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Optimization of the performance of flat optical components, also dubbed metasurfaces, is a crucial
step towards their implementation in realistic optical systems. Yet, most of the design techniques,
which rely on large parameter search to calculate the optical scattering response of elementary build-
ing blocks, do not account for near-field interactions that strongly influence the device performance.
In this work, we exploit two advanced optimization techniques based on statistical learning and
evolutionary strategies together with a fullwave high order Discontinuous Galerkin Time-Domain
(DGTD) solver to optimize phase gradient metasurfaces. We first review the main features of these
optimization techniques and then show that they can outperform most of the available designs
proposed in the literature. Statistical learning is particularly interesting for optimizing complex
problems containing several global minima/maxima. We then demonstrate optimal designs for GaN
semiconductor phase gradient metasurfaces operating at visible wavelengths. Our numerical results
reveal that rectangular and cylindrical nanopillar arrays can achieve more than respectively 88%
and 85% of diffraction efficiency for TM polarization and both TM and TE polarization respec-
tively, using only 150 fullwave simulations. To the best of our knowledge, this is the highest blazed
diffraction efficiency reported so far at visible wavelength using such metasurface architectures.
PACS numbers: 78.67.Pt, 02.30.Zz, 02.60.Pn, 82.20.Wt

INTRODUCTION

Metasurfaces have been studied extensively in the past
few years due to their exceptional abilities in achieving
arbitrary light control in a very short propagation dis-
tance, and due to their simplified fabrication procedures
with respect to bulk metamaterials [1–5]. Metasurfaces
consist of assemblies of nanoresonators with spatially
varying geometrical parameters and separated by sub-
wavelength distances, made of plasmonic [6] and/or high
dielectric refractive index materials [5, 7]. Unlike the con-
ventional optical components that provide a full control
of the light properties over long propagation distances,
metasurfaces can introduce highly resolved phase, ampli-
tude, and polarization changes on the incoming wavefront
over very short propagation distances, typically in the or-
der of the wavelength [3–8]. Owing to the versatility and
the capabilities of metasurfaces, many exotic and peculiar
optical phenomena ranging from negative refraction [9],
sub-diffraction optical microscopy [10], and broadband
achromatic lenses [11, 12] have been demonstrated re-
cently using ultrathin and compact devices. Most of
these designs have been engineered by considering a brute
force approach. The latter consists in performing an ex-
tensive and costly parametric search to obtain the optical
response of individual building blocks. Although simula-
tions are generally performed considering array of nanos-
tructures, this direct approach does not properly consider
potential coupling effects between neighboring elements
having different shapes. Remarkably, complex designs
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such as broadband and multiplexed interfaces exclusively
rely on sub-units of near-field coupled antennas to achieve
the required scattering responses.The inherent complex-
ity of the latter designs result in poorly efficient compo-
nents, indicating that direct modelling approaches are be-
coming substantially insufficient and are failing to achieve
designs of realistic devices [13, 14] . New and advanced
methods, such as inverse design techniques, are becom-
ing mandatory to further exploit metasurface capabilities
in highly demanding applications [14, 15]. To this end,
several optimization methodologies have been developed
and demonstrated in the recent years, including local and
global search methods. The former is suitable to rapidly
convergence to local maxima/minima and thus strongly
depends on the initial parameter guess [16, 17]. This
category includes topology optimization [18–22] and so-
called objective-first algorithms [23–25].

The second approach, performing global parameter
optimization includes stochastic search techniques such
as genetic algorithms [26–28] and evolutionary algo-
rithms [29, 30]. These are general methods which are
very efficient for large parameter space optimization. The
downside of the latter methods is that they all require a
large numbers of forward solver calls and are thus im-
practical when combined with costly (three-dimensional
(3D) time-domain simulations.

In the last two years, artificial neural networks
have been used to develop innovative modelling strate-
gies for several nanoscale light-matter interaction prob-
lems including light scattering problems from spherical
nanoshells for example [31]. Artificial neural networks
have also been utilized recently to design efficient meta-
surfaces [32, 33]. As a general rule, training an artificial
network requires numerous training data before it be-
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comes capable of achieving the optimized design based
on a specific input target. Thus, efficient neural net-
works, capable of generating practical designs, require
thousands of training data using a fullwave electromag-
netic solver. [34, 35]. The computation cost could be-
come important, especially considering 3D complex prob-
lems. Another common problem of neural networks arises
when the system under investigation has many diverse
parameters, i.e. when several parameter sets could give
approximately the same response. In this case, the per-
formance of the network reduces dramatically [33, 34].

The main goal of our work is to introduce to the
nanophotonics community novel and significantly more
advanced evolutionary optimization strategies based on
derandomized and statistical learning, evolution strate-
gies. Using practical designs of semiconductor GaN phase
gradient metasurfaces, we demonstrate that these tech-
niques can outperform most of optimization techniques
used in the inverse design of metasurfaces. These are
especially useful when one is considering complex 3D
problems. We adopt a parametric shape optimization
viewpoint as opposed to a topology optimization ap-
proach, enabling faster convergence to a global min-
ima/maxima even for large parameter space with regards
to our setting. In addition, as shown inhere, our methods
are capable of achieving effectively different global min-
ima/maxima for the same value of the objective function,
involving different parameter values. We first consider an
analytical example to help readers gaining insights into
our inverse design tools. The second goal of this pa-
per is to apply theses techniques to the case of 3D GaN
phase gradient metasurfaces made of nanopillars of differ-
ent shapes, targeting maximum light deflection efficiency
at a wavelength of λ = 600 nm. The deliberate choice of
GaN semiconductor has been made after a careful con-
sideration of several factors such as the optical losses in
the visible regime, its high refractive index in the visible
regime, and the current ease of micro/nanofabrication
technology in the industry of this materials, yielding ideal
nanoresonators (phase-shifters) for metasurface designs
and fabrication [7, 36]. Over the last couple of years, sev-
eral example of light deflecting metasurfaces have been
realized both numerically and experimentally for visible
wavelength applications involving GaN [36, 37] or at
near infrared [21, 29, 38] using silicon or hydrogenated
amorphous silicon. For the latter, the absorption losses
of silicon in the visible make them less efficient than, for
example, TiO2 [19] or c-Si [19, 39]. Various metagratings
have been used to demonstrate efficient light deflection
at visible regime but the performance does not exceed
80% [40]. Here, we provide optimized 3D metasurface
designs with record efficiency above 87%. To the best of
our knowledge, this is the highest expected performance
reported in the literature at visible regime for 3D gra-
dient metasurfaces. Our global optimization techniques
rely respectively on advanced evolutionary strategies and
statistical learning, coupled with a high order Discon-
tinuous Galerkin Time-Domain (DGTD) solver from the

DIOGENeS software suite dedicated to computational
nanophotonics [41]. We apply the optimization solution
to design optimal phase gradient metasurfaces made of
scatterers of different shaped, such as rectangular and
cylindrical nanopillars. Our calculations target maxi-
mum diffraction efficiency (η(n,m), where n,m are the
mode indices) at λ = 600 nm. For rectangular shaped
nanopillars, we achieved more than 87% of diffraction ef-
ficiency at λ = 600 nm for TM polarized waves, while
cylindrically shaped nanopillar interfaces lead to more
than 85% efficiency for both TM and TE light polariza-
tion at λ = 600 nm.

FULLWAVE TIME-DOMAIN SOLVER

The fullwave numerical modelling of light interaction
with nanometer scale structures generally relies on the
solution of the system of 3D time-domain Maxwell equa-
tions. In the computational nanophotonics literature,
a large number of studies are devoted to Finite Differ-
ence Time-Domain (FDTD) type discretization methods
based on Yee’s scheme [42]. As a matter of fact, the
FDTD [43] method is a widely used approach for solv-
ing the systems of partial differential equations modeling
nanophotonic applications. In this method, the whole
computational domain is discretized using a structured
(cartesian) grid. However, in spite of its flexibility and
second-order accuracy in a homogeneous medium, the
Yee scheme suffers from serious accuracy degradation
when used to model curved objects or when treating ma-
terial interfaces, especially if one is interested in assess-
ing near field effects. In general, this requires a refine-
ment of the underlying grid, which incurs a substantial
increase of the simulation time and memory footprint.
During the last twenty years, numerical methods formu-
lated on unstructured meshes have drawn a lot of at-
tention with the aim of dealing with irregularly shaped
structures and heterogeneous media. In particular, the
Discontinuous Galerkin Time-Domain (DGTD) method
[44] has met an increased interest. The DGTD method
can be considered as a finite element method where the
continuity constraint at an element interface is released.
While it keeps almost all the advantages of the finite el-
ement method (large spectrum of applications, complex
geometries, etc.), the DGTD method has other nice prop-
erties which explain the interest it recently gained in the
computational electromagnetics community:

- It is naturally adapted to a high order approxima-
tion of the unknown field. Moreover, one may in-
crease the degree of the approximation in the whole
mesh as easily as for spectral methods but, with a
DGTD method, this can also be done locally i.e.at
the mesh cell level. In most cases, the approxima-
tion relies on a polynomial interpolation method
(that we shall denote as Pp where p is he interpola-
tion degree) but the method also offers the flexibil-
ity of applying local approximation strategies that
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best fit to the intrinsic features of the modelled
physical phenomena.

- When the discretization in space is coupled to an
explicit time integration method, the DG method
leads to a block diagonal mass matrix indepen-
dently of the form of the local approximation
(e.g the type of polynomial interpolation). This
is a striking difference with classical, continuous
FETD (Finite Element Time-Domain) formula-
tions. Moreover, the mass matrix is diagonal if an
orthogonal basis is chosen.

- It easily handles complex meshes. The grid may be
a classical conforming finite element mesh, a non-
conforming one or even a hybrid mesh made of vari-
ous elements (tetrahedra, prisms, hexahedra, etc.).
The DGTD method has been proven to work well
with highly locally refined meshes. This property
makes the DGTD method more suitable to the de-
sign of a hp-adaptive solution strategy (i.e. where
the characteristic mesh size h and the interpolation
degree p changes locally wherever it is needed).

- It is flexible with regards to the choice of the time
stepping scheme. One may combine the DG spatial
discretization with any global or local explicit time
integration scheme, or even implicit, provided the
resulting scheme is stable.

- It is naturally adapted to parallel computing. As
long as an explicit time integration scheme is used,
the DGTD method is easily parallelized. More-
over, the compact nature of method is in favor
of high computation to communication ratio espe-
cially when the interpolation order is increased.

As in a classical finite element framework, a discontinu-
ous Galerkin formulation relies on a weak form of the con-
tinuous problem at hand. However, due to the disconti-
nuity of the global approximation, this variational formu-
lation has to be defined at the element level. Then, a de-
gree of freedom in the design of a discontinuous Galerkin
scheme stems from the approximation of the boundary
integral term resulting from the application of an inte-
gration by parts to the element-wise variational form. In
the spirit of finite volume methods, the approximation
of this boundary integral term calls for a numerical flux
function which can be based on either a centered scheme
or an upwind scheme, or a blend of these two schemes.
In this study, we exploit a recently developed high order
DGTD-based solver that has been specifically designed
for the simulation of nanoscale light-matter interaction
problems [45]. This DGTD method is implemented in
the DIOGENeS [41]software suite, which is programmed
in Fortran 2008 and is adapted to high performance com-
puting systems.

OPTIMIZATION METHODS

We are here leveraging on two different efficient global
optimization techniques respectively based on advanced
evolutionary strategies and statistical learning to perform
inverse metasurface designs. The first optimization ap-
proach is the so-called "Covariance Matrix Adaptation
Evolution Strategy" (CMA-ES) [46], which belongs to
the family of evolutionary algorithms. Similarly as ge-
netic algorithms (GAs) [47], CMA-ES mimics natural
evolution principles to maximize an objective function.
It has been tested on several academic benchmarks as
well as industrial problems and reported as one of the
most efficient optimization algorithms for a broad class
of problems. Recently, it has been used to optimize
infrared broadband quarter-wave and half-wave plates
Bézier metasurfaces [48], reconfigurable metasurface ab-
sorbers [49], acoustic metamaterial [50], and for in op-
timizing apochromatic singlets metasurface-augmented
grin lenses [51]. This is of critical importance for the de-
sign of complex assemblies of arrays of 3D nanostructurea
requiring expensive simulations with a large number of
parameters, thus increasing the chance of finding several
designs with relatively well-optimized performances.

As other Evolution Strategies (ES), CMA-ES is based
on a sequence of random searches, ruled by a normally
distributed sampling. At each iteration, the characteris-
tics of the distribution, and in particular its covariance
matrix, are adapted to account for the latest obtained
observations, in order to accelerate the convergence to-
wards the maximum/minimum of the fitness function.
More precisely, the algorithm starts with an initial (some-
time random) distribution mean (initial design) and the
identity classical normal distribution as covariance ma-
trix scaled by a user-defined scalar variance. According
to this distribution, a set of N samples are generated
randomly (mutation step as shown in Fig. 1(a)) and the
corresponding designs are simulated to evaluate their fit-
ness. Then, the best Nbest designs among the N ones
are selected for the evolution (selection step) and are
used to update the mean of the distribution (recombi-
nation step). Finally, the covariance matrix is updated
accounting for a principal component analysis of the best
points Nbest, whereas the scalar variance is modified us-
ing the path of the mean point (step-size control). The
whole procedure is repeated using the updated distribu-
tion, until convergence. The detailed algorithm is de-
scribed in [46, 52] and illustrated in Fig. 1(a). In the
electromagnetic community, GAs are more commonly
used [15, 26, 27, 47, 53], although they suffer from some
well-known drawbacks, such as the necessity to calibrate
several numerical parameters and their inability to tackle
anisotropic behaviors of the fitness function, i.e. the abil-
ity to change/adapt the search shape distribution during
the optimization in order to tackle the complexity of the
objective function for faster convergence. Consequently,
GAs require a substantial amount of computational time
when applied to high-performance 3D time/frequency do-
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main electromagnetic solvers. Therefore, due to the huge
number of parameters required to ensure the flexibility
of modern devices, more advanced evolutionary strate-
gies like CMA-ES are needed, that could 1) offer a faster
convergence, i.e. require fewer fullwave solver runs (due
to its ability to update the shape and the size of the dis-
tribution during the optimization), and 2) provide more
accurate results.

Despite the advantages of CMA-ES over other classical
evolutionary algorithms, it still requires a large number of
computationally expensive simulations, which increases
with the number of optimization parameters (curse of di-
mensionality). Therefore, we also consider an alternative
optimization strategy based on the iterative construc-
tion of surrogate models. It is known as Efficient Global
Optimization (EGO) [54–56] and belongs to the class of
Bayesian optimization methods. Contrary to evolution-
ary algorithms, EGO is not based on adaptive sampling,
but on a surrogate model built on the basis of available
fitness observations, which is employed to decide which
new design should be tested next, by maximizing a sta-
tistical criterion related to the optimization goal (merit
function). More precisely, this approach proceeds in two
main steps. First, a Design Of Experiments (DOE) is car-
ried out, which consists in exploring randomly the admis-
sible design space using a uniform sampling strategy (e.g.
Latin Hypercube Sampling) [57]. After simulation of the
corresponding designs, all fitness values obtained are con-
sidered as observations and are stored in a database. In
the second step, this database is iteratively refined to-
wards the most promising areas. This is performed us-
ing a Gaussian Process (GP) model, constructed using
all the database points. This is basically an interpolat-
ing or approximating model, whose internal parameters
are calibrated according to a maximum likelihood prin-
ciple [58]. Once this GP model is defined, one can esti-
mate at any point of the design space the fitness value
(model mean) and an uncertainty value (model variance).
Both are used to define a statistical merit function, e.g.
the expected improvement, whose maximum defines the
next design parameters set to evaluate. After simulation
of this new point, the database is updated accounting for
this new observation and the second step of the algorithm
repeats until convergence. The algorithm is illustrated in
Fig. 1(b). As explained, this approach based on the iter-
ative construction of a database and an associated model
can be considered as a statistical learning strategy, like
for instance Artificial Neural Networks (ANNs). Its main
characteristic is the use of internal uncertainty estima-
tion (variance) to drive both the search for the optimum
and the improvement of the model accuracy. Contrary
to the approaches based on ANNs, that often aims at
constructing a model accurate in the whole design space
before optimization, EGO focuses on the most promising
areas regarding the optimization criterion. It is therefore
far less expensive in terms of solver calls, making it very
well suited to the context of expensive simulations. In
practice, only a few hundreds of simulations are typically

required for EGO, whereas the database used to train
ANNs usually requires tens of thousands of solver calls.
As an example, in Ref. [32] a database of 90 000 simu-
lations has been achieved in order to train an ANN to
optimize 16 parameters. For EGO, as illustrated below,
we need only 80 points for the initial design of experi-
ments (DoE) and 150 solver calls for the iterative enrich-
ment, to optimize structures with 12 and 8 parameters
(rectangular and cylindrical shaped antennas).

In order to highlight the different optimization behav-
iors and performance between CMA-ES and EGO and to
give the reader more insights about their properties, we
provide here a 2D analytical example which is designed
to find the global minimum of a 2D Branin function, de-
fined by:

minimize
x,y

f(x, y) =

(
y − 5.1

4π2
x2 +

5

π
x− 6

)2

+10

(
1 − 1

8π

)
cos(x) + 10,

subject to− 5 ≤ x ≤ 10 and 0 ≤ y ≤ 15.

(1)

The Branin function f(x, y) depicted in Fig. (2(a)) has
three global minima, i.e three different combinations of
parameters x and y in the range of −5 ≤ x ≤ 10 and
0 ≤ y ≤ 15 generate the same value of the objective func-
tion, as indicated by the black arrows in Fig. 2(a). Using
this simple example, we highlight the different behaviors
of the two algorithms. We compared the convergence
and the computational efficiency of the two algorithms
in Figs. 2(b-c). They depict the function value obtained
with respect to the number of solver calls. As seen, both
methods reach a very satisfactory function value, CMA-
ES being clearly more expensive converging after about
180 solver calls, compared to 30 (including training data)
for the EGO method. Below, we demonstrate the evolu-
tion of the two methods.

For CMA-ES, the yellow points shown in Figs. 2(d-g)
show the evolution of all samples tested at generations
ranging from 0 to 30, the red points corresponding to the
last generation (size N = 6). CMA-ES sampling points
are essentially exploring only the vicinity of the popula-
tion mean, which progressively moves towards the best
objective function values to converge on a local minimum.

For EGO, Figs. 2(h-k) show both the Gaussian Process
model and the underlying database generated from iter-
ation 0 to 30. At iteration 0, the database is composed
of 6 points obtained from the DOE phase. Then, the
database is enriched in most promising areas, yielding
an improvement of the corresponding model. At itera-
tion 30, the three regions around the global minima have
been found. Moreover, a Gaussian Process model has
been constructed, which is very close to the true function
seen in Fig. 2(a), in which the three global points have
been identified by the EGO (see black points in Fig. 2(k)
and the analytical function given in Fig. 2(a)).

This simple analytical example illustrate the different
optimization mechanisms involved in CMA-ES and EGO
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FIG. 1. For the CMA-ES (a), the optimization starts with an initial design and a given mean and variance. The second step
consists in generating a population of N designs that will be evaluated using the fullwave DGTD solver. If the convergence is not
satisfied, the algorithm chooses the Nbest designs according to the objective function, and use them to update the mean of the
distribution, size and the covariance matrix. N new designs are thereafter calculated and repeated steps until the convergence
criterion is reached. For the EGO (b) instead, the algorithm starts with an initial design of experiments composed of NDOE

designs, that will be simulated to estimate the corresponding objective function. The results are used to construct a surrogate
model, of interest to search for the next design. The latter is simulated using the fullwave DGTD solver, and the corresponding
objective value enrich the database, repeating these steps until the convergence is obtained. The major difference between
the CMA-ES and EGO methods essentially relies on the utilization of a surrogate model for EGO that drastically reduces the
number of evaluations NDOE by an order of magnitude.

algorithms. In the following, we exploit these two meth-
ods to optimize metasurface geometries for improved
light deflection efficiency at λ = 600 nm.

NUMERICAL RESULTS

As a first example, in Fig. 3(a), we consider a phase
gradient metasurface made of rectangular GaN semi-
conductor (dark-red regions) placed over a semi-infinite
substrate made of Al2O3 (shown in green). We consider
a normal incident plane wave with electric field polarized
in the y-direction, and we aim to maximize the diffrac-
tion efficiency of the first order mode η(0,−1) (deflect
light in the same plane of incidence y-z plane) at wave-
length of λ = 600 nm. To avoid diffraction inside the
substrate, we consider sub-wavelength period in the x-
direction (300 nm) and a period of phase gradient in the
y-direction, which is the dimension along which we are

optimizing the geometries of subwavelength nanopillars,
to be Γ = 1500 nm, as shown in Fig. 3(a).

In the first design, we optimize the design of rectan-
gular antennas, considering optimization of the following
parameters: the height, which is chosen equal for all pil-
lars to comply with nanofabrication techniques; the po-
sitions of each ridges in y direction; the thicknesses in x
and y directions, leading to 12 optimized parameters that
are represented by the red circles in Fig. 3(a). It is worth
mentioning that we took into account the experimental
constraints during the optimization process, in which the
minimum feature size is set to 90 nm and the height of
the ridges is set between 600 nm and 800 nm. Fig. 3(b-c)
summarize the optimization results obtained for this first
metasurface example. The CMA-ES results are shown in
Fig. 3(b), in which the objective function evaluation at
each iteration is shown in dark-yellow points, and the
best values of the objective function evaluation obtained
during the optimization process is represented by the pur-
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FIG. 2. A representative 2D analytical example to illustrate the different behaviors of CMA-ES and EGO methods. The
problem considered here consists in minimizing an analytical function, known as the Branin function, characterized by the
presence of 3 global minima, as indicated by the black arrows in (a). The evolution of CMA-ES as a function of the solver calls
is provided in (b) in which the yellow points represent the objective function values at each iteration, the purple curve indicates
the best value at each iteration. (c): similar to (b) except that here the blue points represent the DOE phase NDOE = 6
(only 6 in this example). These points are used only for the initial training (blue shaded region in (b)) while the black dots
represent the data generated during the optimization phase. The green line represents the best, optimized, results obtained
during optimization phase, as explained in Fig. 1(b). (d-g): evolution of the points tested by CMA-ES, as a function of the
generation numbers (for each generation we simulate 6 designs). The yellow points represent all samples evaluated so far, the
red points correspond to the last generation of size N = 6. This illustrates the search by progressive sampling and convergence.
(h-k): evaluation of the Gaussian process model (surrogate model) and the underlying database generated from iteration 0 to
30. Notice that the model converge to the analytical function shown in (a) after 30 iterations. The design points from the DOE
phase are shown in blue, the black points represent the database progressively enriched during the optimization. Note that all
minima are detected. As background, the GP model is plotted, which converges progressively towards the true cost function
(a).

ple solid curve.
Note that the evolutionary model evaluates at each it-

eration exactly 11 metasurface designs, keeping the best
value among the different realizations only if the latter

outperform those obtained during the previous iteration
(purple curve in Fig.3(b)). After nearly 550 iterations,
we obtain a global mimimum such that 1−ηTM (0,−1) ≈
0.119 at λ = 600 nm, which is corresponding to diffrac-
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FIG. 3. Results of the optimizations for rectangular nanoantenna arrays. (a) the geometry under consideration with rectangular
nano ridges made of GaN (dark-red ridges) on top of a semi-infinite substrate made of Al2O3 (green region). The 12 red circles
represent the optimization parameters. (b) optimization process using CMA-ES as a function of the number of fullwave solver
calls. Dark-yellow points represent the value of the objective function at each iteration, the solid purple line highlights the best
point achieved during the optimization. In other words, for each generation we keep only the best point that minimizes the
objective function. These best points that are obtained from each generation along the optimization process, are represented
by the solid purple curve. (c) optimization realized with the EGO solver as a function of the number of fullwave solver calls.
The blue points represent the DOE (shaded region), the black points represent the value of the objective function at each
optimization iteration, and the green solid line indicates the optimized data. (d) comparison between the diffraction efficiency
for the first order mode as a function of the wavelength for the TM polarized wave. We use purple and green colors for the
CMA-ES and EGO optimized geometries, respectively; the corresponding parameter values shown in Tab.I, for CMA-ES, and
EGO optimized parameters.

tion efficiency of approximately 88.10% for TM polar-
ized waves. The evolution of the diffraction efficiency
ηTM (0,−1) as a function of the wavelength is represented
by the purple curve in Fig. 3(d), indicating that a max-
imum is achieved at λ = 600 nm. The corresponding
parameter values are shown in Tab.I, where dx and dy
give the thicknesses in x and y directions, respectively
for each rectangular element. From the result of the
CMA-ES method, the optimal height of the ridges is
h ≈= 800 nm. As could be expected, a linear phase
gradient, which leads to light deflection in y-z plane, is

achieved by increasing the effective mode index of the
nanorectangles, i.e. by gradually increasing the thick-
nesses in y direction as a function of the position of the
nanoantenna within the period. Note also that the op-
timized height of the ridges is nearly 800 nm, which ac-
cording to previous direct simulations and experimen-
tal works is sufficiently tall to provide high transparency
windows and sufficient phase delay for increasing cross
sections[12, 36, 37, 59]. The electromagnetic field dis-
tributions for the Re(Hx) and Re(Ey) at λ = 600 nm
are shown in Fig. 4(a) and Fig. 4(b), respectively, which
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clearly indicate light deflection behavior. It is worth men-
tioning that during the optimization process, accurate
simulation results was obtained using a coarse mesh of
only 3000 cells with a DGTD-P4 solver (i.e. with fourth
order polynomial interpolation of the components of the
electromagnetic field within each mesh cell). One full-
wave simulation with these mesh and solver configura-
tions cost 26 minutes using 48 cores. A numerical con-
vergence is provided in Fig. 8(a) in the supplementary
information section. The results shown in Fig. 4(a) and
Fig. 4(b) have been obtained using a finer mesh and a
DGTD-P2 solver.

The same optimization has also been realized using the
EGO method, still considering the rectangular nanopillar
setting shown in Fig. 3(a). As explained previously, this
optimization approach build a DOE database in a first
phase. In this example, we built a database with 80 de-
sign points represented by the blue points in Fig. 3(c). In
a second phase, based on these 80 design points, a surro-
gate model is constructed and used during the optimiza-
tion process to find a global minimum, i.e. that could
achieve a better result than the actual best point found
in the DOE process (represented by the pink point in
Fig. 3(c)). From the green curve and its associated data
(black points just above the green curve in Fig. 3(c)),
one can note that the convergence is obtained after only
a few number of iterations (approx. 150 iterations), be-
yond which the efficiency barely improves, thus indicat-
ing that the best point has been obtained. Compared
to the CMA-ES, EGO minimization of the cost function
optimizes the 12 parameters and converges to a global
minimum in which 1 − η(0,−1) ≈ 0.12, corresponding
to a deflection efficiency of 88.0% at λ = 600 nm af-
ter nearly 150 iterations, i.e. about 4 times faster than
CMA-ES method.

Observing the optimized parameters, we realize that
the geometries obtained by the EGO method (related to
a specific stopping criteria) are different from those ob-
tained with CMA-ES method (see Tab. I), for the opti-
mized parameters obtained using the CMA-ES and EGO
methods), although both could provide seemingly iden-
tical diffraction efficiency of about 88% at λ = 600 nm,
see Fig. 3(d).

Interestingly, the optimized parameters obtained by
the EGO method are going against the intuitive designs
for which linear phase gradients rely on increasing effec-
tive mode index of the antennas as a function of the pillar
transverse section. Indeed, the expected gradient in the
dy thicknesses of the ridges is not fully satisfied as the dy
of the last ridge is larger than the previous pillar. These
results are sensibly different to those obtained using the
CMA-ES method. Note also that the global thicknesses
of the ridges in y direction are slightly thicker than their
counterparts obtained using the CMA-ES method. In ad-
dition, the height of the nanoridges is also much shorter
than the optimized height found by the CMA-ES method
by about nearly one wavelength. Similarly to the analyt-
ical example shown in Fig. 2, the noticeable differences in

the parameters indicates that EGO has reached another
global optimum, which was not found by the CMA-ES
method. The difference in structural parameters is also
reflected in the field maps provided in Fig. 4, in which we
clearly see that the number of longitudinal modes for the
optimized geometry found by the EGO method shown in
Figs. 4(a-b) are different from the ones obtained by the
CMA-ES method shown in Figs. 4(c-d). The possibil-
ity of operating in the optimal transmission regime, also
related to the Kerker condition in Mie theory, has been
discussed recently. Since the height of nanopillar con-
trols essentially the longitudinal resonance, similar light
deflection response can be achieved by varying the trans-
verse cross sections of nanopillar arrays having two dis-
tinct heights, thus explaining why we could achieve at
least two different global mimima in this configuration.
We emphasize that in our unit cell, which is made of 4
nanoridges, optimization is performed by modifying all
antennas parameters at once, thus properly optimizing
the near-field coupling between the different modes, as
illustrated in Fig. 4.

For the second example, we optimize a phase gra-
dient metasurface made of cylindrical nanopillars (see
Fig. 5(a)) to maximize the diffraction efficiency in the
first order mode. Due to the symmetry of the nanopil-
lars, we are targeting polarization insensitive properties.
For this example, we optimized the structures by mod-
ifying 8 parameters (see Fig. 5(a)) including the pillars
diameter (thick white arrows), the height, and the posi-
tion of the nanopillars as indicated by the red points. We
also kept experimental constraints identical to those for
the rectangular case. We begin by analyzing again the
optimization of the CMA-ES case, as shown in Fig. 5(b),
for which a global point with diffraction efficiency around
85% for TM polarized waves (results for TE polarization
is also around 85%, data not shown) is obtained after
300 fullwave solver calls. For the EGO method, we con-
sider a DOE database with 50 design points (see blue
points in Fig. 5(b)). Then, a surrogate model is con-
structed and a global optimum is clearly obtained after
nearly 180 iterations with efficiency 85%. For this exam-
ple, both optimization methods lead to structures with
increasing gradient in the diameter, but the two set of
parameters obtained by CMA-ES and EGO are slightly
different as indicated in Tab. II.

The DGTD method allows us to obtain the wavelength
dependance of the deflection efficiency for both CMA-
ES and EGO, essentially showing similar behavior. We
denote a slight difference, which can be attributed to the
fact that both structures are not operating on the exact
same longitudinal modes, see the field maps in Fig. 6
obtained at λ = 600 nm. The CMA-ES optimum is
achieved for h ≈ 735. nm, for which nearly half of the last
mode field lobe is located in the first ridge, while EGO
optimization results gives an optimal height h ≈ 708. nm.

To capture the influence of the height on the perfor-
mance of the designed metasurfaces, we decided to com-
pare the CMA-ES results for a fixed height h = 800 nm
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TABLE I. CMA-ES and EGO optimized parameters for the rectangular shaped antennas shown in Fig.3(a). The optimized
heights obtained from CMA-ES and EGO are h ≈ 800 nm and h ≈ 666 nm, respectively.

CMA-ES: element dimensions(h ≈ 800 nm)
Element dx(nm) dy(nm)
1 108.5 248.7
2 93.3 199.6
3 96.6 116.5
4 108.6 108.1

EGO: element dimensions (h ≈ 666 nm)
Element dx(nm) dy(nm)
1 120.0 254.1
2 106.3 203.3
3 103.6 109.1
4 107.3 130.6

CMA-ES: distance between elements
between (1− 2) 121.4 nm
between (2− 3) 114.6 nm
between (3− 4) 103.8 nm

EGO: distance between elements
between (1− 2) 98.5 nm
between (2− 3) 91.5 nm
between (3− 4) 101.6 nm

y

z

x

(a) (b) (c) (d)

FIG. 4. Field maps of <e(Hx) and <e(Ey) obtained for rectangular nanopillars for the optimized geometries at λ = 600nm.
(a-b): obtained from the CMA-ES method with height h ≈ 800nm; (c-d): obtained from the EGO method with h ≈ 666nm.

with those obtained when including the height in the set
of optimization parameters, see Fig. 6 (b)). The com-
parison in Fig. 7(a) clearly illustrates that the results
obtained with a fixed height h = 800 nm (dark orange
curve) approach those obtained with varying the height,
including the set of parameters obtained from both struc-
tures that converge to each other, see Tab. II and Tab. III
for the reference case with h ≈ 735 nm and the fixed
height case h = 800 nm, respectively. This indicates
that the maximum of efficiency found in this configura-
tion is quite robust, being resilient to significant height
variation. To properly account for uncertainties due to
the meshing of the nanostructures, we have realized a
convergence proof considering the cylindrical nanopillar
array, see Fig. 8(b), in which we investigated different
mesh sizes and different polynomial orders. It is worth
mentioning that during the optimization process, we used
a coarse mesh of 10 000 cells with fourth order polynomial
P4, which proved sufficient to get accurate results (one
fullwave simulation with this mesh and interpolation or-
der specifications takes about 40 minutes using 48 cores),
as it is depicted in Fig. 8(b). To present accurate field
distributions and improve the visualization, the results
obtained for the optimized geometries shown in Figs. 6(a-

d) and Fig. 7 have been obtained with a finer mesh and
a DGTD-P2 solver. As shown in Fig. 8(b) and Fig. 9,
it is possible to further improve the numerical accuracy
using higher order curvilinear elements in combination
with higher order polynomials. However, current experi-
mental realization of metasurfaces using state of the art
nanofabrication facilities do not reach such fine level of
details and it is therefore not essential to further improve
the nanostructure discretization to even higher numerical
resolution. At this point, it is instead more interesting
to point out that after various attempts to achieve close
to unitary deflection efficiency, all optimized structures
converge towards roughly the same number of 0.85.

This limitation of the deflection efficiency is expected
as demonstrated in Refs. [60, 61]. According to these
works, the efficiency of the phase gradient metasurfaces
is limited due to impedance mismatching between the in-
cident and the desired wavefront, leading to an increase
of the scattering in the other modes. In particular, theo-
retical proofs have shown that a unitary light deflection
to an arbitrary angle cannot be achieved using linear gra-
dient phase profiles [60].

This effect is sufficiently important to avoid full uni-
tary efficiency [60]. In order to overcome this limitations
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FIG. 5. Optimization results for cylindrical nanopillars arrays. Similarly to Fig. 3, (a) is the geometry under consideration
with cylindrical nanoridges made of GaN (dark-red ridges) on top of a semi-infinite substrate made of Al2O3 (green region).
The 8 red circles represent the optimization parameters. (b) optimization process using CMA-ES as a function of the fullwave
solver calls. Dark-yellow points represent the value of the objective function at each iteration, the solid purple line indicates
the best point during the optimization up to the current iteration. (c) optimization using the EGO method as a function of the
fullwave solver calls. The blue points represent the DOE (shaded region), the black points represent the value of the objective
function at each optimization iteration, and the green solid line indicates the optimized data. (d): comparison between the
diffraction efficiency for the first order mode as a function of the wavelength for the TM polarized wave. Purple and green
colors for the CMA-ES and EGO optimized geometries, respectively; the corresponding parameter values shown in Tab. II, for
the CMA-ES and EGO results. The field maps for <e(Hx) and <e(Ey) for the optimized geometries at λ = 600 nm are shown
in Fig. 6

and achieve a unitary efficiency for light deflection, two
different approaches have been proposed. The first ap-
proach is based on designing a metasurface with a surface
impedance profile that takes into account the impedance
matching into consideration. A balance between gain and
loss elements (active metasurfaces), or nonlocal effects
must be considered. This first approach is relatively dif-
ficult to be considered from the fabrication point of view,
it requires complex design fabrication, and deep sub-
wavelength resolution. Another technique is introduced
in Ref.[61]. In this work, the authors have shown that
by using a lossless bi-anisotropic resonators with cou-
pled magnetic and electric field responses located above
a ground plane (the distance between the resonators and

the ground plane must be optimized in order to achieve
the maximum efficiency). Even if the authors focused on
the reflective case with no losses (ideal case), they men-
tion that this work can be extended to the case of trans-
mitting metasurfaces, by considering a two-layer meta-
surface. This latest technique requires using resonators
with strong magnetic and electric responses at visible fre-
quencies.

Besides the fact that we observed a limitation in the
overall efficiency, as expected from previous theoretical
predictions [60, 61], these studies for cylindrical and rect-
angular nanoantennas allow us to confirm that the op-
timization strategies based on the CMA-ES and EGO
methods that we have considered here are capable of un-
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TABLE II. CMA-ES and EGO optimized parameters for the cylindrical nanopillars shown in Fig. 5(a). The optimized heights
obtained from CMA-ES and EGO are h ≈ 735 nm and h ≈ 708 nm, respectively.

CMA-ES: element dimensions(h ≈ 735 nm)
Element Diameter(nm)
1 209.7
2 176.2
3 149.1
4 117.6

EGO: element dimensions (h ≈ 705 nm)
Element Diameter(nm)
1 210.0
2 189.0
3 154.5
4 126.0

CMA-ES: distance between elements (center to center)
between (1− 2) 308.6 nm
between (2− 3) 255.7 nm
between (3− 4) 249.3 nm

EGO: distance between elements (center to center)
between (1− 2) 293.9 nm
between (2− 3) 279.4 nm
between (3− 4) 236.9 nm

y

z

x

(a) (b) (c) (d)

FIG. 6. Field maps of <e(Hx) and <e(Ey) obtained for cylindrical nanopillars for the optimized geometries at λ = 600 nm.
(a-b): obtained from the CMA-ES method with height h ≈ 735 nm, (c-d): obtained from the EGO method with h ≈ 708 nm.

CMA-ES: element dimensions
Element Diameter(nm)

1 205.1
2 176.4
3 142.3
4 128.2

CMA-ES: distance between elements (center to center)
between (1− 2) 328.0 nm
between (2− 3) 264.3 nm
between (3− 4) 238.5 nm

TABLE III. CMA-ES optimized parameters for the cylindrical nanopillars shown in Fig. 5(a) with fixed height h = 800 nm
during the optimization.

derstanding which key parameter influence the most on
the minimization process. Indeed, for all the results pre-
sented herein, we figured out that both optimizers set
the thickness of the first ridge (dy in case of rectangular
nanopillars, and diameter in case of cylindrical nanopil-
lars) to the largest values, for which the effective refrac-
tive index is the largest. The height of the ridges is an-
other interesting parameters as it essentially relates to
the different longitudinal modes inside the nanopillars,
leading to relatively well optimized diffraction efficiency
at different height.

CONCLUSION

Two advanced optimization strategies have been intro-
duced to optimize 3D semiconductor-based metasurfaces.
We proved that our optimization methods are very effi-
cient in obtaining different global minima/maxima, re-
quiring only a few hundreds of electromagnetic solver
calls. We applied these methods to maximize the light
deflection efficiency at λ = 600 nm using GaN based
metasurfaces. Our numerical results reveal that one can
obtain 85% of deflection efficiency for both TM and TE
polarization using cylindrical nanoantennas. In addition,
we show that using rectangular nanoantennas, one might
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FIG. 7. (a): comparison between results obtained with CMA-ES (for the cylindrical nanopillars) as a function of height (purple
curve, exactly as in Fig. 5(b) in which the height is optimized to h ≈ 735 nm), and the ones obtained with CMA-ES with fixed
h = 800 nm (dark orange curve) as a function of the number of fullwave solver calls. The corresponding optimized parameter
values for the case with h = 800 nm (dark orange curve) can be found in Tab. III. (b): diffraction efficiency as a function of
the wavelength. (c) and (d) field maps of <e(Hx) at λ = 600 nm for the reference case with h ≈ 735 nm (purple curve in (a)),
and the case with h = 800 nm (dark orange curve in (a)).

obtain more that 88% of deflection efficiency for TM po-
larization. These methods, which are widely used in the
computational fluid dynamics community, could have sig-
nificant implications in the design of efficient metasur-
faces, notably in view of their utilization in real world
applications, for which reaching highly efficient designs
in reasonable computation time is one of the most im-
portant figure of merit. Our future works will aim at
improving the computational performances of these op-
timization strategies by leveraging the different levels of
parallelism underlying their algorithmic structures one
one hand, and extending their capabilities in view of deal-
ing with multi-objective problems.
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ADDITIONAL INFORMATION

NUMERICAL VALIDATION

In this section, we discuss about the numerical valida-
tion of some of the results obtained in our work. First,
we start by studying the influence of the mesh size/type
using our DGTD fullwave solver from the DIOGENeS
software suite [41] on some of the optimized designs. In
Fig. 8(a), we study the influence of the mesh and the
polynomial order on the optimized solution obtained in
the rectangular nanoantennas case (the results obtained
from the CMA-ES method are shown in Fig. 3). As it can
be seen in Fig. 8(a), using fourth order polynomial order
P4 with a coarse mesh (only 3 000 cells) provides the
same results than when we consider second order poly-
nomial order P2 with a finer mesh (with 147 000 cells).
In Fig. 8(b), we show the convergence for the cylindrical
nanoantennas case obtained using the CMA-ES method
with h ≈ 735 nm (the corresponding parameters can
be found in Tab. II) using both linear tetrahedral ele-
ments and also curvilinear tetrahedral elements in order
to achieve a high order approximation of the cylindri-
cal geometry of the nanopillars. As it can be noticed,
the convergence is obtained with less cells in the case
of the mesh with curvilinear elements compared to the
case with linear ones. To conclude on this point, us-
ing our DGTD solver, we are able to demonstrate the
convergence for the optimized geometries using different
mesh size and/or types, which is not trivial especially for
the case of cylindrical elements that require higher order
curvilinear mesh type for more accurate results, other-
wise, a finer mesh must be used with the classical linear
elements.

In Fig. 9, we provide another validation of our numeri-
cal results by simulating the optimized structure given in
Tab. III using the FDTD fullwave solver from Lumerical
commercial software, and comparing the results with the
ones obtained from our DGTD solver. As it can be seen
from Fig. 9, we have a very good agreement between the
results obtained using the two methods for both the total
transmission and the deflection efficiency of the first or-
der mode. However, in the case of the DGTD method, we
show the results using curvilinear elements with fourth
order polynomial using only 13 000 cells (same results can
be obtained with classical linear elements with 109000
cells as we have seen in Fig. 7). On the other hand, for
the FDTD results, we consider a very fine mesh with
nearly 105 cells in order to get accurate results that can
be compared with the DGTD method.

Next, we show one example in order to demonstrate
that our optimization techniques outperform the classi-
cal approach to phase gradient metasurface design. In
Fig. 10(a), we present the geometry obtained using the
classical approach. In this approach, one calculates the
phase gradient needed with 1500 nm period in y-direction
at wavelength λ = 600 nm and place the pillars at the
right y positions in order to introduce the needed phase
shifts to maximize the light deflection of the (0,-1) mode.
The phase shifts and transmission introduced by each
single element is calculated before using a classical for-
ward simulation by changing the radius of the pillar and
compute the corresponding phase and transmission (we
consider a fixed height h = 800 nm). The corresponding
deflection efficiency for the first order mode can be seen
in the red curve in Fig. 10(c), in which the maximum
efficiency at λ = 600 nm is around 74%. On the other
hand the optimized geometry obtained using the CMA-
ES method presented in Fig. 10(b), provides nearly 85%
of deflection efficiency at λ = 600 nm (data can be found
in Tab. III). This discrepancy between the two results is
clearly linked to the near field coupling as it is shown in
Figs. 10(d-e). In the classical design approach (see the
corresponding geometry in Fig. 9(a)), we neglect the ef-
fect of the near field coupling when we place the nanopil-
lars together to construct the required phase shift, while
in the optimization techniques presented in this paper,
the near field coupling is taking into account during all
optimization steps, which give us an optimized geometry
as shown in Fig. 10(b).
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