Abelson wrote
“Programs must be written for humans to read”,1 and source code is the preferred form for
modification of software artefacts by developers.2 Quite differently from other forms of
knowledge, we have grown accustomed to use version control systems that trace source
code development, and provide precious insight on its evolution. As Len Shustek puts it,
“Source code provides a view into the mind of the designer”.3

And yet, we have not been taking good care of this precious form of knowledge.

Source code is spread around a variety of platforms and infrastructures that we use to
develop and/or distribute it, and software projects often migrate from one to another: there is
no universal catalog that tracks it all.

Software can be deleted, corrupted or misplaced. What’s even more worrying, in recent
years we have seen major code forges shut down, endangering hundreds of thousands of
publicly available software projects at once.4

We clearly need a universal archive of software source code.

The deep penetration of software in all aspects of our world brings along failures and risks
whose potential impact is growing. Users now understand the need for an organized
attention to software safety, security, reliability, and traceability. But unlike other scientific
fields, we lack large scale research instruments for enabling massive analysis of all the
available software source code.

1 Preface to Abelson, Sussman, and Sussman, “The Structure and Interpretation of Computer
Programs”, MIT Press, 1985
2 Free Software Foundation, Inc., “The GNU General Public License, Version 3”, §1, 2007
3 Shustek, L. J. “What Should We Collect to Preserve the History of Software?”, IEEE Annals of the
History of Computing, 2006
4 Squire, M. “The Lives and Deaths of Open Source Code Forges”, OpenSym 2017

As computer scientists and professionals, it is our duty, our responsibility, and our privilege,
to build a shared infrastructure that answers these needs. Not just for our community, not
just for the technical and scientific community, but for society as a whole.

Software Heritage5 is an initiative launched at Inria precisely to take up this mission. While a
full article detailing our approach is available online6, we focus here on the challenges raised
by the three main goals: collecting, preserving, and sharing the source code of all the
software ever written.

Collection
There are various kinds of source code. Some is current, actively developed and technically
easy to make available, some other is legacy that must be painfully digged out from offline
media. Some is open, and free for all to read and reuse, some other is closed behind
proprietary doors. Software Heritage’s ambition is to collect it all.

For current, open source code, we need an automated process to harvest all software
projects, with all the available development history, from the many places where
development and distribution take place, like forges and package repositories. Yes, we really
mean harvesting everything available, with no a priori filtering. Because the value of an
active software project will only be known in the future, and because storing all present and
future source code can be done at a reasonable cost.

The technical challenge is to build crawlers for each code hosting platform, as there is no
common protocol available, and to develop adapters for all version control systems and
package formats. It is a significant undertaking, but once a standard platform is available
each of these crawlers and adapters can be developed in parallel.

For legacy, open source code, we need a crowdsourcing platform to empower the volunteers
that are willing to help recover their preferred software artefacts. Guidelines must be offered
to help properly reconstruct from the raw material the interesting history that lies behind it,
like in the beautiful work that has been done for the history of Unix.7

Closed software contains precious knowledge that is more difficult to recover. For example,
the Computer History Museum8 and Living Computers9 have shown, in the case of the
mythical Alto system10, that once the business need to keep software closed fades away, a
focused search (that requires a costly and dedicated effort) can succeed in recovering and
liberating its source code, growing our software commons.

5 Software Heritage, https://www.softwareheritage.org
6 Di Cosmo, R. and Zacchiroli, S. “Software Heritage: Why and How to Preserve Software Source
Code”, iPRES 2017
7 Spinellis, D. “A repository of Unix history and evolution”. Empirical Software Engineering, 2017.
8 Computer History Museum, http://www.computerhistory.org/
9 Living Computers: Museum + Labs, http://www.livingcomputers.org/
10 See http://xeroxalto.computerhistory.org and
http://www.livingcomputers.org/Discover/News/ContrAlto-A-Xerox-Alto-Emulator.aspx.

https://www.softwareheritage.org/
http://www.livingcomputers.org/Discover/News/ContrAlto-A-Xerox-Alto-Emulator.aspx
http://xeroxalto.computerhistory.org/
http://www.livingcomputers.org/
http://www.computerhistory.org/

Finally, by providing a means to safely keep closed source software under embargo, much
like what happens already with software escrow, we may succeed in collecting current and
future closed source, and be ready to liberate it when time comes, dispensing altogether with
costly technical recovery efforts.

Preservation
In the extensive literature on digital preservation, it is now well established that long term
preservation requires full access to the source code of the tools used for the task. Software
Heritage uses and develops exclusively free and open source software tools for building its
archive.

Also, replication and diversification are best practices to mitigate the threats, from technical
failures to legal and economic decisions, that endanger any long-term preservation initiative.
Hence we want to foster a geographically distributed network of mirrors, implemented using
a variety of storage technologies, in different administrative domains, controlled by a plurality
of institutions, and located in different jurisdictions.

Finally, preserving software source code requires preserving also the development history of
source code, that carries precious insights on the structure of programs and also track inter-
project relationships. Software Heritage’s unique approach is to store all available source
code and its revisions into a single Merkle DAG (Directed Acyclic Graph), shared among all
software projects. This data structure facilitates distribution and enables full deduplication
(massively reducing storage costs), integrity checking and tracking of reuse across all
software projects at the file level. But it also poses novel challenges when it comes to
efficiently indexing and querying its contents.

Sharing
The raw material that Software Heritage collects must be properly organised to ease its
fruition. On top of the information captured by version control systems, we need metadata
describing the software and means to classify the millions of harvested projects, written in
one of the thousands known programming languages11. We need to extract and reconcile
existing information from many different sources, encoded in one of the many different
software ontologies, and complete it with using either automatic tools or crowdsourcing.

We must also support the many use cases that it enables. Programmers may want to search
for specific project versions or code snippets to reuse, and then browse them online or
download history-full source code bundles. Companies may want to access an API to build
applications that use the archive. Researchers may want to access the whole corpus to
perform big data operations or train machine learning models.

We must carefully assess which functionalities are generic enough to be incorporated in the
archive, and which are so specific that they are best implemented externally by third parties.
And there are of course legal and ethical issues to be dealt with when redistributing parts, or
all, of the contents of the archive.

11 See http://hopl.info/

Current status
Software Heritage is an active project that has already assembled the largest existing
collection of software source code. At the time of writing the Software Heritage Archive
contains more than 4 billion unique source code files and one billion individual commits,
gathered from more than 80 million publicly available source code repositories (including a
full and up-to-date mirror of GitHub) and packages (including a full and up-to-date mirror of
Debian). Three copies are currently maintained, including one on a public cloud.

As a graph, the Merkle DAG underpinning the archive consists of 7 billion nodes and 60
billion edges; in terms of resources, the compressed and fully deduplicated archive requires
some 200 TB of storage space. These figures grow constantly, as the archive is kept up to
date by periodically crawling major code hosting sites and software distributions, adding new
software artifacts, but never removing anything.

The contents of the archive can already be browsed online, or navigated via a REST API12.

Next steps
We are at a unique turning point in the history of computer science and technology.

Looking at the past, we see many important pieces of historical software that are lost,
misplaced or behind barriers. On the other hand, many of our founding fathers are still here.
They have the knowledge and the will to share what is necessary to rebuild the full history of
our discipline, a unique opportunity that no other field of science or technology has ever
been offered.

Looking at the future, we see that software development is skyrocketing. It is urgent to build
the missing infrastructure and put in place the good practices that are necessary to make
sure our entire software commons will be properly collected and preserved. Every year that
goes by without acting increases significantly the backlog.

By launching Software Heritage, Inria has done the initial effort, creating the archive
infrastructure, establishing an agreement with UNESCO, and assembling an initial group of
supporters13 and committed sponsors, including Microsoft, Intel, Société Générale, Huawei,
Google GitHub, Qwant, Nokia Bell Labs, DANS, FossID, UQAM and the University of
Bologna. Now we need to move forward, and grow Software Heritage into an international
common infrastructure.

Four ingredients are key to the success of our mission: raising awareness of the importance
of source code as a first class citizen in our cultural heritage, gathering the resources
needed to create the infrastructure, and leveraging the expertise from many fields of our
discipline, building on a community that shares the vision.

12 https://archive.softwareheritage.org /
13 https://www.softwareheritage.org/support/testimonials/

https://www.softwareheritage.org/support/testimonials/
https://archive.softwareheritage.org/api/

As an open initiative, Software Heritage strives to act as a host and a catalyzer for this
community, and we are now calling for contributors to join forces and tackle the issues
highlighted in this article, and the many others that will arise along the way.

Let’s recall here a few.

● For the collection phase, we need help recovering important software from the paste
and building adaptors for the many hosting platforms and source code distribution
formats.

● For the preservation phase, we need resources to host mirrors, as well as
contributors willing to try different technologies for storing and mirroring the archive.

● For the sharing phase, help is needed to organize the contents, to build efficient
indexing and querying mechanisms, and to develop applications for specific domains.

We, technologists, engineers, scientists, and IT professionals have a noble mission and a
grand challenge: let’s work together to deliver on it.

