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Abstract: A Security Operations Center (SOC) is a central technical level unit responsible for 

monitoring, analyzing, assessing, and defending an organization’s security posture on an ongoing 

basis. The SOC staff works closely with incident response teams, security analysts, network 

engineers and organization managers using sophisticated data processing technologies such as 

security analytics, threat intelligence, and asset criticality to ensure security issues are detected, 

analyzed and finally addressed quickly. Those techniques are part of a reactive security strategy 

because they rely on the human factor, experience and the judgment of security experts, using 

supplementary technology to evaluate the risk impact and minimize the attack surface. This study 

suggests an active security strategy that adopts a vigorous method including ingenuity, data 

analysis, processing and decision-making support to face various cyber hazards. Specifically, the 

paper introduces a novel intelligence driven cognitive computing SOC that is based exclusively on 

progressive fully automatic procedures. The proposed λ-Architecture Network Flow Forensics 

Framework (λ-ΝF3) is an efficient cybersecurity defense framework against adversarial attacks. It 

implements the Lambda machine learning architecture that can analyze a mixture of batch and 

streaming data, using two accurate novel computational intelligence algorithms. Specifically, it uses 

an Extreme Learning Machine neural network with Gaussian Radial Basis Function kernel 

(ELM/GRBFk) for the batch data analysis and a Self-Adjusting Memory k-Nearest Neighbors 

classifier (SAM/k-NN) to examine patterns from real-time streams. It is a forensics tool for big data 

that can enhance the automate defense strategies of SOCs to effectively respond to the threats their 

environments face. 

Keywords: network flow forensics; adversarial attacks; malware traffic analysis; security operations 

center; cognitive cybersecurity intelligence; lambda architecture 

 

1. Introduction 

With an ever-increasing cybersecurity threat landscape to interconnected or networked devices, 

and since the volume of data is growing exponentially, it is more important than ever for critical 
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infrastructures and organizations to be strengthened with intelligent driven security managing and 

monitoring tools. Using the right combination of these intelligent centralized tools and big data 

technologies allows classifying risks with high accuracy across network infrastructures to identify 

sophisticated attacks. Nevertheless, current SOCs focus mostly on human experience and the opinion 

of experts to evaluate and minimize potential cyber threats. On the other hand, traditional signature-

based security systems are unable in most cases to identify evolving threats such as zero-day malware 

or they produce a vast number of false alarms, thus are proven ineffective as security management 

tools. The implementation and usage of alternative, more innovative and more effective intelligent 

methods with fully automated aptitudes appear is necessary to produce an-up-to date SOC that can 

handle security incidents. 

Accordingly, SOCs are being forced to consider new ways to boost their cyber defenses such as 

cloud strategies, big data analytics and artificial intelligence technologies that are emerging as the 

frontrunner in the fight against cyber-crime. With fully self-governed systems that mimic the 

functioning of the human brain and help to improve decision-making with minimum human 

interference, a Next Generation Cognitive Computing SOC (NGC2SOC) is in a far better place to 

strengthen and reinforce cybersecurity strategies. The ultimate purpose of NGC2SOC comprises 

sophisticated intelligence driven tactics for real-time investigation of both known and unknown 

vulnerabilities, immediate access, evidence visualization and additional advanced tools or practices 

that reduce the potential risk in critical assets combined with a completely automated reinstatement 

of cybersecurity problems. 

Machine learning is a practice used to develop sophisticated representations and systems that 

produce dependable, repeatable decisions and discover unseen or hidden patterns through learning 

from historical data. In these models, the training and test data are expected to be produced from 

identical although probably unidentified distributions, thus they have been very sensitive to slight 

changes in the input or a series of specific transformations [1]. Most of those sensitivities under certain 

circumstances may lead to altering the behavior of the machine learning algorithms. Specifically, 

security of machine learning systems is vulnerable to crafted adversarial examples, which may be 

imperceptible to the human eye, but can lead the model to misclassify the output. In recent times, 

different types of adversaries based on their threat model leverage these vulnerabilities to 

compromise a machine learning system where adversaries have high incentives. 

An adversarial attack is an attempt to maliciously operate the input data or manipulate specific 

weaknesses of machine learning procedures to compromise the entire security system. For example, 

a classification process by a trained neural network classifier decides which class a new remark fits 

based on a training set of data covering remarks whose class association is known. The classification 

threshold is imperfect and an appropriately designed and implemented adversarial attack, which 

corresponds to a modified input that may come from a modified dataset, can lead the algorithm to a 

wrong solution (wrong class). This is because the neural networks operate on high-dimensional data, 

they are sensitive to overfitting, they can be too linear and they are characterized by the inherent 

uncertainty of their predictions. 

To understand the security properties of learning algorithms in adversarial settings, one should 

address the following main issues: 

 identifying potential vulnerabilities of machine learning algorithms during learning and 

classification; 

 devising appropriate attacks that correspond to the identified threats and evaluating their 

impact on the targeted system; and 

 proposing countermeasures to improve the security of machine learning algorithms against the 

considered attacks.  

In general, there are two defense strategies against adversarial attacks. First is the reactive 

strategy, which consists of training another classifier, which should be constructed based on the 

variety of the execution mode and on the restrictions’ settings that can lead to dissimilar decision 

boundaries, even if all other constraints remain steady. For example, different classifiers should be 

chosen with multiple levels of diversity that use dissimilar functional settings and diverse training 
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sets, thus permitting dissimilar decision boundaries to be formed, and that can be combined to reduce 

the overall error. The second is the proactive strategy, which relies on implementing suitable 

precautionary training, capable of establishing the exact decision boundaries. An investigation that 

considers the training process of the learning model should try to discover the optimum weights. The 

weight vector is a very important parameter, as it is used in the development of defining the 

confidentiality of classifiers, and the confidence of the pattern recognition process. For example, in 

the situation of higher weights, it is an important request of the classification process of how they 

regulate the class boundaries of the general prototype. Hence, it is extremely important to provide 

robustness to machine learning algorithms against these adversaries. 

This paper proposes the development of an innovative λ-Architecture Network Flow Forensics 

Framework (λ-NF3) to network traffic analysis, demystification of malware traffic and encrypted 

traffic identification for efficient defense against adversarial attacks. The λ-NF3 is an effective and 

accurate network administration system that offers intelligent network flow forensics methods, 

aiming to be used by NGC2SOCs that can work without the need of human experience and the 

opinion of experts to evaluate and minimize potential cyber threats. A basic innovation of the 

proposed methodology is the combination of two sophisticated algorithms for the first time in a 

hybrid machine learning framework. The proposed framework employs a specific version of the 

Lambda architecture combined with Extreme Learning Machine with Gaussian Radial Basis Function 

kernel (ELM/GRBFK) for the batch data classification and k-NN Classifier with Self Adjusting 

Memory (SAM/k-NN) to investigate real time data streams. Lambda architecture was chosen, as, in 

multifactorial problems of high complexity of large datasets such as the one under consideration, the 

outcomes of the estimation are multi-variable, especially with respect to analysis and integration of 

network data flows. This implementation follows a reactive cyber security strategy for dealing with 

adversarial attacks as it combines training two diametrically opposite classifiers to detect incoming 

potential threats and to discard them. In addition, it is important to highlighted that the proposed 

novel scheme offers high learning speed, ease of execution, minimal human involvement and 

minimum computational power and resources. 

The remainder of this paper is organized as follows. Section 2 presents the literature review on 

machine learning approaches have used in the traffic analysis, how Lambda architecture improves 

the overall accuracy of a big data model and some interesting methods to hardening a machine 

learning system against adversarial attacks. Section 3 defines the proposed framework. Section 4 

outlines the methodology. Section 5 present the datasets. Section 6 explains the results. Section 7 

present the conclusions. 

2. Literature Review 

Adversarial attacks have been recorded against spam filtering, where spam messages are 

obscured through spelling mistakes [2]; in computer networks, where malware code masquerade as 

benign network packets [3]; in antivirus software, where malicious program pass the signature 

detection test [4]; and in biometric recognition, where false biometric features may be alternated to 

mimic an authentic user (biometric spoofing) [5]. The network flow classification and categorization 

problem require a vast amount of computing resources [6]. In addition, the exponential increase of 

collected daily network data has led to the need for big data storage applications that should be 

designed for high capacity, low latency, and rapid analytics. In addition, the velocity of data and the 

necessity of real-time analysis, combined with the variety of both structured and non-structured data 

forms, present many challenges including scalability and storage bottleneck, noise gathering, false 

correlation, supplementary endogeneity, and measurement errors. However, the biggest challenge 

in the analysis of network flow data, which is a big data processing problem, is the performance of 

pattern recognition and knowledge mining by employing intelligent systems with proper 

architectures [7]. 

In addition, SOC staff are assisted by visual tools when studying big data. Their clarification of 

the genuineness on the screen may vary due to their familiarity and skills. An essential request of the 
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efficiency is to maximize operators’ cyber condition alertness by adopting expressive visualization 

tools as part of an all-inclusive decision-support method [8]. 

The λ-NF3 is an effective and innovative intelligence-driven cyber security method. This study 

has emerged after extensive and long-term research about the network forensics process with cyber-

security methodologies and specifically about the network traffic analysis, demystification of 

malware traffic and encrypted traffic identification [9–17]. Significant work has been done using 

various machine learning methods in various domains.  

For example, one study demonstrates that vulnerabilities can be predicted using an SVM model 

based on a set of code metrics for a specific Android application [18]. The classification model exhibits 

good performance in terms of both accuracy and precision. However, this study applies to a limited 

pool of applications and few Android versions. In addition, Shabtai et al. [19] proposed a heuristic 

approach to static analysis of Android applications based on matching suspicious applications with 

the predefined malware models. Static models are built from Android capabilities and Android 

Framework API call chains used by the application. All the analysis steps and model construction are 

fully automated. However, the proposed method has smaller detection coverage with randomly 

chosen malware models.  

In addition, in [20], the authors proposed an inter-application communication tool that detects 

application communication vulnerabilities. The proposed model can be used by developers to 

analyze their own applications before release, by application reviewers to analyze applications in the 

Android market, and by end users. The authors analyzed 20 applications and found 34 exploitable 

vulnerabilities; 12 of the 20 applications have at least one vulnerability. This shows that applications 

can be vulnerable to attack and that developers should take precautions to protect themselves from 

these attacks. Burguera et al. [21] proposed a behavior-based malware detection system, while 

Glodek at al. [22] a permissions-based malware detection system; however, the classification 

performances of these systems are severely affected by limited supervised information and unknown 

applications.  

On the other hand, Zhang et al. [23] developed a new method to tackle the problem of unknown 

applications in the crucial situation of a small supervised training set. The proposed method 

possesses the superior capability of detecting unknown flows generated by unknown applications 

and utilizing the correlation information among real-world network traffic to boost the classification 

performance. A theoretical analysis is provided to confirm the performance benefit of the proposed 

method. Moreover, the comprehensive performance evaluation conducted on two real-world 

network traffic datasets shows that the proposed scheme outperforms the existing methods in the 

critical network environment.  

Malware attacks are increasingly popular attack vectors in online crime. As trends and anecdotal 

evidence show, preventing these attacks, regardless of their opportunistic or targeted nature, has 

proven difficult: intrusions happen, and devices get compromised, even at security-conscious 

organizations. Therefore, an alternative line of work has focused on detecting and disrupting the 

individual steps that follow an initial compromise and that are essential for the successful progression 

of the attack. Several approaches and techniques have been proposed to identify the Command and 

Control (C2) channel that a compromised system establishes to communicate with its controller. The 

success of C2 detection approaches depends on collecting relevant network traffic. As traffic volumes 

increase, this is proving increasingly difficult.  

For example, Gardiner et al. [24] analyzed current approaches of ISP-scale network 

measurement from the perspective of C2 detection, discussed several weaknesses that affect current 

techniques and provided suggestions for their improvement. Hsu et al. [25] proposed an innovative 

structure for detecting botnets in real time based on performance metrics to investigate whether a 

suspicious server is a fast-flux bot. The most innovative part of this approach is the fact that it works 

in either passive or active mode. Valuations show that the proposed solution is a promising method 

that can identify the botnet’s activities without noteworthy performance deprivation, however the 

method fails in the situation of encrypted communication of the compromised machines of the botnet.  
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In addition, Haffner et. al. [26] employed an automated method to export the payload content 

from network flow of real-time applications and used several machine learning models to categorize 

the network traffic. The proposed method is time consuming and requires high CPU utilization. 

Furthermore, Holz et al. [27] developed a heuristic approach to calculating some properties that 

identify some fast-flux botnets. This is a passive method to locate obsolete botnets and fails to 

investigate dynamic fast-flux botnets based on sophisticated techniques. Almubayed et al. [28] 

presented a very interesting method to extract several features from the encrypted traffic of the Tor 

network. These features are appropriate and can classify the Tor traffic with very high accuracy.  

On the other hand, several optimal and novel applications have been done in applying Lambda 

architecture [29,30]. For example, Kiran et al. [31] presented a cost-optimized lambda architecture 

that combines online and batch data processing to handling a huge volume of sensor data. Both 

procedures can produce effective data accumulations, combinations or aggregations that are easier 

to analyze for identifying hidden patterns. It is also a promising method that reduces significantly 

the processing time and the resource requirements. Moreover, Yamato et al. [32] used a lambda 

architecture to analyze data from IoT sensors. It is a data analytics framework that uses incremental 

learning techniques to identify anomalies in real time.  

The automatically updating learning model improves analysis accuracy and is a promising 

method to defend against adversarial attacks. A new valuation procedure that is resilient to face these 

attacks was proposed by Yong et al. [33]. Specifically, the authors, to respond to injection attacks and 

adversarial additive and multiplicative errors, proposed a method to split the dataset into 

uncertainness subsets that lead to a manageable optimization result. In addition, Chong et al. [34] 

proposed a combination method of two algorithms to defend against adversarial attacks. In the first 

stage, an effective algorithm uses a finite window of measurements to reconstruct the initial state. In 

the second stage, a different algorithm intervenes to the exact state appreciation . Finally, Chen et al. 

[35] introduced a security regularization term that contemplates the circumvention cost of feature 

handlings by attackers to increase the system security. 

3. Description of the Proposed Framework 

3.1. Network Forensics 

Network forensics is a progressive procedure involving the monitoring and analysis of network 

traffic for information congregation, legal investigation, or intrusion detection and prevention. In 

addition, network forensics arrange provisional and momentary evidence in an unpredictable and 

dynamic environment such that network traffic is transmitted and then lost. An imperative 

subsection of network forensics is the traffic classification process, which is an automated procedure 

to classify network patterns according to numerous constraints into several traffic classes. The main 

method to recognize and classify network traffic with high accuracy and precision is the classification 

process based on the payload [36]. 

Serious weaknesses of these methods are the complexity and their requirements in terms of 

computational resources. In addition, cyber security expert opinion is required to differentiate 

provided services and implement appropriate security policies. Even the most sophisticated forecast 

method that relies on Deep Packet Inspection (DPI) is time-consuming, does not produce accurate 

results and suffers high false alarm rates [37]. 

To summarize, network flow forensics methods depend on the availability of various system 

resources, need supervision from a network engineer with advanced skills in cybersecurity and 

nevertheless fail totally to identify zero-day exploitations. 

Malicious botnets have become the most dangerous threat of the Internet today using advanced 

techniques to obfuscate the network communication aspects involved in their phishing schemes, 

malware delivery or other criminal enterprises. Thus, malware traffic analysis is the primary method 

of botnet investigation and identification of the command and control (C2) infrastructures associated 

with these activities. The most sophisticated types of malware are seeking network communication 

aspects in botnet establishment and operation with the C2 isolated servers via an obfuscated 



Big Data Cogn. Comput. 2019, 3, 6 6 of 22 

communication layer, based on the fuzzy construction of the Tor network. The Tor network produces 

traffic similar to the normal encryption traffic of the HTTPS protocol, making the identification 

procedure extremely difficult [38]. 

Since cyber systems’ security is a multifaceted procedure, SOC management cannot be based 

only on the passive-mode signature-based defense applications that are ineffective on zero-day 

attacks. The discovery and identification of a penetration or interruption in the network should be a 

self-acting and nearly real-time procedure, which would offer an imperative advantage to the 

administrators. In this point of view, the use of more effective methods of network supervision, with 

capabilities of automated control in network traffic analysis, demystification of malware traffic and 

encrypted traffic identification is important to estimate the behavior of malware, the purpose of 

attacks and the damage caused by malware activity. 

3.2. Batch Processing 

Batch data are usually datasets collected during some transactions or processes for a certain time 

period and characterize the systems functionality. Processing these data using conventional data 

mining or machine learning methods assumes that they are available and can be accessed 

simultaneously without any limitation in terms of their processing or analysis time. It should be noted 

that these data are susceptible to noise, their classification process has a significant cost, and they 

require serious hardware infrastructure for safe storage and general handling. 

Batch processing is the implementation of a sequence of procedures from batch data. This 

processing can be concluded or scheduled in the time period when the computing resources are less 

busy. Similarly, it evades wasting system resources with manual intercession and management, 

keeping high overall rate of utilization. It permits the system to use diverse processes for 

collaborating works and separation tasks, thus reducing the storage overhead and shifting 

bottlenecks. However, the batch processing also has numerous drawbacks, for example, users are 

unable to terminate a progression and must wait until the execution completes. 

With the new technologies that have dominated our lives over the last few years and especially 

with the constant rise of Internet sensors and actuators, the volume of data generated by devices is 

constantly increasing. The rising field of real-world implementations produces data streams at a 

cumulative percentage, needing large-scale and real-time processing. 

3.3. Stream Processing 

Data streams are endless data that are produced by multiple network infrastructures, such as 

sensors, IoT equipment, etc. A typical example for streaming data is the data that can be collected 

from network monitoring queries at high traffic rates. Streaming data should be handled in sequence 

and incrementally or over sliding time windows. Due to their reliance on strict time constraints and 

their more general availability, they are selected for detailed and specialized data processing 

techniques that can lead to multiple levels of revelation of the hidden knowledge they may contain. 

In addition, these data need to be processed without accessing all the rest of the data. In addition, it 

should be considered that concept drift may occur in the data, which means that the stream properties 

may transform and alternate over time. It is frequently used in big data projects, in which data 

streams are quickly produced by several dissimilar sources. 

Streaming data and data generated by dynamic environments have lead to some of the most 

robust research areas of the new era. stream processing techniques are used by machine learning 

applications on data streams for real time analysis and knowledge extraction under displacement 

and feedback environments. 

In the case of stream processing techniques by machine learning, the algorithms are controlled 

by a variety of possible shifting modes and constraints related to memory consumption, resource 

limitation and processing time. In this category, the available data are scaled in a sequential order 

and used for training and forecasting by calculating the error in each iteration. The aim of the 

algorithms in this category is to minimize the cumulative error for all iterations. We consider that the 
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intention of supervised learning using the square loss function is to minimize the empirical error 

calculated by the following function [39]: 

��[�] = � ��〈�, ��〉, ���

�

���

= ����
�� − ���

�
�

���

  (1) 

where �� ∈ ��, � ∈ �� and �� ∈ �. Let there be a data table of Χ� × � and a target values table of 

dimensions Υ� × 1 as they are defined after the entrance of the first i data points. 

Let us suppose that the covariance table �� = ��� is reversible, and �∗(�) = 〈�∗, �〉 is the ideal 

result for the linear least squares problem, as shown in Equation (2): 

�∗ = (���)����� = ��
�� � ����

�

���

 (2) 

The calculation of the table �� = ∑ ��
�
��� ��

�  has a time complexity of �(���). Reversing the 

� × � table has a time complexity of �(��), whereas the rest of the multiplication requires time 

complexity of �(��), producing an overall complexity of �(��� + ��).  If we consider that n is the 

set of points in the dataset � = 1,2, … , � and it is essential to recalculate the result after the arrival of 

each new data vector, we obtain a total complexity �(���� + ���) [39,40]. 

It is important here to mention that a machine learning stream processing is appropriate in cases 

where it is required to dynamically adapt the procedure to new standards or data, or when the 

streams are produced as a function of time, as in the case of the research of the adversarial attacks. 

3.4. The Proposed Approach 

The need to extract information from extensive networking flows in real time is a big data 

challenge, such as those that re-established the prototyping architectures of big data. Big data 

architectures include mechanisms for ingesting, protecting, processing, and transforming data into 

big data structures. In addition, these architectures typically comprise an examination of data lakes 

(batch processing), real-time analyses (streaming processing), predictive analytics from unstructured 

data and machine learning tools that analyze data with low latency [31]. 

The analysis of very large volumes of data is time consuming and cannot be completed in real 

time. Abundant data storage that works with the entire dataset to store the results of the queries for 

future use is frequently required. One serious disadvantage to this method is that it introduces 

latency. 

The lambda architecture faces this problem by producing two pathways for data flow. A batch 

layer (cold path) includes all inbound data in their raw format and achieves batch processing on the 

data. The outcome of this analysis is stored and deposited as a batch view. In addition, a speed layer 

(hot path) analyzes unbounded streams of data in real time. The hot path is planned for low latency, 

at the expense of accuracy [32]. Figure 1 is a depiction of the lambda architecture. 
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Figure 1. Lambda architecture (www.ericsson.com). 

The lambda architecture has been designed to balance latency, throughput, and fault tolerance 

using the cold path to provide complete and accurate views of historical data. At the same time, it 

uses the hot path to provide real time data stream analysis of new inputs. Finally, an additional 

element that enhances the process and adds accuracy in the entire model is that the two projection 

outputs can be joined before the final data presentation or the final decision. 

The algorithmic approach of the λ-NF3 in the first phase includes the feature extraction 

procedure from network flow. In the second phase, these features are analyzed by both classifiers to 

minimize the possibility of being deceived by adversarial attacks. Both results are merged with a bias 

to the cold path (batch processing) because it allows good audit trail, although the real-time 

processing is more difficult for auditing. 

A depiction of the λ-NF3 process is shown in Figure 2. 
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Figure 2. The algorithmic process of the proposed λ-NF3. 

The first investigation is whether the traffic is normal or abnormal (network traffic analysis). If 

the traffic is abnormal, it will be further analyzed (malware traffic demystification) for the purpose 

of identifying the specific abnormality (botnet, crimeware, Advanced Persistent Threat (APT) attack, 

CoinMiner, etc.). Besides, if the traffic is normal, it will be further analyzed to inspect whether the 

application or protocol uses non-encrypted traffic ( File Transfer Protocol (FTP), Hypertext Transfer 

Protocol (HTTP), Domain Name System (DNS), Simple Mail Transfer Protocol (SMTP), etc.) or 

encrypted traffic (encrypted traffic identification), as well as which protocol that it uses (The onion 

router (Tor), Secure Shell (SSH), Secure Sockets Layer Web (SSLweb), Secure Sockets Layer Peer-to-

Peer (SSLP2P), Secure Copy Protocol (SCP), Skype, etc.). 

A depiction of the classification process of the proposed λ-NF3 is presented in the following 

Figure 3. 
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Figure 3. The classification process of the proposed λ-NF3. 

The overall process is presented in Algorithm 1. 

Algorithm 1 The λ-NF3 Algorithm 

Inputs: Input new network traffic data Dl 

 Step 1: % Features Extraction 

  Feature extraction from network flow 

 Step 2: % Make a prediction 

  Use the pretrained ELM-RBF classifier using Dl to produce the prediction Ml 

  Use the streaming SAM/k-NN classifier using Dl to produce the prediction M2 

  Assign weights of 0.60 to Ml 

  Merge the two predictions Ml and M2 into M 

Output from traffic analysis: 

 if Abnormal 

  Malware Traffic Demystification 

  for a class label Botnet, Crimeware, APT, Attack, CoinMiner 

 else 

  if Encrypted 

   Encrypted Traffic Identification 

   for a class label Tor, SSH, SSLweb, SSLP2P, SCP, Skype 

  else 

   for a class label FTP, HTTP, DNS, SMTP 

  end if 

 end if 

Outputs: Class label for each new data D1 

4. Methodology 

The λ-NF3 was developed by employing a general concept of coupling different types of 

sophisticated algorithms with significant diversity in their operation and configuration mode, with 
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different architectures, requiring different realizations, hyper-parameter settings and training 

techniques. These algorithms are presented below. 

4.1. Extreme Learning Machines for Batch Data 

An ELM is a type of Single-Hidden Layer Feed Forward Neural Network (SLFFNN) [41] with N 

hidden neurons. The most impressive characteristic of the ELMs is the fact that the input weights and 

the bias in the hidden layer are assigned randomly [42]. In addition, an ELM can precisely learn K 

samples, thousands of times greater [43] than a back-propagation feed forward neural network 

because parameters such as stopping criterion, learning rate and learning epochs do not need to be 

tuned. 

The mathematical background of the ELM is presented in [41–43]. Generally, the input data in 

an ELM is related to a random L future space with a training set N, where (��, ��), � ∈ ⟦1, �⟧ with 

 �� ∈ �� and  �� ∈  ��. The output is calculated as follows [41–43]: 

��(�) = � ��ℎ�(�) = ℎ(�)�  

�

���

  � ∈ ⟦1, �⟧ (3) 

Vector matrix � = [��, … , ��]� is the outcome that includes the weight matrix from the hidden 

and output layers. ℎ(�) = [��(�), … , ��(�)] is the outcome of the hidden layer for the input x, and 

��(�) is the outcome of the ith neuron. If {(��, ��)}���
�  is a training set, then �� = �, where � =

[��, … , ��]�  is learning problem with T the outcome and H the hidden layer of an ELM that is 

calculated as follow: 

����, ��, ��� = �
�(���� + ��) ⋯ �(���� + ��)

⋮ ⋱ ⋮
�(���� + ��) ⋯ �(���� + ��)

�
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This research uses ELM/GRBFK. The Gaussian kernel is as follows: 

K(u, v) = exp(−γ||u − v||2) (5) 

ELM is an important approach for handling and analyzing big data as it requires the minimum 

training time relative to the corresponding engineering learning algorithms; it does not require fine 

manipulations to determine its operating parameters; and it can determine appropriate output 

weights towards the most effective resolution of a problem. Most importantly, they have the potential 

to generalize, in contrast to corresponding methods that adjust their performance based solely on 

their training dataset. It is also obvious that the emerging use of ELM in big data analysis creates 

serious prerequisites for complex systems’ development by low cost machines. 

4.2. kNN Classifier with Self Adjusting Memory for Streaming Data 

The SAM/k-NN is an artificial intelligence algorithm that is biologically inspired from multiple 

human memory systems, specifically short- and long-term memory [44]. Short-Term Memory (STM) 

is the capacity for holding, but not manipulating, a small quantity of information for a short time 

period. It is defined in contrast to Long-Term Memory (LTM) that is the stage of the memory model 

where informative knowledge is held indefinitely. 

Recurrent reactivations are the primary mechanism that encode the memory information 

culminating in the spreading of information to supplementary locales and integration of new 

knowledge. Generally speaking, information from STM are conveyed to LTM in the process of the 

transformation over time of knowledge, which is called memory consolidation. For instance, once 

someone learns how to ride a bike, it is never forgotten because it is stored within the LTM, making 

it impossible to be lost. The SAM architecture is partly inspired by this model. For example, the 

general statement of new inputs (streaming data) is more related for current estimates that can be 

associated with temporal trends or time-based events. On the other hand, the batch processing from 

historical data can lead to much better prediction results, while offering generalization. 

The SAM architecture is described in Figure 4. 
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Figure 4. SAM architecture. 

Memories are represented by the sets MST, MLT and MC. Each memory is a subset of 

�� × {1, … , �}  with different length that fluctuates throughout the adjustment procedure. STM 

signifies the present idea and is an active sliding window that contains the most recent samples m of 

the data streams [44]: 

��� = {(��, ��) ∈ �� × {1, … , �} |� = � − � + 1, … , �} (6) 

The LTM includes all previous information that is not opposing those of the STM. Different from 

the STM, the LTM is a set of p points: 

��� = {(��, ��) ∈ �� × {1, … , �} |� = 1, … , �}     (7) 

The union of both memories is called Combined Memory (CM) and defined as: 

MC = MST∪MLT  (8) 

Every set induces a distance weighted k-NN classifier: 

�� × {1, … , �}, ������
, ������

, �����
    (9) 

The function of the kNN algorithm has the aim of assigning a class-label for a given data-point 

x based on a set � = {(��, ��) ∈ �� × {1, … , �} |� = 1, … , �}: 

����(�) = ������ � �
1

�(��, �)
��∈��(�,�)|����̂

|�̂ = 1, . . , �� (10) 

where �(��, �)  is the Euclidean distance between two data points and ��(�, �)  returns the k nearest 

neighbors of x in Z. The SAM/k-NN model was introduced by Losing et al. [44]. 

The implementation of this algorithm as a data stream categorization model is based on the 

general assumption that new data are more relevant to current forecasts, but prior knowledge is 

required to properly rank them. The optimal combination of the two processing levels can minimize 

errors and increase classification precision. The implementation of this model, which provides 

knowledge transfer potential, is an effective and real time forensics tool to cyber or adversarial attacks 

identification. 
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5. Data 

The detailed extraction process [45] that includes the appropriate features, which can identify 

network attacks from the network flow, is analytically described in [46]. It should be noted that this 

extraction procedure is also enriched by some innovative representation practices for data structures 

and alteration that introduce the Pandas tool for data manipulation in Python. 

The Network Traffic Analysis (NTA) binary dataset that contains of 30 independent variables 

and 2 classes (normal or abnormal); the Demystification of Malware Traffic (DMT) multiclass dataset 

that contains 30 independent variables and 5 malware classes (Botnet, Crimeware, APT, Attack and 

CoinMiner); the Encrypted Traffic Analysis (ETI) binary dataset that includes 30 independent 

variables and 2 classes (encrypted or non-encrypted); the Encrypted Traffic Identification (EnTI) 

multiclass dataset that encompasses 30 independent variables and 6 classes that represent encrypted 

protocols (Τοr, SSH, SSLweb, SSLP2P, SCP, and Skype); and the Unencrypted Traffic Identification 

(UTI) multiclass dataset that comprises 30 independent variables and 4 classes of unencrypted 

network protocols (FTP, HTTP, DNS, and SMTP), were determined to create extremely complex 

situations that can potentially include the most likely cases that can be detected in a network 

infrastructure and that are suitable to train the proposed λ-NF3 [47]. 

The full list of the 30 data features is detailed in Table 1. 

Table 1. Data Features. 

ID Name Interpretation 

1 srcip The source IP address of the flow.  

2 srcport The source port number of the flow. 

3 dstip The destination IP address of the flow. 

4 dstport The destination port number of the flow. 

5 total_fpackets The total number of packets travelling in the forward direction. 

6 total_bpackets The total number of packets travelling in the backward direction. 

7 min_fpktl The minimum packet length (in bytes) from the forward direction. 

8 max_fpktl The maximum packet length (in bytes) from the forward direction. 

9 min_bpktl The minimum packet length (in bytes) from the backward direction. 

10 max_bpktl The maximum packet length (in bytes) from the backward direction. 

11 min_fiat The minimum interarrival time (in microseconds) between two packets. 

12 max_fiat The maximum interarrival time (in microseconds) between two packets. 

13 min_biat The minimum interarrival time (in microseconds) between two packets. 

14 max_biat The maximum interarrival time (in microseconds) between two packets 

15 duration The time elapsed (in microsec) from the first packet to the last packet. 

16 min_active The minimum duration (in microseconds) of a sub-flow. 

17 max_active The maximum duration (in microseconds) of a sub-flow. 

18 min_idle The minimum time (in microseconds) the flow was idle. 

19 max_idle The maximum time (in microseconds) the flow was idle. 

20 sflow_fpackets The average number of forward travelling packets in the sub-flows. 

21 sflow_fbytes The average number of bytes, travelling in the forward direction. 

22 sflow_bpackets The average number of backward travelling packets in the sub-flows. 

23 sflow_bbytes The average number of bytes, travelling in the backward direction. 

24 fpsh_cnt 
The number of times the PSH flag was set for packets travelling in the 

forward direction. 

25 bpsh_cnt 
The number of times the PSH flag was set for packets travelling in the 

backward direction. 

26 furg_cnt 
The number of times the URG flag was set for packets travelling in the 

forward direction. 

27 burg_cnt 
The number of times the URG flag was set for packets travelling in the 

backward direction. 
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28 total_fhlen 
The total header length (network and transport layer) of packets 

travelling in the forward direction. 

29 total_bhlen 
The total header length (network and transport layer) of packets 

travelling in the backward direction. 

30 dscp Differentiated services code point, a field in the IPv4 and IPv6 headers. 

31 label Class 

The detailed collection procedure is analytically described in [48]. 

6. Results 

In all simulations, the testing hardware and software conditions are listed as follows: Laptop 

Intel-i7 2.4 G CPU, 16 G DDR3 RAM, Ubuntu 18.04 LTS, Anaconda Python Data Science Platform 

and TensorFlow Python environment.  

6.1. Batch Data Classification Performance 

The classification performance in the batch process was measured by the development of a 

Confusion Matrix (CM) and then calculating the True Positive Rate (TPR), the True Negative Rate 

(TNR) and the Total Accuracy (TA), as defined by Equations (11)–(13), respectively [49,50]: 

TPR =
TP

TP + FN
 (11) 

TNR =
TN

TN + FP
 (12) 

TA =
TP + TN

N
 (13) 

In addition, the Precision (PRE), Recall (REC) and F-Score indices allowed the distinctive and 

irrefutable evaluation of the model. These matrices are defined in Equations (14)–(16), respectively 

[49,50]: 

PRE =
TP

TP + FP
 (14) 

REC =
TP

TP + FN
   (15) 

F − Score = 2X
PRE X REC

PRE + REC
 (16) 

Ten-fold cross validation (10_FCV) was employed to measure performance indices. Tables 2–6 

present the outcomes of the λ-NF3 method and the equivalent results from competitive algorithms 

(Support vector Machine (SVM), Multi-Layer Artificial Neural Network (MLFF) ANN, k-Nearest 

Neighbor (k-NN) and Random Forest (RF)). 

Table 2. Comparison between algorithms. 

Network Traffic Analysis (Binary) (208.629 Instances) 

Classification Accuracy and Performance Metrics 

Classifier TA RMSE Precision Recall F-Score ROC Area Time 

SVM 98.01% 0.1309 0.980 0.980 0.980 0.980 273.6 s 

MLFF ANN 98.13% 0.1295 0.981 0.981 0.981 0.994 300.2 s 

k-NN 96.86% 0.1412 0.970 0.970 0.970 0.970 100.7 s 

RF 97.12% 0.1389 0.972 0.971 0.971 0.971 72.2 s 

ELM/GRBFK 97.78% 0.1322 0.977 0.977 0.977 0.977 1.9 s 

Table 3. Comparison between algorithms. 
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Demystification of Malware Traffic (Multiclass) (168.501 Instances) 

Classification Accuracy and Performance Metrics 

Classifier TA RMSE Precision Recall F-Score ROC Area Time 

SVM 96.63% 0.1509 0.967 0.967 0.968 0.970 101.1 s 

MLFF ANN 96.50% 0.1528 0.981 0.981 0.981 0.965 148.3 s 

k-NN 94.95% 0.1602 0.970 0.970 0.970 0.950 61.8 s 

RF 95.91% 0.1591 0.972 0.971 0.971 0.960 38.7 s 

ELM/GRBFK 96.59% 0.1523 0.970 0.980 0.975 0.975 0.91 s 

Table 4. Comparison between algorithms. 

Encrypted Traffic Analysis (Binary) (166.874 Instances) 

Classification Accuracy and Performance Metrics 

Classifier TA RMSE Precision Recall F-Score ROC Area Time 

SVM 98.99% 0.1109 0.989 0.990 0.990 0.990 91.5 s 

MLFF ANN 99.12% 0.1086 0.998 0.998 0.998 0.998 116.6 s 

k-NN 97.84% 0.1372 0.975 0.975 0.978 0.980 59.2 s 

RF 98.96% 0.1107 0.989 0.989 0.989 0.990 40.1 s 

ELM/GRBFK 99.20% 0.1056 0.990 0.990 0.990 0.990 0.88 s 

Table 5. Comparison between algorithms. 

Encrypted Traffic Identification (Multiclass) (214.155 Instances) 

Classification Accuracy and Performance Metrics 

Classifier TA RMSE Precision Recall F-Score ROC Area Time 

SVM 90.31% 0.1906 0.905 0.905 0.906 0.950 288.9 s 

MLFF ANN 92.67% 0.1811 0.930 0.930 0.928 0.960 312.5 s 

k-NN 85.19% 0.2032 0.890 0.890 0.890 0.935 100.9 s 

RF 91.56% 0.1800 0.920 0.916 0.916 0.930 78.6 s 

ELM/GRBFK 92.65% 0.1813 0.930 0.930 0.930 0.955 2.28 s 

Table 6. Comparison between algorithms. 

Unencrypted Traffic Identification (Multiclass) (186.541 Instances) 

Classification Accuracy and Performance Metrics 

Classifier TA RMSE Precision Recall F-Score ROC Area Time 

SVM 99.92% 0.1003 0.999 0.999 0.999 0.999 119.5 s 

MLFF ANN 99.91% 0.1008 0.999 0.999 0.999 0.999 162.9 s 

k-NN 98.98% 0.1020 0.989 0.989 0.990 0.995 82.7 s 

RF 99.93% 0.1001 0.999 0.999 0.999 0.999 51.5 s 

ELM/GRBFK 99.94% 0.1000 0.999 0.999 0.998 0.999 1.84 s 

The proposed ELM/GRBFK algorithm seems to have a slightly better performance across all 

datasets, compared to the other methods but the proposed batch processing approach is hundreds of 

times faster. Thus, the proposed method is appropriate for big data analytics. 

6.2. Streaming Data Classification Performance 

The analysis of data streams is a specialized machine learning problem that requires specific 

metrics to measure the accuracy. The Kappa statistic [51] is the most reliable measure to benchmark 

the accuracy in streaming data classification. It measures the arrangement between two raters who 

each classify N items into C equally classes. The explanation of κ is [52]: 

� =
�� − ��

1 − ��
= 1 −

1 − ��

1 − ��
      (17) 
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where po is the comparative observed arrangement between raters (equal to accuracy) and pe is the 

supposed likelihood of chance arrangement, via the observed data to estimate the likelihoods of each 

observer arbitrarily seeing each class. If the raters are in complete agreement, then κ = 1. If there is no 

agreement, κ ≈ 0. 

Due to the a temporal dependences in data streams, the Kappa-Temporal statistic was used [51]: 

�� =
� − ����

1 − ����
 (18) 

where pper is the accuracy of the persistent classifier. 

The Kappa-Temporal statistic take values within [1, −∞]. If the classifier is seamlessly accurate, 

then κper = 1. In other cases, the κper = 0. If κper < 0, the reference classifier is performing worse than the 

baseline classifier [51]. 

Tables 7–11 presents the results of the scenarios applied on streaming data in this research and 

the equivalent results from competitive methods (Hoeffding Adaptive Tree (ΗΑΤ) [52] and primal 

estimated sub-gradient solver for support vector machine (SPegasos) [53]). The learning estimation 

used 10,000 instances. Prequential evaluation method was used [54]. The training windows used 

were 5000 and 1000 instances. 

Table 7. Comparison between algorithms. 

Network Traffic Analysis 

Performance Metrics 

Classifier 
Window Size 5000 Window Size 1000 

Kappa Stat Kappa Temp Stat Kappa Stat Kappa Temp Stat 

SAM/k-NN 76.90% 77.96% 88.12% 89.64% 

ΗΑΤ 76.87% 77.95% 84.55% 86.19% 

SPegasos 76.89% 77.29% 85.02% 87.38% 

Table 8. Comparison between algorithms. 

Demystification of Malware Traffic 

Performance Metrics 

Classifier 
Window Size 5000 Window Size 1000 

Kappa Stat Kappa Temp Stat Kappa Stat Kappa Temp Stat 

SAM/k-NN 77.02% 78.10% 83.24% 84.36% 

ΗΑΤ 77.06% 78.12% 83.20% 84.01% 

SPegasos 77.00% 78.01% 83.02% 84.18% 

Table 9. Comparison between algorithms. 

Encrypted Traffic Analysis 

Performance Metrics 

Classifier 
Window Size 5000 Window Size 1000 

Kappa Stat Kappa Temp Stat Kappa Stat Kappa Temp Stat 

SAM/k-NN 79.00% 79.94% 86.39% 87.76% 

ΗΑΤ 78.96% 79.91% 82.11% 83.81% 

SPegasos 78.98% 79.89% 82.68% 83.52% 
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Table 10. Comparison between algorithms. 

Encrypted Traffic Identification 

Performance Metrics 

Classifier 
Window Size 5000 Window Size 1000 

Kappa Stat Kappa Temp Stat Kappa Stat Kappa Temp Stat 

SAM/k-NN 77.11% 77.54% 84.05% 85.18% 

ΗΑΤ 77.02% 77.35% 80.89% 81.23% 

SPegasos 77.03% 77.36% 83.14% 84.16% 

Table 11. Comparison between algorithms. 

Unencrypted Traffic Identification 

Performance Metrics 

Classifier 
Window Size 5000 Window Size 1000 

Kappa Stat Kappa Temp Stat Kappa Stat Kappa Temp Stat 

SAM/k-NN 76.70% 77.87% 83.91% 85.22% 

ΗΑΤ 76.67% 77.86% 81.08% 81.92% 

SPegasos 77.15% 77.95% 82.50% 83.04% 

The proposed SAM/k-NN algorithm outperforms the other algorithms by having smaller error 

rates. More important is that the method produces highly accurate results without non-recurring 

problems of indeterminate cause because all datasets are better handled. In addition, one of the key 

advantages that is ascertained from results is kappa reliability, which can be considered as the 

outcome from the data editing allowing the conservancy of more relevant data for upcoming forecast. 

The kappa reliability is presented in the following Table 12. 

Table 12. Kappa reliability. 

Kappa Reliability 

0.00 no reliability 

0.1–0.2 minimum 

0.21–0.40 little 

0.41–0.60 moderate 

0.61–0.80 important 

≥0.81 maximum 

As shown in Table 12, the kappa reliability of the proposed SAM/k-NN algorithm is 

characterized as “important” in all experiments with windows size 5000 instances and “maximum” 

with windows size 1000 instances. The results of SAM/k-NN are meaningfully better on the small 

window because samples of previous instances disappear more quickly with the smaller window 

and, therefore, less frequently reverse the present concept in the situation of real drift. This proves 

that the algorithm is highly suitable for applications with streaming process because it is robust to 

noisy data such as drifting data streams. 

7. Conclusions 

7.1. Innovation 

The most important novelty of λ-NF3 is the proposal of the construction of a NGC2SOC [48] that 

uses cognitive analytics systems and sophisticated artificial intelligence tools to face real time cyber 

security incidents with minimal human intervention. In addition, an innovation of the λ-ΝF3 method 

is the use of the proposed lambda architecture. This framework uses a versatile and efficient 

intelligent-driven algorithm for batch processing and a novel evolving learning mechanism for 

streaming process, to solve an extremely complicated cybersecurity problem. 
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A basic innovation of this methodology is the combination for the first time in a hybrid machine 

learning framework the ELM/GRBFK and SAM/k-NN algorithms. The combination offers high 

learning speed, ease of execution, minimal human involvement and minimum computational power 

and resources for network traffic analysis, demystification of malware traffic and encrypted traffic 

identification. 

Finally, the datasets, developed after protracted and extensive investigation on the network 

protocols, work in the lower layers (transport, network and data) and the higher layers (session, 

presentation and application) of the system. It is important also to note that the dataset is developed 

after evaluations concerning the restrictions of their characteristic performance of those protocols and 

the purpose of their normal or abnormal behavior in a real networking environment. 

7.2. Discussion 

An advanced, dependable and highly effective cybersecurity system, using machine learning 

principles, is presented in this research paper. It is an appropriate tool for big data applications with 

many data streams in situations where signature-based approaches are computationally infeasible. 

The development of λ-ΝF3 is based on the Lambda Architecture approach. This architecture can 

handle enormous quantities of data in real-time using an ideal combination of two machine learning 

algorithms for batch and data stream. Specifically, it uses batch process to provide complete and 

accurate views of historical data and real time data stream processing to provide views of new inputs. 

The final decision comes from the two joined outputs. 

The λ-ΝF3 is an adaptive analytic framework for efficient defense against adversarial attacks 

and proposed for the NGC2SOC. This intelligence-driven method, from which hopeful outcomes 

have emerged, creates a reliable advanced application for the tactic of improved cyber security 

infrastructures. Moreover, this implementation follows a reactive cyber security strategy for dealing 

with adversarial attacks, as it combines training of two opposite classifiers to detect incoming 

anomalies and to discard them. Training is done by using sophisticated real datasets that respond to 

realistic situations. The operating scenarios proposed with the combination of batch and streaming 

data createabilities for a fully-defined configuration of model parameters and for high-precision 

classification or correlation. Finally, the application of artificial intelligence on digital recording 

machines, aiming to recognize adversarial attacks with machine learning, enhances and simplifies 

the cyber defense and it introduces new perspectives in the management of cyber security policies. 

The proposed system was tested and evaluated on real-world datasets of high complexity that 

emerged after extensive research on network behavior. The remarkable results and the generalization 

of the system meaningfully support the proposed methodology, although the degree of difficulty and 

realism that has been added has formed multifactorial questions of exhaustive examination and 

reproduction. 

The evaluation of the proposed method was carried out by thoroughly presenting and quoting 

the metrics that can determine the classification accuracy of the algorithms. The broad application of 

the proposed technique, which minimizes the cost of the cyber-attacks, is a prerequisite for the 

establishment of a NGC2SOC, aiming at the cyber security and protection of organizations and 

critical infrastructures. 

7.3. Future Work 

Future enquiry could include the proposed model under a novel structure that would combine 

semi-supervised approaches and online incremental learning for the identification of hidden patterns 

between unstructured data types included in network traffic. In addition, λ-ΝF3 could be improved 

towards further enhancing the constraints of the algorithm used by the Lambda architecture, so that 

an even more efficient, more accurate, and faster prediction procedure is achieved. An adapted 

visualization that can merge into the proposed λ-NF3 would further assist NGC2SOC operators in 

handling cybersecurity incidents. Multi-format depictions may support a C2 system with advanced 

reports and representations that enhance the overall decision mechanism. Moreover, it would be 

significant to study the development of this certain framework by applying lambda architecture in a 
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parallel and distributed environment such as hadoop. Finally, an additional component that could 

be considered as a future extension concerns the procedure of λ-ΝF3 with approaches of self-

improvement and meta-learning to fully automate the defense against adversarial attacks. 
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