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Abstract

The component-hypertree is a data structure that generalizes the concept of component-tree to multiple (increasing)
neighborhoods. However, construction of a component-hypertree is costly because it needs to process a high number
of neighbors. In this article, we present some properties used to obtain optimized neighborhoods for component-
hypertree computation. Using these properties,we explore a new strategy to obtain neighboring elements based on
hierarchy of partitions, leading to a more efficient algorithm with the drawback of a slight loss of precision on the
distance of merged nodes.
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1. Introduction

In the field of mathematical morphology, there exist
different ways of representing digital images. In partic-
ular, instead of relying only on the grid of pixels of an
image and the values associated with these pixels, alterna-
tive representations often aim at organizing the informa-
tion from spatial and structural points of view, via region-
based and connectivity-based paradigms.

Usually, such representations rely on graphs and hier-
archies of partitions. A well-known example is the bi-
nary partition tree, introduced by Salembier and Garrido
(2000). In this data structure, an initial partition of the
image is given and neighboring regions are then merged
together based on a predefined criterion, progressively
defining coarser partitions. This structure can be modeled
as a tree, where leaves give the initial partition whereas
the intermediate nodes show how the elements of these
partitions are merged.
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By contrast to the criterion-based binary partition tree,
another family of criterion-free hierarchical structures
has been proposed. The principal representative of this
family is the component-tree, introduced by Salembier
et al. (1998) and Jones (1999), and further generalized
into variants, e.g. the self-dual tree of shapes (Monasse
and Guichard, 2000) or the multivalued component-tree
(Kurtz et al., 2014). The component-tree is a lossless im-
age model, that represents a gray-level image as a hierar-
chy of connected components, based on the inclusion re-
lation of these connected components on the level sets of
the image. Component-trees gained widespread adoption,
thanks to the efficiency of algorithms dedicated to build
(Carlinet and Géraud, 2014) and process them (Jones,
1999; Guigues et al., 2006).

Although being criterion-free, the component-tree
presents two meta-parameters: (1) the order on the val-
ues of the image, and (2) the connectivity defined for
modeling the topological organization of the pixels. Re-
cent researches aimed at exploring the consequences
of relaxing the usual constraints on these both meta-
parameters. Regarding the order on values, a generaliza-
tion of component-trees to component-graphs was inves-
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tigated by turning the total order into partial ones (Passat
and Naegel, 2014); this also led to new results on tree of
shapes for multivalued images, proposed by Carlinet and
Géraud (2015).

Regarding connectivity, the usual way of spatially or-
ganizing pixels of an image consists of relying on the
standard adjacencies defined on Zd in the context of dig-
ital topology. Alternative strategies were developed, e.g.
by Ronse (1998); Serra (1998); Braga-Neto and Goutsias
(2002); Ronse (2014), leading to many types of connec-
tivities, expanding the notion of how regions connect in
digital spaces.

In the field of component-trees, two ways were con-
sidered for taking into account these new paradigms of
connectivity: first, by considering oriented connectivi-
ties (Perret et al., 2015); second, by considering fami-
lies of increasing connectivities, leading to the notion of
component-hypertrees (Passat and Naegel, 2011), which
are directed acyclic graphs (DAGs).

A component-hypertree is a forest composed of sev-
eral component-trees built from the same gray-level im-
age, but for many increasing connectivities. In addition
to the inclusion links between the nodes, within each
component-tree, a second series of inclusion links is de-
fined, between the nodes of the distinct component-trees,
leading to the organization of these nodes into a forest of
partition trees, namely one partition tree for each level set
of values. The set of all the nodes, endowed with these
two families of links, leads to a DAG.

In the field of hierarchical models, recent efforts were
geared towards the design of strategies that gather infor-
mation provided by several trees. Two kinds of strategies
are developed. The first consists of fusing the information
provided by various kinds of trees, leading to a final data
structure that remains a tree (Perret et al., 2018; Randri-
anasoa et al., 2018). The second consists of building more
complex data structures that explicitly preserve the infor-
mation obtained from several trees, leading to final data
structures that are no longer trees. This is, for instance,
the case for braids of partitions (Kiran and Serra, 2015;
Tochon et al., 2019) but also for component-hypertrees.

Perhaps due to the higher complexity of their structure,
component-hypertrees are not as widely adopted com-
pared to other tree structures. In recent years, some stud-
ies regarding efficient storage of component-hypertrees
have been carried out by Morimitsu et al. (2019b). It

was shown that some properties of component-hypertrees
allow one to take advantage of standard component-tree
construction algorithms and to adapt them for perform-
ing efficient allocation of nodes and arcs of a component-
hypertree (by avoiding redundancies). In addition, at-
tribute computation in such optimized structures was in-
vestigated by Morimitsu et al. (2019a).

In terms of component-hypertree construction, the orig-
inal work proposed by Passat and Naegel (2011) re-
lied on an algorithm for component-tree construction us-
ing mask-based connectivity (Ouzounis and Wilkinson,
2007). More recently Morimitsu et al. (2015) proposed
a family of dilation-based connectivities that present spe-
cific properties well-fitted for accelerating the computa-
tion of component-hypertrees compared to the more gen-
eral mask-based approach.

In this article, we intend to further explore these con-
cepts, by showing how properties of some known al-
gorithms used for component-tree computation can be
used to obtain optimized choices of neighborhoods for
component-hypertree construction. Based on these prop-
erties, we also present a novel strategy for obtaining
neighborhoods based on hierarchies of partitions, that al-
low for the development of even faster algorithms, at the
cost of a loss of precision in terms of distance of merged
components.

In Section 2, we review the background notions re-
quired for understanding the proposed approach. In
Sections 3 and 4, we describe component-trees and
component-hypertrees. Our main contributions are in
Section 5, where, based on properties of an algorithm pre-
sented in Section 4, we propose a strategy for obtaining
optimized neighborhoods that speed up the hypertree con-
struction algorithm. Then, we explain how the dilation-
based strategy presented by Morimitsu et al. (2015) are
related to this approach and present the novel strategy for
efficiently obtaining neighboring pixels based on a pyra-
midal hierarchy of partitions. In Section 6, we discuss
the advantages and drawbacks of each strategy, based on
complexity analysis and experiments. Conclusion and
perspectives are presented in Section 7.
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2. Background Notions

2.1. Images
Let D f ⊂ Zd (d > 0) be a nonempty set. Let K =

{0, . . . ,K − 1} ⊂ N, with K > 0. A gray-level image f is
a function f : D f → K. Any element p ∈ D f is called
a pixel. For any pixel p ∈ D f , the value f (p) denotes the
gray-level of p.

If K = 2, then f is a binary image. Any binary image
can be defined by the set X = {p ∈ D f | f (p) = 1}. Given
a value λ ∈ K, the upper level set of f at level λ is defined
as Xλ( f ) = {p ∈ D f | f (p) ≥ λ}.

A neighborhood relation (or simply, neighborhood) is
defined as a set A ⊆ D f × D f . For any pair of pixels
(p, q) ∈ A, we say that the pixel q is a A-neighbor (or
simply, a neighbor) of the pixel p. A neighborhoodA is a
symmetric neighborhood if (p, q) ∈ A ⇒ (q, p) ∈ A and
vice-versa.

A structuring element (SE) S ⊂ Zd is a set of offsets.
Given a set P ⊂ Zd and an SE S, the dilation of P by S,
denoted by P ⊕ S, is defined as the Minkowski addition
P ⊕ S = {p + s | p ∈ P, s ∈ S}. The reflection of an SE S,
denoted by S̆, is defined as S̆ = {−s | s ∈ S}. If S = S̆,
then we say that S is a symmetric SE. SEs can be used for
designing neighborhoods; given an SE S, we define the
set of neighboring pixelsA(S) as:

A(S) = {(p, q) | p ∈ D f , q ∈ ({p} ⊕ S) ∩D f } (1)

2.2. Graphs
A graph G is a pair G = (V, E), where V defines the set

of vertices of G and E ⊆ V × V is a binary relation that
defines the set of arcs of G. We consider directed graphs;
in other words, (v1, v2) ∈ E and (v2, v1) ∈ E are considered
to be different arcs. If (v1, v2) ∈ E ⇔ (v2, v1) ∈ E, then E
is a symmetric relation.

A graph G is a weighted graph if it is composed of a
triple G = (V, E, ω), where ω : V → R is a function that
assigns a numerical weight to each vertex.

Given a graph G, a subgraph G′ of G is a graph G′ =

(V ′, E′) such that V ′ ⊆ V and E′ ⊆ E. Given G and a set
V ′ ⊂ V , the vertex-induced subgraph G′ = (V ′, E′) is the
subgraph of G such that E′ ⊆ E is composed of all the
arcs (v1, v2) ∈ E satisfying v1, v2 ∈ V ′.

A path in a graph G = (V, E) is a sequence of vertices
(v1, . . . , vLP) such that every v j ∈ V (1 ≤ j ≤ LP) and
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Figure 1: At the top: a 1-dimensional gray-level image f composed of
six pixels, with a set of values K = {0, 1, 2, 3}. Below, from left to right:
the four level sets of f ; the component-tree of f ; and a graphical rep-
resentation of parent, which stores the max-tree of f . Each element
p ∈ D f is depicted as a circle (where larger circles indicate canonical
elements) and arcs represent the parenthood relation. The CCs (colored
rectangles) can be reconstructed from the subtrees rooted in the canoni-
cal elements.

every pair (v j, v j+1) ∈ E (1 ≤ j < LP). If a path starts
and ends at the same vertex, this path is called a directed
cycle. A graph without directed cycles is called a directed
acyclic graph (DAG).

From the notion of path, connectedness in graphs can
be defined. Let G = (V, E) be a graph. A vertex v ∈ V is
said to be connected to v′ ∈ V iff there exists a path from
v to v′ in G. If E is a symmetric relation, then v connected
to v′ implies that v′ is also connected to v. Given a sym-
metric relation E, a connected component (CC) in a graph
is defined as a maximal set of connected vertices and we
say a graph is connected if it has only one connected com-
ponent. (In this work, it suffices to define CCs only when
E is symmetric.)

2.3. Images as Graphs

Any gray-level image f can be represented by a
weighted graph (D f ,A, f ). In the sequel, we assume
that a gray-level image is defined as a connected weighted
graph with a symmetric neighborhood.

Let X ⊆ D f be (the foreground of) a binary image and
A ⊆ D f × D f a symmetric neighborhood. The set of
CCs of X induced by A (further called the A-CCs of X),
denoted by CC(X,A), is the set of the CCs of the graph
G = (X,A). For a gray-level image f , we define its set of
A-CCs as:

CC( f ,A) =

K−1⋃
λ=0

CC(Xλ( f ),A) (2)
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namely as the union of the A-CCs for all the binary im-
ages obtained from the successive thresholds of f .

2.4. Trees

If a graph G = (V, E) is such that |V | = |E| + 1 and if
there is a vertex vr ∈ V such that there exists a (unique)
path from v to vr, for every v ∈ V , then G is called a
(rooted) tree. Vertices of trees are also called nodes. In
particular, the node vr is called the root of the tree.

If (v1, v2) ∈ E, then v1 is a child of v2 and v2 is the
parent of v1. Given a node v ∈ V , we denote its parent
as par(v) . If v is the root, then par(v) if undefined and,
if v has no children, then v is called a leaf. If two nodes
v1, v2 ∈ V are such that v1 is connected to v2, then v1 is a
descendant of v2 and v2 in an ancestor of v1. Given a node
v ∈ V , its set of descendants is denoted by desc(v). The
depth of a node v is the number of arcs existing in the path
linking v to the root vr (where the depth of vr is 0).

Given a tree G = (V, E) and a node v ∈ V , the subtree
(of G) rooted in v consists of the subgraph G′ induced by
the set V ′ = {v} ∪ desc(v). A graph defined as the disjoint
union of one or more trees is called a forest.

2.5. Hypertrees

Let G = (V, E) be a DAG. We assume that E can be
partitioned into η > 0 nonempty subsets Ek (1 ≤ k ≤ η)
(i.e. with Ea∩Eb = ∅ for 1 ≤ a < b ≤ η and

⋃η
k=1 Ek = E),

and that the graphs Gk = (V, Ek) are forests.
In particular, for each node v ∈ V , there exists at most

one node vk ∈ V such that (v, vk) ∈ Ek. In this way, vk is
the parent of v with respect to Ek and we denote park(v) =

vk.
We say that G is a hypertree1 if, for any v ∈ V such that

park(v) exists for all 1 ≤ k ≤ η, we have, for all a , b:

para(parb(v)) = parb(para(v)) (3)

Note that, by setting η = 1, any tree is indeed a hypertree.

1The defined notion of hypertree may be different from the notion
commonly used in graph theory (namely, a hypergraph that admits a
host graph which is a tree). Here, the terminology of hypertree denotes
the definition of many sets of edges Ek , where the subgraph induced by
each Ek is a forest. In other words, a hypertree could be seen as a specific
collection of graphs.

3. Component-Trees and Component-Hypertrees

3.1. Component-Trees

Let f be a gray-level image, seen as a weighted graph
G( f ) = (V, E, ω) = (D f ,A, f ). The component-tree of
f is the tree CT = (VCT , ECT ) where VCT = {(C, λ) |
C ∈ CC(Xλ( f ),A), λ ∈ K} (see Eq. (2)), whereas ECT

is defined by the following relation:
(
(C1, λ1), (C2, λ2)

)
∈

ECT iff C1 ⊆ C2 and λ1 = λ2 + 1.
Component-trees can be efficiently stored using max-

trees, which are based on the union-find structure intro-
duced by Tarjan (1975). A max-tree can be stored in an
array, usually called parent, which consists of a mapping
D f → D f that can be viewed as a tree Tparent = (D f , E),
where (p, q) ∈ E ⇔ q = parent[p]. Since there is a di-
rect correspondence between these two notions, from now
on, terminology of trees are applied directly to the parent
arrays.

Given an array parent, a pixel p ∈ D f is canonical if p
is the root node pr or f (p) > f (parent[p]). The represen-
tative of p ∈ D f is the canonical element returned by the
function rep : D f → D f , defined as follows: rep(p) = p,
if p is canonical; or rep(p) = rep(parent[p]), otherwise.
Two pixels p, q ∈ D f are comparable in parent if and only
if one of these conditions is true: (1) rep(p) = rep(q); or
(2) rep(p) ∈ desc(rep(q)); or (3) rep(q) ∈ desc(rep(p)).

Let parent be an array satisfying the following prop-
erties: (1) for any p ∈ D f with p , pr, f (p) ≥
f (parent[p]); and (2) for any pair (p, q) ∈ A, p and q
are comparable. Then, we say that parent stores the max-
tree of f (using A) and any A-CC C of f is represented
by a canonical element r, where C = {r} ∪ desc(r). Con-
versely, if parent stores the max-tree of f (usingA), then
properties (1) and (2) above are true. See Fig. 1.

3.2. Component-Hypertrees

Let us assume that we no longer consider only one
neighborhood A, but a set of many increasing neighbor-
hoods {A1, . . . ,An} (n ≥ 1). We can build, for each
neighborhood Ai (1 ≤ i ≤ n), a specific component-tree
CTi = (VCTi , ECTi ). The graph G = (

⋃n
i=1 VCTi ,

⋃n
i=1 ECTi )

obtained by the union of these n component-trees is, by
construction, a forest.

We denote VHT =
⋃n

i=1 VCTi and E↑HT =
⋃n

i=1 ECTi . For
the sake of readability, a node of G is denoted as a triplet
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Figure 2: An example of a complete component-hypertree of the gray-
level 1-dimensional image from Fig. 1. Each node N = (C, λ, i) is rep-
resented by a rectangle, with C drawn inside each node. The vertical
disposition of the nodes indicates their gray-level λ whereas neighbor-
hood indices i give their horizontal disposition. Nodes with the same
color correspond to the same CC. Arcs from E↑HT are in black, whereas
arcs are from E→HT are in blue.

4

1

0 5

3

1 2

Figure 3: The component-hypertree obtained using an optimized ver-
sion of Alg. 1, which is a compact version of the complete component-
hypertree of Fig. 2. Numbered circles inside nodes indicate the stored
pixels.

(C, λ, i), which means that it corresponds to a binary con-
nected component C of the image f obtained at the level
set λ with a neighborhoodAi; in other words, we have:

VHT = {(C, λ, i) | C ∈ CC(Xλ( f ),Ai)), 0 ≤ λ < K, 1 ≤ i ≤ n}
(4)

Let us now assume that the neighborhoods Ai are in-
creasing, i.e., i ≤ j⇒ Ai ⊆ A j. and let (C, λ, i) be a node
of VHT , where λ ∈ K. It is plain that there exists a unique
node (C′, λ, i + 1) of VHT such that C ⊆ C′.

Based on this fact, one can build a second family of
edges, namely E→HT defined as:

E→HT = {((C, λ, i), (C′, λ, i+1)) | C ⊆ C′, 0 ≤ λ < K, 1 ≤ i < n}
(5)

which enriches the first family of edges:

E↑HT = {((C, λ, i), (C′, λ−1, i)) | C ⊆ C′, 0 < λ < K, 1 ≤ i ≤ n}
(6)

In particular, the graph (VHT , E→HT ) is a forest. In this for-
est, each node (C, λ, n) (0 ≤ λ < K) is the root of a specific
tree, and the nodes of this tree are all the nodes corre-
sponding to connected components included in C. More
precisely, at each gray-level λ, these nodes form a par-
tition of C, and these partitions are increasingly refined
from n down to 1.

We say that the component-hypertree is complete to
explicitly mention that it models all the nodes of VHT ,
via a multiset of connected components (which will no
longer be the case for optimized, compact variants of
component-hypertrees); see Fig. 2. It is plain that a com-
plete component-hypertree is a hypertree, with respect to
the characterization given in Eq. (3).

4. Algorithmics for Component-Hypertrees

Following the definitions and notations stated above, an
algorithm for (minimal) component-hypertree construc-
tion from f using A is given in Alg. 1. It iterates on the
neighborhood index i and allocates new nodes and arcs at
the end of each step 1 ≤ i ≤ n.

The connect procedure called in Alg. 1 is presented in
Alg. 2. It consists of a variation of the algorithm presented
by Ouzounis and Wilkinson (2007) for a parallel imple-
mentation of the max-tree. It receives twoAi-neighboring
pixels p, q and an array parent. Then, the array is up-
dated by modifying parenthood relations to make p and q
comparable (no changes are performed if p and q were al-
ready comparable) without invalidating previously exist-
ing comparability relationships. More specifically, the up-
dated parent satisfies the properties presented in Prop. 1:

Proposition 1. Let p, q be two non-comparable pixels in
parent. If parent ′ is the result of the connect procedure
when applied to the pair (p, q), then, the following prop-
erties are valid:

1. For any p′ ∈ D f that is not the root node (of par-
ent ’), f (p′) ≥ f (parent ′[p′]).

2. Comparability relationships are preserved, i.e.,
given two pixels p′, q′ ∈ D f such that p′ and q′ are
comparable in parent, then p′ and q′ are also com-
parable in parent ′.

3. Suppose p′ = p or p′ is an ancestor of p in parent
and suppose q′ = q or q′ is an ancestor of q in
parent. Then, p′ and q′ are comparable in parent ′.
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Algorithm 1 Component-hypertree construction.
1: procedure buildHypertree( f , A = (A1, . . . ,An))
2: for p ∈ D f do parent[p]← ∅; . i.e., not defined
3: for 1 ≤ i ≤ n do
4: for (p, q) ∈ Ai do
5: rP← rep(p), rQ← rep(q);
6: if f (rP) ≥ f (rQ) then
7: connect(parent, f , rP, rQ);
8: else connect(parent, f , rQ, rP);
9: Allocate nodes and arcs of the hypertree.

Let parenti denote the array parent at the end of step
i (1 ≤ i ≤ n) in Alg. 1. Thanks to the properties of
Prop. 1, to compute parenti, it suffices to call the con-
nect procedure for all pairs (p, q) ∈ Ai. When Line 9
is reached at step i, parenti stores the max-tree of f (us-
ing Ai) and the nodes and arcs of the hypertree can be
allocated. In summary, for each canonical element p, a
new node N = (p, f (p), i) is allocated. Then, for every
node N1 = (q, f (q), i − 1) with neighborhood index i − 1,
we allocate an arc from N1 to N2 = (rep(q), f (q), i) and,
for every canonical element p ∈ D f , we allocate the arc
((p, f (p), i), (parent[p], f (parent[p]), i)).

This step can be optimized if redundant nodes and
arcs are not allocated. This can be done by keeping
track of changes in the array at each step 1 ≤ i ≤ n:
if p is canonical in parenti and desc(p) is the same in
parenti−1 and parenti, then p represents a Ai−1-CC and
need not be allocated at step i, since a node represent-
ing it was already allocated at step i−1. Analogously, any
arc (p, parenti[p]) where both rep(p) and rep(parenti[p])
represent Ai−1-CCs need not be allocated at step i. Effi-
cient ways of implementing these optimizations can be
found in (Morimitsu et al., 2019b). An example of an op-
timized component-hypertree is given in Fig. 3.

5. Choice of Sets of Neighboring Pixels

The optimality of Alg. 1 depends on the choice of the
set of neighboring pixels. In particular, its complexity is
linked to the number of calls of Line 4. In other words,
Alg. 1 can be optimized if the number of calls of connect
is reduced.

Algorithm 2 connect procedure
1: procedure connect(parent, f , p1, p2)
2: if p1 , p2 then
3: parP1 ← rep(parent[p1]); . rep(∅) = ∅;
4: if parP1 , p2 then
5: if f (parP1) ≥ f (p2) then . f (∅) = −∞;
6: connect(parent, f , parP1, p2);
7: else
8: parent[p1]← p2;
9: connect(parent, f , p2, parP1);

For this purpose, given a gray-level image f and a in-
creasing sequence A = (A1, . . . ,An), we say that two
neighborhoods Ai and a A′i are equivalent iff, given
parenti−1, running Alg. 1 at step i with Ai or A′i both
produce an array parenti that stores the same max-tree.
Given a sequence A′ = (A′1, . . . ,A

′
n), A and A′ are equiv-

alent iff, for any 1 ≤ i ≤ n, Ai and A′i are equivalent,
and this implies that running Alg. 1 with A′ and A pro-
duces the same hypertrees. For some well-chosen types of
neighborhoods, it is possible to obtain optimized equiva-
lent sequences A′ that significantly reduce the complexity
of Alg. 1 (compared with A).

A possible strategy for obtaining those neighborhoods
is to build a neighborhood A′i ⊂ Ai without includ-
ing arcs (p, q) ∈ Ai when p and q are comparable in
parenti−1 (since they do not change the array when con-
nect is called), or when it is known that there exists an-
other pair (p′, q′) ∈ Ai that will make p and q become
comparable as a side effect of calling connect for (p′, q′).

More formally, suppose parenti−1 is given and there ex-
ist pixels p, p′, q and q′ ∈ D f such that, in parenti−1, the
following conditions are valid: (1) p and q are not com-
parable; (2) p′ ∈ desc(rep(p)); and (3) q′ ∈ desc(rep(q))
(note that this implies that p′ and q′ are also not com-
parable in parenti−1). Additionally, suppose (p, q) and
(p′, q′) ∈ Ai. Thanks to Prop. 1, calling connect to
(p′, q′) at step i of Alg. 1 also makes p and q compa-
rable in parenti. Hence, if connect is called for (p′, q′)
(i.e., the pair with greater depths in parenti−1, which is
the pair with higher gray-levels in a max-tree), then call-
ing connect for (p, q) is not needed, implying thatAi and
A′i = Ai \ {(p, q)} are equivalent. Besides, all pairs in
P × Q ⊆ Ai, where P (resp., Q) consists of pixels in the

6



path from p′ to the root node (resp., q′ to the root) are not
needed, with the exception of pair (p′, q′). Formally, this
idea is presented in Prop. 2.

Proposition 2. Suppose (1) Ai is a neighborhood; (2)
parenti−1 is given, with i > 1; (3) P × Q ⊆ Ai such
that P (resp., Q) is a subset of a path in parenti−1. If
(hp, hq) ∈ P × Q such that hp (resp. hq) is the element of
P (resp. Q) with the greatest depth in parenti−1, then Ai

andA′i = (Ai \ (P × Q)) ∪ {(hp, hq)} are equivalent.

Note that, for any pair of sets (P,Q) satisfying the con-
ditions of Prop. 2,A′i has up to |P×Q| −1 fewer elements
thanAi.

Although Prop. 2 seems to suggest a reduction of Ai

to A′i , some choices of neighborhoods provide efficient
ways of computingA′i directly. In the context of Prop. 2,
for any pair (P,Q) satisfying the specified conditions, only
the pair (hp, hq) needs to be added to A′. In the follow-
ing, we present some sequence of neighborhoods that can
benefit from this strategy.

5.1. Dilation-Generated Neighborhoods

In this section, we show how sequences of dilation-
generated neighborhoods (Morimitsu et al., 2015) are par-
ticular cases of neighborhoods that use the properties of
Prop. 2 to speed up hypertree construction. In essence,
these sequences can merge pixels at increasing distances,
using incremental dilations by small SEs to grow the
neighborhoods.

To explain it in more detail, a dilation-generated neigh-
borhood sequence A = (A1, . . . ,An) is built from a se-
quence of increasing SEs S = (S1,S2, . . . ,Sn), where
Ai = A(Si) (see Eq. (1)). The sequence S, in turn, is
built from another sequence of SEs B = (B1, . . . ,Bn) in
the following way: S1 = B1 ⊕ B̆1 and, for any 1 < i ≤ n,
Si = Si−1⊕Bi⊕B̆i or equivalently, Si =Wi⊕W̆i, where
Wi = B1 ⊕ . . . ⊕ Bi.

The main idea consists of building mappings, for 2 ≤
i ≤ n, Li−1 : D f ⊕Wi−1 → P(D f ) (where P(·) denotes
power set) in such a way that, for each r ∈ D f ⊕Wi−1, any
two distinct pixels in Li−1(r) are comparable in parenti−1
(i.e., Li−1(r) is a subset of a path in parenti−1). Supposing
that a pair (p, q) ∈ Ai with Li−1(p)×Li−1(q) ⊆ Ai is given,
based on Prop. 2, we define:

A′i = (Ai \ (Li−1(p) × Li−1(q))) ∪ {hi−1
p , hi−1

q }, (7)

where hi−1
p ∈ Li−1(p) and hi−1

q ∈ Li−1(q) have the greatest
depth in parenti−1. ThenAi andA′i are equivalent.

To build these mappings we note that, using dilation
properties, any two pixels p, q ∈ D f areA(Si)-neighbors
iff

(
{p} ⊕Wi

)
∩

(
{q} ⊕Wi

)
, ∅. Thanks to this property,

if we define Li(r) = {x ∈ D f | x ∈ {r} ⊕ W̆i}, for r ∈
D f ⊕Wi, we have

(
{p} ⊕Wi

)
∩

(
{q} ⊕Wi

)
, ∅ iff ∃r ∈

D f ⊕Wi : p, q ∈ Li(r). Thus, any pair of distinct pixels
in Li(r) are A(Si)-neighbors and for any (p, q) ∈ A(Si),
∃r ∈ D f ⊕Wi with p, q ∈ Li(r). Additionally, given any
r ∈ D f ⊕Wi, Li(r) =

⋃
x∈{r}⊕B̆i

Li−1(x). This implies that
p, q ∈ Li(r) iff ∃p′, q′ ∈ {r}⊕B̆i such that p ∈ Li−1(p′) and
q ∈ Li−1(q′).

With the mappings Li−1 built, we now analyze this
problem in the context of Alg. 1 and Prop. 2. Assum-
ing Alg. 1 is running and step i has just started, our goal
is to compute A′i equivalent to Ai to speed up the i-th
step, as follows: for all r ∈ D f ⊕ Wi, we compute all
combinations of p, q ∈ r ⊕ B̆i with p , q, and add the
pair (hi−1

p , hi−1
q ) to A′i (see Eq.(7)). In this way, the opti-

mization of Alg. 1 is performed at Line 4 by replacing the
neighborhoodAi withA′i .

In general, this strategy of buildingA′i and call connect
to its pairs is faster than processing all Ai-neighboring
pixels. A more detailed complexity analysis is provided
in Sec. 6. Furthermore, there are other optimizations and
technical details that were omitted here, since they are
more closely related to the choice of neighborhoods than
the properties of Prop. 2. For more details, the reader is
referred to (Morimitsu et al., 2015).

5.2. Neighborhoods Based on Hierarchies of Partitions
From now on, we present a novel strategy to obtain a

sequence of neighboring pixels A′ based on hierarchy of
partitions. This strategy can significantly reduce the com-
plexity of the hypertree building algorithm by employing
Prop. 2.

Let H = (H1, . . . ,Hn) be a hierarchy of partitions of
D f , i.e., each Hi is a partition of D f for 1 ≤ i ≤ n and,
for every element R of Hi, there exists an element R′ of
Hi+1 such that R ⊆ R′, i.e., the partition Hi refines the
partition Hi+1 for 1 ≤ i < n. In addition, we consider,

7



for each partition Hi, a region adjacency graph (RAG)
Gi = (Hi, Ei), where we say R,R′ ∈ Hi are adjacent iff
(R,R′), (R′,R) ∈ Ei (where Ei is a symmetric relation).
Thus, a RAG Gi = (Hi, Ei) induces a neighborhood Ai

in such way that, for any two distinct pixels p, p′ ∈ D f ,
we have (p, p′) ∈ Ai iff there exist R,R′ ∈ Hi such that
p ∈ R, p′ ∈ R′ and either R = R′ or (R,R′) ∈ Ei.

Depending on the choices of H and E = (E1, . . . , En),
it is possible to design efficient algorithms for hypertree
construction. In particular, let H and E be defined in such
a way that the following condition holds:

∀R ∈ Hi,∀R1,R2 ∈ Hi−1 with R1 , R2,R1 ∪ R2 ⊆ R (8)
⇒ (R1,R2) ∈ Ei−1

Suppose that H and E are given and they satisfy the
conditions in Eq. (8). Since any region R ∈ Hi is a merge
of regions ofHi−1, then for any (p, q) ∈ Ai with p, q ∈ R,
either p and q both belong to the same region of Hi−1 or
they belong to adjacent regions of Gi−1. In both cases, by
definition, this implies that p and q areAi−1-neighbors.

Hence, for any pair (p, q) ∈
(
Ai \ Ai−1

)
, p and q are

in adjacent regions of Gi. Thus, there exist two adjacent
regions Rp,Rq ∈ Hi such that p ∈ Rp, q ∈ Rq. As ex-
plained above, any two distinct elements of Rp (resp. Rq)
are Ai−1-neighbors, which means, at the start of step i in
Alg. 1, they are comparable in parenti−1. Then, Prop 2
applies and we can define:

A′i = (Ai \ (Rp × Rq)) ∪ {hi
p, h

i
q}, (9)

where hi
p ∈ Rp and hi

q ∈ Rq have the greatest depth in
parenti−1. From Prop 2, we conclude that Ai and A′i are
equivalent.

5.3. Pyramidal Hierarchy
One particular strategy that can be used to efficiently

build a hierarchy of partitions is to design a pyramidal hi-
erarchy. For that, consider a sequence (D0,D1 . . . ,Dn)
such that D f = D0 ⊃ D1 ⊃ . . . ,⊃ Dn and, for
i = 1, . . . , n, let ρi : Di−1 → Di be a mapping, called
downsampling, that assigns each pixel p ∈ Di−1 to a pixel
u ∈ Di. In this way, we define a pyramidal hierarchy as
a sequence of downsamplings (ρ1, . . . , ρn). An interest-
ing property is that the composition of i downsamplings
θi = ρiρi−1 · · · ρ1 : D f → Di induces an equivalence rela-
tion onD f , denoted by ≡i, as follows:

∀p, q ∈ D f , (p ≡i q)⇔ θi(p) = θi(q) (10)

This equivalence relation leads us to a partition Hi of
D f in a such way that two distinct pixels p, q ∈ D f are in
the same region in Hi iff θi(p) = θi(q) = u ∈ Di. More
formally, Hi = {Ru

i : u ∈ Di} where Ru
i = {x ∈ D f :

u = θi(x)}. In this way, a pyramidal hierarchy (ρ1, . . . , ρn)
defines a hierarchy of partitions H = (H1, . . . ,Hn).

Given these definitions, we now focus on obtaining a
specialized and suitable pyramidal hierarchy for efficient
component-hypertree construction. One possible choice
consists of the following: given (t1, . . . , td) ∈ Zd with t j >
0, we define the downsampling ρi : Di−1 → Di as, for any
x = (x1, . . . , xd) ∈ Di−1,

ρi(x = (x1, . . . , xd)) =

{
(x1, . . . , xd), i = 1;
(bx1/t1c, . . . , bxd/tdc), i > 1,

(11)
where bac indicates the greatest integer less than or equal
to a.

In this way, Hi consists of hyper-rectangles of D f of
size ((t1)i−1, (t2)i−1, . . . , (td)i−1).

Now, we define the sequence E = (E1, . . . , En). In or-
der to ensure the validity of condition given in (8), we
make use of the following RAG Gi = (Hi, Ei), where

Ei = {(Rv
i ,R

u
i ) ∈ Hi×Hi : v, u ∈ Di, |v j−u j| < t j, 1 ≤ j ≤ d}

(12)
Finally, we analyze this problem in the context of Alg. 1

and Prop. 2. Suppose that Alg. 1 is running at the begin-
ning of step i. Then, since the choice of E satisfies the
conditions given in Eq. (8), we can make use of Eq. (9)
to compute a neighborhood A′i equivalent to Ai, using
the following strategy: for all p ∈ Di, find all q ∈ Di

such that p , q and (Rp
i ,R

q
i ) ∈ Ei; and, then, add the pair

(hi
p, h

i
q) into A′i (see Eq. (9)). An example is provided in

Fig. 4. An analysis showing the efficiency of this strategy
applied to the pyramidal hierarchy of hyper-rectangles is
given in the next section.

6. Analysis

6.1. Complexity Analysis
Let A = (A1, . . . ,An) be a sequence of increasing

sets of neighboring pixels. When a sequence A′ is built
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Figure 4: Top: the sequence of graphs of the hierarchy of partitions G =

(G1,G2,G3) from the image f from Fig. 1 with t = (t1) = (2). Bottom:
the resulting component-hypertree of f using A′ = (A′1,A

′
2,A

′
3).

(where A and A′ are equivalent), then time to build the
neighborhoods must be taken into consideration. In the
case of Sec. 5.1, the construction strategy has complexity
Θ(|D f ⊕Wn| · |Bi|

2).
For the case of the pyramidal hierarchy of hyper-

rectangles, |Di| is divided by Πd
j=1t j for every increment of

i (for i > 1), implying that |Di| decreases geometrically.
When using Eq. (12) to define Ei, each region Rp

i ∈ Hi

has at most m = Πd
j=1(2t j − 1) adjacent regions. Hence, m

is a fixed value that does not depend on i and construction
ofA′i is Θ(|Di| · m).

In Alg. 1, complexity is directly related to the choice
of A and the complexity of the connect procedure. In the
worst case, connect has a complexity of O(K), meaning
that Alg. 1 has a complexity of O(

∑n
i=1 |Ai| · K). When A

is swapped for A′, than |A′i | is bounded by the complex-
ity of the building process since, for each combination
tested (when buildingA′i), at most one pair is added toA′i .
Hence, for dilation-generated neighborhoods, using the
approach explained in Sec. 5.1,

∑n
i=1 |A

′
i | = O(

∑n
i=1 |D f ⊕

Wi| · |Bi|
2). In general, this is efficient because |Bi| is usu-

ally very small. For example, to build SEs Si where Si is
the d-dimensional cube with sides 2i+1, then |Bi| = 2d. In
most practical cases, d = 2 or 3, so this is a small constant.
This would imply that

∑n
i=1 |A

′
i | = O(|D f ⊕Wn| · n).

For this particular choice of Si, this is better than run-
ning Alg. 1 directly in A(Si), since |Si| = (2i + 1)d, and∑n

i=1 |A(Si)| = Θ(|D f | · nd+1). However, the complexity
of the dilation-based implementation can be further im-
proved using other optimizations described in Morimitsu
et al. (2015). In the most optimized version,

∑n
i=1 |A

′
i | is

expected to be Θ(|D f | · 2d · d · log(n)), or Θ(|D f | · log(n))
if we assume d is a constant. This complexity is obtained
using a probabilistic approach and tests carried out on the
ICDAR database (Nayef et al., 2017) corroborate this ex-
pected complexity.

Finally, for the pyramidal hierarchy, we have |A′i | =

O(|Di| · Π
d
j=1(2t j − 1)). In the particular case where t =

(2, . . . , 2), we have
∑n

i=1 |A
′
i | = O(|D f | · (1 + 1

2d−1 ) · 3d) =

O(|D f | · 3d), i.e., if d is a constant, then
∑n

i=1 |A
′
i | =

O(|D f |).

6.2. Critical Analysis

In the most optimized version of the dilation-based
strategy, the size of the neighborhoods can grow at most
linearly for each dimension. This implies that a large
number of SEs is required to connect distant nodes. By
contrast, the pyramidal approach reduces the domain in
each dimension geometrically, which means that a much
lower n can be used.

In order to experimentally corroborate these observa-
tions, a set of 500 random images ranging from 1 to 10
megapixels (MP) was chosen from the ICDAR 2017 Ro-
bust Reading Challenge Dataset (Nayef et al., 2017). For
each image, component-hypertrees using both strategies
were computed. For pyramidal hierarchies, t = (2, 2) was
used and, for dilation-based neighborhoods, Bi was the
2 × 2 SE for all 1 ≤ i ≤ n.

The obtained results are presented in Fig. 5. From the
graph, it is possible to see that the pyramidal strategy is
about 2.5 times faster than the dilation-based approach,
for the fixed n = 11, and more than 14 times faster when
n = 512 was applied to try to extract nodes with the same
distance of the pyramidal approach.

A drawback of geometric growth in the size of the
neighborhoods is that many neighborhoods are skipped,
which induces a loss of precision in terms of distance of
merged nodes.

Even so, it is still possible to obtain an estimate of
the (Chebyshev) distance between merged nodes. Exper-
iments performed in 15 000 nodes extracted from images
of the same ICDAR database showed that, for t = (2, 2),
the value 2(i−1) is a good estimate of the distance of nodes
merged at step i (2 ≤ i ≤ n). Compared to the exact
values, the estimated distances differed by about 8% on
average, with more of half of the nodes differing by less

9



Size(MP)

0.0

20.0

40.0

60.0

80.0

100.0

120.0

140.0

160.0

180.0

1 2 3 4 5 6 7 8 9 10

Pyramidal Dilation (n=11) Dilation(powers of 2) Dilation (n=512)

Ti
m

e 
(s

)

Figure 5: Comparison of average times between the pyramidal hierarchy
strategy (blue line, n = 11) and the dilation-based strategy using: n = 11
(red); n = 512 allocating updating the hypertree at powers of 2 (yellow),
to try to match the graph allocated using the pyramidal approach; and
n = 512 allocating all nodes (green). The implementation was written in
Java and was tested using a i7 2.6GHz processor with 16GB of RAM.

than 5%, more than 90% of the nodes differing by less
than 25% and about 0.1% of the nodes with a difference
of more than 50%.

Even though the computed distance is not exact, this
degree of precision can still be useful in some applica-
tions. For example, in text extraction applications, one
common assumption is that space between letters of a sin-
gle word is somewhat constant and smaller than spaces
between words. Then, we can extract different scales of
objects from textual images (letters, words, and lines of
texts) by selecting nodes in which the variance of the
horizontal spacing of the merged parts are within a cer-
tain threshold. To computing statistics of attributes in
component-hypertree, the approach in (Morimitsu et al.,
2019b)) was used. An example is given in Fig. 6.

7. Conclusion

In this article, we reviewed the theory and algorithms
used for component-hypertree computation, highlighting
how some properties of an algorithm used for max-trees
can be used to optimize component-hypertree construc-
tion. Specifically, this led to a proposition that was used as
a foundation of a novel strategy for efficient component-
hypertree construction based on a pyramidal hierarchy of
partitions. Complexity analysis and experimental results
were provided to demonstrate that the proposed method
computes component-hypertree more efficiently than ex-
isting approaches without a significant loss of precision
regarding the distance of merged nodes.

In future works, we intend to investigate other hierar-
chies that could be used for efficient component-hypertree
construction. Also, we aim to analyze the impact of using
non-integer values for rescaling the domain in the pyrami-
dal approach. Although this approach loses some proper-
ties (since it does not generate a hierarchy of partitions), it
can also benefit from the fact that it keeps the same com-
putation complexity and skips fewer neighborhoods, re-
ducing the loss of precision in terms of distance computa-
tion.
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