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ABSTRACT

This paper presents a new approach to speaker
recognition and indexation systems, based on non-
directly-acoustic processing. This new method is
specifically designed to lower the complexity of the
modeling phase, compared to classical techniques, as
well as to decrease the required amount of learning
data, making it particularly well-suited to on-line
learning (needed for speaker indexation) and use on
embedded systems.

1. INTRODUCTION

Classical speaker recognition systems usually require
a complex acoustic parameterization and modeling
phase. This complexity has increased over the last few
years with widespread use of multiclass modeling
(Gaussian Mixture Models, HMM based models,
LVCSR methods, data driven models …).

The computational heaviness implied, as well as the
requirement for large amounts of acoustic data to
build and/or adapt complex speaker models, make it
particularly difficult to implement on-line speaker
recognition systems.

In the framework of speaker indexation and/or
segmentation, this point is of high importance: in this
case, speaker models are not available beforehand and
have to be built from a small amount of data.

This paper presents a new approach to speaker
recognition and indexation systems, developed to
provide an answer to these two problems: it allows
lower complexity, with the ability to compute speaker
models from very few data. The proposed method is
well-suited to on-line processing and embedded
systems.

2. OVERVIEW OF THE STRUCTURE OF A
CLASSICAL SPEAKER RECOGNITION

SYSTEM

In speaker recognition systems, the learning phase
classically consists of two steps: first,
parameterization of the acoustic data, and then
modeling (figure 1).
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Figure 1: Graphic description of classical methods (acoustic

driven) learning and test phases

Previous work shows the importance of
parameterization and front-end signal processing
phases for speaker recognition process [2][3]. For
embedded systems a compromise between
performance, parameterization complexity and size
has to be made.

The modeling methods most frequently used are
statistics-based ones: Second Order Statistical
Methods based on Mono Gaussian Models [1] or
Gaussian Mixture Models [6], HMM modeling [4]
and Auto Regressive Vector methods [5]. In fact, the
majority of the text independent speaker recognition
systems developed for the 1999 NIST evaluation



campaign1 were based on Gaussian Mixture Models,
using generally 128 gaussians.

Once this modeling phase has been achieved, the test
phase consists, given a speech signal coming from an
unknown speaker, in computing a similarity measure
between this signal and a known speaker model (as
shown in figure 1). For speaker identification tasks,
this step is repeated for each known speaker.

The main drawback of statistics-based modeling
methods is that they require a minimum amount of
data to be accurate. Moreover, due to the acoustic
nature of the data, learning has to be done using
several sets of data reflecting the acoustic variability
resulting from the phonetic content, the channel and
the recording conditions, in order for the speaker
models to take this variability into account.

Besides the availability of such data for each speaker
for which a model is to be built - which involves a
long duration learning signal - this implies an increase
of the model size and complexity as well as of the
amount of computing resources needed.

This is what leads speaker recognition systems based
on such methods to perform poorly on short learning
duration, while also being difficult to implement on
embedded systems.

3. DESCRIPTION OF THE PROPOSED
METHOD

We propose a method which allows to define the
modeling phase independently from the acoustic
constraints, thus leading to decrease the need for large
amounts of data.

This is done by introducing a preliminary step into the
process, which yields a new representation of the
speech signal. This representation being defined
specifically for the speaker recognition problem, it is
designed to be clearly speaker-oriented.

The underlying idea is to consider the speech signal
through a set of speaker-distinguishing characteristics.
Given a speech sample, its representation is obtained
by computing a valuation of each of the
characteristics. This process can be seen as a
projection of the speech sample from the acoustic
space into a new space. A referential for this space is
defined by the considered characteristics, each
corresponding to an axis.

                                                          
1 Since 1996, the National Institute of Standards and
Technologies (NIST/NSA) organizes some
benchmark evaluations in text independent speaker
recognition over the telephone. See
http://www.itl.nist.gov/div894/894.01/spkrec.htm for
more details.

The entire recognition process (modeling and test
phases) is then designed to be carried out on data
projected into this characteristic-based space, no
matter how the projection is computed from
corresponding acoustic data. From this point of view,
the projection step may be seen as a "black box", for
which only the input and output have to be known.
We will refer to it using this term from now on.

The projection is performed using classical
recognition techniques. In fact, there can be as many
different types of techniques as characteristics to be
valued. Each of these recognizers needs its own
learning phase, which may be complex and require a
large amount of data (see figure 2). However, this
heavy learning phase has to be carried out only once,
to set up the projection system. Afterwards, the
recognizers only have to be run in test phase, to
output a value corresponding to the acoustic data to
project. This is usually a rather simple task.
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Figure 2: Description of the "BlackBox" Projection System

learning

The whole problem of acoustic variability is taken
into account by the recognizers composing the
projection system. The projection result is then
theoretically independent regarding this variability.

This leads the post-projection process to be rather
easy, as it is no longer necessary to deal with this
problem.

The modeling phase is here far simpler than for
acoustic models, and doesn't require to handle as
much data. It can be performed using "standard", non
speaker recognition-specific classification techniques.
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Figure 3 : Learning in the non-directly acoustic approach

This simplicity, allowing to build a model from a very
small data set with very low computing resources
requirements, is particularly useful when it comes to
automatic indexation. In this case, where speaker
models have to be constantly reestimated, the gain in
terms of learning complexity compared to classical
systems is even more obvious: the projection process
has to be done only once for a given set of data; the
learning process can then be iterated numerous times
on the projected data without seeing major raise in
complexity.

The test phase also benefits from working on
projected data, as the decision scheme no longer has
to take acoustic variability into account. It is based on
simple distance computation within the projection
space between the projection of the test sample and
speaker models built during the previous phase. This
step is also made easy due to the rather small size of
the speaker models in the projection space.

4. A FIRST IMPLEMENTATION OF THE
PROPOSED METHOD

A simple implementation has been achieved as an
example of the proposed method.

The projection system (the “black box”) retained for
this implementation is not based on an explicit
specification of the considered characteristics.

Instead, each characteristic is evaluated according to
similarity between the test signal and a chosen voice.
This likeness is evaluated using a classical speaker
recognition system (see section 4.1). One acoustic
model is computed for each characteristic, using a
record pronounced by the corresponding speaker. A
classical similarity measure between a model and the
test signal gives the valuation of a specific
characteristic.

4.1 Parameterization and basic speaker
recognition technique

The classical recognition technique used here is based
on second order statistical modeling and maximum
likelihood computation.

The signal is characterized each 10 ms by a 24-
coefficient spectral vector using a linear scale. No
other front-end processing is performed.

A speaker (or a characteristic) is modeled by a global
mean vector and a covariance matrix (mono-gaussian
modeling).

The similarity measure between a signal and a model
corresponds to maximum-likelihood estimation.

4.2 Description of the projection system

As seen above, the projection process consists here in
computing a similarity measure between the data to
project and a set of voices, using the technique
described in section 4.1. This set is made of 40
randomly-picked male speakers.

None of these speakers is used during the test phase.

4.3 Speaker Training

A model for a given speaker is built by classifying the
points resulting from the projection of his learning
data. The classification technique is a variant of the k-
means algorithm. Each of the resulting classes is then
represented by two vectors: its center of gravity and
its standard deviation. 15 class models are used for
this paper.

4.4 Similarity measure

The distance between a frame of speech signal
(represented by a vector in the projection space) and a
speaker model is given by the minimum non-oriented
angle measure between this frame vector and the
center of gravity of each class of the model.

5. SPEAKER IDENTIFICATION
EXPERIMENTS

In order to test the system described above, an
experiment has been carried out within the framework
of close-set text independent speaker identification
over telephone lines.

The data set used for this experimentation is a subset
of the SWITCHBOARD database used for the 1997
NIST Speaker Verification System Evaluation.

This set is composed of some parts of real telephone
conversations (natural speaking). It includes various
recording conditions and noisy segments.



35 speakers have been used for the test phase. This
set is distinct from the one used for the projection
"black box". For each of these, 60 seconds of speech
have been used as learning data, and around 60 other
seconds have been dedicated to the test phase.

Decisions were taken for speech segments of 3
seconds (corresponding to 300 frames), based on the
computation of the mean distance between these
frames and each of the models of the 35 “client”
speakers. A good identification is recorded if the
corresponding speaker obtains a distance strictly
inferior to the other speakers.

The tests are conducted for different learning
durations: from 60s down to 0.5s. For a short
duration, the test are repeated several times (10 times
for 0.5s to 3.75s duration and 5 for 7.5s duration),
randomly selecting the learning segment.

In order to evaluate the possibilities of the proposed
method, we carried out the same tests using the basic
speaker recognition system shown in section 4.1 (it is
exactly the system used within the projection "black
box").

Table 1 shows results obtained for different learning
durations. The percentage of good identification is
given for the new "projection" method and for the
classical one, according to the learning duration. For
short duration, the maximum and the mean
identification rate (obtained on the 10 or 5 randomly-
picked learning segments) are specified.

Identification rate
MGM Projection

Mean Max Mean Max
0.5 6.12 8.55 28.59 36.23
1 11.35 16.37 38.20 45.65
2 23.67 30.43 44.88 51.59

3.75 47.82 53.33 56.26 64.06
7.5 70.43 73.91 63.79 70.72
15 87.53 72.03
30 95.36 70.72
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60 97.53 74.06
 Table1: Speaker identification results (35 speakers -- 690 tests).

The table shows % of good identification for classical MGM

method and the proposed method (projection) for different learning

durations. For short durations, different learning segments are

chosen and the mean/max of identification rates are given.

Comments :

• On long duration learning (60s to 15s), the results
obtained by the classical, mono-gaussian based
method seem to be less than state-of-the-art ones.
This loss should not appear on short duration,
due to the impossibility to learn or adapt 128 (or
higher) based mixture models on 50 occurrences
(0.5s duration).

• The new "projection" method obtains
encouraging results on long learning duration
(around 74% of good identification) and the
results remain at a good level for 0.5s duration
(between 28 to 36% of identification).

• For long duration learning, these results actually
show a loss when compared to the identification
rate obtained on the same data set with the basic
monogaussian system. However, this loss must be
understood more as a consequence of the
oversimple nature of the implementation, than as
the result of the intrinsic limits of the method.
Notably, the definition of the projection "black
box" is extremely simplified and does not allow
to exploit all the speaker-specific information
found in the speech signal.

• For short training duration (less than 7.5s), the
very simple implementation of our method
obtains better results than the classical method.
For example, for 2s duration the respective
scores are 30.43% for the classical method and
51.59% for the projection method.

• It is to be noticed that - in terms of complexity -
 the projection phase demands less than one
iteration of the EM learning algorithm of
classical GMM systems. The learning phase on
the projected data is of extremely low cost,
allowing our system to require few computing
resources compared to classical systems.

• As shown by Table 2, the size of the speaker
models is reduced significantly by the projection
method.



Size of the models
(number of components)

Projection method
(40 char. and 1 class)

24 and 72 coef.

40*2*1 = 80

Projection method
(40 char. and 15 classes)

24 and 72 coef.

40*2*15 = 1200

Mono Gaussian
(complete cov. Matrix)

24 coef. acoustic vectors.

(24*25)/2 + 24 = 324

Mono Gaussian
(complete cov. Matrix)

72 coef. acoustic vectors

(72*73)/2 + 72 = 2700

GMM 128
(diagonal cov. matrix)

24 coef. Acoustic vectors

24*2*128+128 = 6272

GMM 128
(diagonal cov. matrix)

72 coef. acoustic vectors

72*2*128+128 = 18560

 Table 2: Size of the speaker models for 3 different methods, in

case of 24 and 72 coefficient acoustic vectors.

6. CONCLUSION

The method presented here answers the needs for
lighter speaker recognition and indexation systems.

The main advantages of this method are :

• The non acoustic nature of the learning and
recognition phase allow a low cost processing
needing few learning data. It's particularly
interesting for on-line learning (needed for
speaker indexation) and/or embedded systems.

• The speaker models are built on non-acoustic
data. Usual classification techniques can be used
for this task.

• The size of the speaker models is really small
compared to classical methods.

• The proposed projection method allows to split
the whole process into two distinct phases: first,
expressing in the new referential the data for a
given speaker; and then, the actual recognition
task.

The obtained results are promising, given the triviality
of the implementation. This method shows some
potential, which has yet to be exploited. To do so, two
things have to be improved: the methods used to
exploit the projected data (using better classification
techniques and similarity measure), and the definition
of the projection “black box”. This second point
remains far less straightforward than the first one.
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