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In this work, we exploit two advanced optimization techniques based on statistical learning and
evolutionary strategies together with a fullwave high order Discontinuous Galerkin Time-Domain
(DGTD) solver in order to optimize 3D gradient metasurfaces with different shapes. Unlike what is
usually provided in the literature, first we introduce rigorously to the community the methodologies
of our advanced optimization techniques that outperform most of the available techniques in the
literature, especially for complex problems that contain several global minima/maxima. Second, we
demonstrate both numerically and experimentally optimal designs for 3D real life gradient meta-
surfaces based on GaN semiconductor at the visible regime. Our numerical results reveal that for
spherical shaped antenna, one can achieve more than 85% of diffraction efficiency for both TM
and TE polarization using only 150 solver runs. In addition, for rectangular shaped antenna, an
efficiency above 88% can be achieved for TM polarization using less than 150 fullwave simulations.
To the best of our knowledge, this is the highest diffraction efficiency reported so far at the visible
regime for real life 3D structures.

PACS numbers: 78.67.Pt, 02.30.Zz, 02.60.Pn, 82.20.Wt

INTRODUCTION

Metasurfaces have been studied extensively in the past
few years due to their exceptional abilities in achieving
full light control in a very short propagation distance
at any desired direction thanks to the simplified fabri-
cation procedures compared to bulk metamaterials [1–
6]. Metasurfaces consist of an array of subwavelength
nanoresonator arrays with spatially varying geometric
parameters and subwavelength separation, made of plas-
monic [4, 7] and/or high dielectric refractive index mate-
rials [6, 8]. Unlike the conventional optical components
that provide a full control of the light properties over a
long propagation distances, metasurfaces can achieve a
full control of the phase, amplitude, and wavefront in a
very short propagation distance much smaller than the
wavelength and with very high resolution [3–9].

Owing to the versatility and the capabilities of meta-
surfaces, many exotic and peculiar optical phenomena
ranging from negative refraction [10], sub-diffraction
optical microscopy [11], and broadband achromatic
lenses [12] have been demonstrated recently using ultra-
thin and compact devices. Most of these designs have
been engineered using a direct modelling approach, that
is metasurface parameters are tuned using costly para-
metric studies. However, due to the complexity of the
real life problems that include large parameter space in
the metasurface design, the direct modelling approach
becomes insufficient [13, 14] and the use of an inverse de-
sign technique is mandatory to achieve the maximum de-
sired performance [14, 15]. Several optimization method-
ologies have been developed and demonstrated for the de-
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sign of metasurfaces in the recent years, including local
and global search methods. The former, converges faster,
however, they can be stuck in local maxima/minima due
to the strong dependence on the initial guess [16], This
category includes topology optimization [17–20] and so-
called objective-first algorithms [21–23].

The global optimization techniques including stochas-
tic search techniques like genetic algorithms [24–26] and
evolutionary algorithms [27, 28] are more general and are
suitable for optimizing large parameter space. However,
most of these techniques require large number of forward
solver calls, which make them inapplicable for modelling
3D designs, that require costly simulations and include
large parameter search space.

In the last two years, artificial neural networks have
been used to develop innovative modelling strategies
for several nanoscale light-matter interaction problems
including solving the light scattering from a spherical
nanoshell [29] and have also been leveraged to design ef-
ficient metasurface devices [30, 31]. As a general rule, in
order to train a network, one has to generate numerous
training data. Once the network is trained, it can be used
to achieve the optimized design based on a specific input
target. However, in order to build an efficient neural net-
work, one needs to generate thousands of training data
using a fullwave electromagnetic solver, that require of
course significant computational time [32, 33] especially
for 3D complex problems. Another common problem for
the neural networks is the diversity of the parameters
which might lead to poor performance of the network. In
other words, one might obtain for the same input data,
different structures that meet the same response. In this
case, the performance of the network is reduced dramat-
ically [31, 32].

The main goal of our work is twofold. First, we
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introduce to the metasurface community two different
advanced optimization techniques based on statistical
learning approaches that outperform most of optimiza-
tion techniques used in the inverse design of metasurfaces
(especially when considering 3D problem setups). We
adopt a shape optimization viewpoint as opposed to a
topology optimization approach for instance. Our meth-
ods converge fastly to a global minima/maxima even if
the modelling parameter space is relatively large (with re-
gards to a shape optimization setting). In addition, as we
will show here, our methods are able to obtain effectively
different global minima/maxima that have the same
value of the objective function, but with different param-
eter values (an analytical example is provided to give the
reader more insights). The second goal of this paper is
to apply theses techniques in order to optimize 3D gra-
dient metasurface with different shapes based on GaN
semiconductor in order to achieve a maximum light de-
flection efficiency at wavelength λ = 600 nm. We choose
GaN semiconductor due to its negligible losses and due
to its high refractive index in the visible regime, which
yields ideal nanoresonators (phase-shifters) for metasur-
face designs [8, 34]. In fact, several metasurface designs
have been demonstrated both numerically and experi-
mentally for light deflection at near infrared [20, 27, 35]
using silicon or hydrogenated amorphous silicon. Never-
theless, due to the absorption losses of silicon at visible
regime, a TiO2 [18] or c-Si [18, 36] based metagratings
have been used to demonstrate efficient light deflection
at visible regime. However, the efficiency does not exceed
80% [37].

Here, we provide optimal 3D metasurface designs with
efficiency above 87%. To the best of our knowledge,
this is the highest efficiency reported in the literature
at visible regime for 3D gradient metasurface designs.
Using our efficient global optimization techniques which
based respectively on advanced evolution strategies and
statistical learning, together with our rigorous Discon-
tinuous Galerkin Time Domain (DGTD) solver from the
DIOGENES software suite dedicated to computational
nanophotonics [38] we propose optimal gradient metasur-
face designs with rectangular and spherical shaped anten-
nas that provide maximum diffraction efficiency (η(n,m),
where n,m are the mode indices) at λ = 600 nm.
For rectangular shaped antenna, we show that one can
achieve more than 87% of diffraction efficiency at λ =
600 nm for TM polarized waves. Second, for spheri-
cal shaped antenna, we show that one can achieve more
than 85% for both TM and TE light polarization at
λ = 600 nm.

RESULTS AND DISCUSSION

We use two different efficient global optimization tech-
niques based respectively on advanced evolution strate-
gies and statistical learning. The first one is the co-
variance matrix adaptation evolution strategy (CMA-

ES) [39]. The CMA-ES has been gaining a lot of atten-
tion since it requires fewer cost function evaluations com-
pared to the other evolutionary algorithms like genetic
algorithms (GA) [15, 24] especially for 3D designs that
require expensive simulations. The second method is the
Efficient Global Optimization (EGO) algorithm [40]. The
EGO algorithm is based on the surrogate modelling [40]
in order to reduce dramatically the computational cost
(number of calls for the electromagnetic solver).

In order to understand how the CMA-ES works, let us
first revisit the meaning of an optimization evolutionary
strategy. The evolutionary strategy can be seen as an
algorithm that provides the user a set of candidate pa-
rameter values (solution to the problem), these solutions
will be used to compute the values of the objective func-
tion. Based on these values of the current solutions, the
algorithm will then produce the next generation of can-
didate solutions (using some learning approaches), that
is more likely to produce even better values for the ob-
jective functions than the current generation. The size
of the population range from problem to another. How-
ever, most of the classical evolutionary strategies con-
sider a fixed population size at each iteration. In another
words, the search parameters are chosen first and remain
without changing during the optimization process. This
main drawback of the classical evolutionary strategies
make the choice of the parameter depends strongly on
the considered problem and might lead to expensive and
costly computations at each iteration. The most com-
mon evolutionary strategy in the electromagnetic com-
munity is the Genatic Algoritm (GA) [41]. This tech-
nique has been used to optimize the performance of sev-
eral electromagnetic problems [24, 25, 41, 42]. However,
this method require a substantial amount of time even if
with the high-performance capabilities of the electromag-
netic solvers [42]. Therefore, due to the huge number of
parameters required to ensure the flexibility of the mod-
ern devices, it is preferable to find a better evolutionary
strategies that offer faster convergence (require less calls
for the solver) and provide accurate results.

The CMA-ES has been gaining a lot of attention re-
cently, since it requires fewer cost function evaluations
compared to the classical evolutionary algorithms like
GA. The CMA-ES operates by reshaping and moving
a Gaussian distribution in all the search space in order
to find the global minimum [13, 39, 43]. This Gaussian
distribution is fully defined by its mean and its shape is
defined by the covariance matrix. The CMA-ES is able
to adapt itself and adjust the search parameters during
the optimization by changing the shape and the size of
the search distribution at each iteration according to the
progress (see Fig. 1(a) for a simple illustration). This
advanced evolutionary strategy uses several internal pa-
rameters to adapt itself and generally it behaves like a
black-box optimizer. One needs just to choose the initial
population size, a random initial guess and the algorithm
attempts to make best progress in a few number of iter-
ation by changing the shape and the size of the search
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space at each iteration in order to find the global min-
ima/maxima as illustrated in Fig. 1(a). Consequently,
the CMA-ES requires fewer solver calls compared to the
classical evolutionary strategies like GA [15, 24] in which
the shape of the distribution and the size of the search
space remain constant during optimization process that
might lead to costly simulation compared to CMA-ES.
For more details about CMA-ES, the reader can refer to
Refs. [13, 39, 43].

Despite, the advantageous of the CMA-ES over all the
evolutionary optimization strategies, for large parameter
space problems, the CMA-ES still require costly simula-
tions. To overcome this issue, the use of surrogate mod-
els in the framework of statistical learning is a promising
approach. In particular, in our work we focus on the Ef-
ficient Global Optimization (EGO) algorithm. The EGO
algorithm is a global optimization algorithm based on the
surrogate modelling, that is to say, replacing the complex
or costly evaluation process by a simpler and cheaper
model [40, 44] to reduce dramatically the computational
cost (number of calls for the electromagnetic solver). The
EGO uses a statistical learning process in order to drive
the optimization [40, 44] and it is based on two phases.
The first one is the Design Of Experiment (DOE), in
which an initial database (with the bounded search space
for the parameters) is generated. In another words, for
random parameter values (corresponds to different meta-
surface designs), the cost function is evaluated using an
electromagnetic solver. In the second phase, using the
data obtained from the DOE, a Gaussian process model
is constructed to fit these data. This Gaussian model,
allows us to predict the values of the cost function in the
search parameter space. Using a specific merit function
(expected improvements in our case), the most interest-
ing points (parameter values) that correspond to a max-
imum expected improvements are selected. These new
points are then simulated using the solver to compute the
new objective function and the error estimations, then
another Gaussian model, will be constructed using the
new objective function evaluations . We repeat this pro-
cess until we reach a predefined convergence criterion, or
when the expected improvement is very small. A flow
chart of the EGO procedure can be found in Fig. 1(b).
In order to show the different behaviors of CMA-ES and
EGO, we provide a 2D anlytical example to illustrate the
principle ideas of both methods. We consider the mini-
mization of a 2D Branin function

minimize
x,y

f(x, y) =

(
y − 5.1

4π2
x2 +

5

π
x− 6

)2

+10

(
1 − 1

8π

)
cos(x) + 10,

subject to − 5 ≤ x ≤ 10 and 0 ≤ y ≤ 15.

(1)

The Branin function f(x, y) has 3 global minima, i.e
three different combination of x and y generate the same
value of the objective function, as it is indicated by the
black arrows in Fig. 1(c). The main idea here, we want

show the different behaviors of CMA-ES and EGO. We
start by the CMA-ES, as we mentioned above, the CMA-
ES starts with an initial point (initial parameter values),
and adapt itself during the optimization by changing the
shape and the size of the search distribution. The yel-
low points shown in Fig. 1(d) represent the values of the
objective function evaluation during the CMA-ES opti-
mization, as it can be seen, the CMA-ES converges to
one global minima in an efficient way, however it took
nearly 180 iterations to get one global point as it is shown
in Fig. 1(e) where the convergence is clearly illustrated.
On the other hand, the EGO method represented by the
black points in Fig. 1(d), is able to catch all the three
global points, and then tries to enrich the data around
one of them to get a better value. For the EGO, we
consider an initial DOE including 5 points (blue points
in Fig. 1(f))), then a Gaussian model is constructed us-
ing this DOE, and after only 35 iterations (including
DOE), the EGO was able to visit all the three global
minima as illustrated by the black points in Fig. 1(d) and
Fig. 1(f). This analytical example shows the powerful
of each method and also illustrates the different mech-
anism of each of them in optimizing the problems. In
the following we will use the CMA-ES and EGO in order
to optimize different metasurface geometries in order to
maximize the deflection light efficiency at λ = 600 nm.

As a first example, in Fig. 2(a), we consider a gradi-
ent based metasurface made of rectangular GaN semi-
conductor (dark-red regions) placed over a semi-infinite
substrate made of Al2O3 (shown in green). We consider
a normal incident plane-wave with electric field polarized
in the y-direction, and we aim to maximize the diffraction
efficiency of the first order mode η(0,−1) (deflect light
in the same plane of incidence y-z plane) at wavelnegth
λ = 600 nm. Thus, we consider a sub-wavelength period
in the x-direction (300 nm) to limit the diffraction into
the substrate, and we consider a period of 1500 nm in
the y-direction, as it can be seen in Fig. 2(a). In this
first design, we consider a rectangular shaped antennas,
in which the positions of each ridges in y direction and
thicknesses in x and y directions, together with the height
of the ridges need to be optimized. The 12 optimized pa-
rameters are represented by the red circles in Fig. 2(a).
It is worth mentioning that we took into account the ex-
perimental constraints during the optimization process,
in which the minimum feature size is set to 90 nm and the
height of the ridges is set between 600 nm and 800 nm.

In Fig. 2(b-c), we present the results obtained using
our optimization techniques for optimizing the rectangu-
lar shaped metasurface shown in Fig .2(a). The CMA-
ES results are shown in Fig. 2(b), in which the objective
function evaluation at each iteration is shown in dark-
yellow points, the best values of the objective function
at each iteration is represented by the purple solid curve.
In principal, at each generation, we evaluate 11 meta-
surface designs and the best value is kept if it is better
than the best one obtained in the previous generation.
As we can see, after nearly 550 iterations, we obtain
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FIG. 1. (a): simple illustration of the CMA-ES method (this figure is captured from wikipedia). (b): schematic diagram for
the EGO steps. (c-d): 2D example to illustrate the different behaviors of CMA-ES and EGO methods. We consider here the
minimization of a the Branin function that has 3 global minima indicated by the black arrows in (c). The CMA-ES and the
EGO results are given in (d). The evolution of CMA-ES as a function of the solver calls is provided in e, the yellow points
represent the objective function values at each iterations, the purple curve indicates the best value at each iteration. (f): similar
to (e) except that here the blue points represent the DOE and the black ones give the data during the optimization. See the
text for more explanation.

a global mimima such that 1 − ηTM (0,−1) ≈ 0.119 at
λ = 600 nm, which is corresponding to diffraction effi-
ciency of approximately 88.10% for TM polarized waves.
The evolution of the diffraction efficiency ηTM (0,−1) as
a function of the wavelength is represented by the purple
curve in Fig. 2(d), in which the maximum is achieved
at λ = 600 nm. The corresponding parameter values is
shown in the left purple table in Fig. 2(e), where dx and
dy give the thickness in x and y directions, respectively
for each rectangular element, and h denotes the height
of the ridges (see Fig. 2(a)). As it can be seen from
this table, that we have a usual gradient thicknesses in
y direction that will provide gradual light deflection in
y-z plane. In addition, the height of the ridges is nearly
800 nm, which is long enough to provide longitudinal
modes to propagate in z direction and achieve and ef-
ficient light delay. The field maps for the Re(Hx) and
Re(Ey) at λ = 600 nm can be found in Fig. 2(f) and
Fig. 2(g), respectively, where the light deflection is clearly
demonstrated. It is worth mentioning that during the
optimization process, we consider coarse mesh consists of
3000 cells with fourth order polynomial P4 (thanks to our
DGTD solver [38]) which is sufficient to obtain accurate
results. The convergence proof is provided in Fig. 5(a) in
the supplementary information section. Here, the results
shown in Figs. 2(d) and Figs. 2(f-g) are obtained using

thin mesh with second order polynomial P2 for better
field visualization.

Now, we move to the results obtained by the EGO
method for optimizing the rectangular metausrface
shown in Fig. 2(a). As we have stated before, the first
phase of the EGO model is to obtain a DOE. In this
example, we consider 80 random points to construct the
DOE represented by the blue points in Fig. 2(c). Based
on these 80 points, a surrogate model is constructed and
is used during the optimization process to find a global
minimum below the best point found in the DOE pro-
cess (represented by the pink point in Fig. 2(c)). As
it can be seen from the green curve and its associated
data (black points just above the green curve Fig. 2(c)),
the convergence is obtained after few number of itera-
tions (after that the curve is flat meaning that accord-
ing to the investigated data the best point has been ob-
tained). We stop the simulation after only 150 iterations
(solver calls including the DOE) since this minimization
level of the cost function is sufficient for us and we con-
verge to a global minimum in which 1 − η(0,−1) ≈ 0.12
which corresponds to deflection efficiency of 88.0% at
λ = 600 nm. In another words, using the EGO, we
optimized 12 parameters and obtained a diffraction effi-
ciency around 88.0% at λ = 600 nm using only 150 solver
calls which is much smaller than the number solver calls
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FIG. 2. Results for rectangular shaped antenna. (a): the geometry under consideration with rectangular nano ridges made
of GaN (dark-red ridges) on top of a semi-infinite substrate made of Al2O3 (green region). The 12 red circles represent
the optimization parameters. (b): optimization process using CMA-ES as a function of the solver calls. Dark-yellow points
represent the value of the objective function at each iteration, the solid purple line gives the best point during the optimization
up to the current iteration. (c): optimization using the EGO as a function of the solver calls. The blue points represent the
DOE, the black points represent the value of the objective function at each optimization iteration, and the green solid line
indicates the optimized data. (d): comparison between the diffraction efficiency for the first order mode as a function of the
wavelength for the TM polarized wave. Purple and green colors for the CMA-ES and EGO optimized geometries, respectively;
the corresponding parameter values shown in (e). (f-i): field maps for <e(Hx) and <e(Ey) for the optimized geometries at
λ = 600nm.

used in the CMA-ES procedure (see Fig. 2(b)). Inter-
estingly, the optimized parameters obtained by the EGO
method (up to our stopping criteria) are different from
the one found by the CMA-ES method (see Fig. 2(e)),
even if both of them provide nearly the same diffraction
efficiency 88% at λ = 600 nm as in is inferred in Fig. 2(d).
Obviously, for the results obtained by the EGO method
(right green table in Fig. 2(e)), the gradient in the dy
thicknesses of the ridges is not fully satisfied (dy for the
last ridge is bigger than the one before), unlike the re-

sults obtained by the CMA-ES. In addition, the height of
the nanoridges is much shorter than the one found by the
CMA-ES method (nearly one wavelength). This means
that up to 150 solver calls, the EGO has obtained another
global point that is not found by the CMA-ES, similar
to what we have seen before for the analytical example
shown in Fig. 1(c-d). In addition, this is also can be
understood from the field maps provided in Figs. 2(h-i),
in which we clearly see that the number of longitudi-
nal modes propagates for the optimized geometry found
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3                 154.5   

4                 126.03   

Distance center to center  in y 
element 1 and 2       293.955 nm

element 2 and 3      297.416  nm

element 3 and 4       236.593 nm

h=   708.678

 

EGO

CMA-ES   results

h=735.835 nm

Re(Hx)

CMA-ES   results

h=735.835 nm

Re(Ey)

EGO   results

h=708.678 nm

EGO   results

h=708.678 nm

(a) (b) (c)

(d) (e) (f)

(g) (h) (i) (j)

FIG. 3. Results for spherical shaped antenna. Similar to Fig.2, (a): the geometry under consideration with spherical nano
ridges made of GaN (dark-red ridges) on top of a semi-infinite substrate made of Al2O3 (green region). The 8 red circles
represent the optimization parameters. (b): optimization process using CMA-ES as a function of the solver calls. Dark-yellow
points represent the value of the objective function at each iteration, the solid purple line indicates the best point during
the optimization up to the current iteration. (c): optimization using the EGO as a function of the solver calls. The blue
points represent the DOE, the black points represent the value of the objective function at each optimization iteration, and
the green solid line indicates the optimized data. (d): comparison between the diffraction efficiency for the first order mode
as a function of the wavelength for the TM polarized wave. Purple and green colors for the CMA-ES and EGO optimized
geometries, respectively; the corresponding parameter values shown in (e-f). (g-j): field maps for <e(Hx) and <e(Ey) for the
optimized geometries at λ = 600 nm.

by the EGO are different from the ones obtained by the
CMA-ES (see Figs. 2(f-g)), which explains why we have
at least two different global mimima in this configuration,
which is an evident proof that the CMA-ES and EGO
are two different efficient and complementary optimiza-
tion technique. We would like to emphasize here that in
our design, we consider a unit cell made of 4 nanoridges,
rather than optimizing a single ridge (as it is always the

case for most of the works available in the literature),
since the coupling between the modes propagating in the
nanoridges cannot be negligible (see Figs. 2(g) and 2(i) ).
This coupling is of great importance, and must be taken
into account during the optimization process in order to
provide a robust design with small fabrication error as we
shall see in our future work. This coupling could be an-
other reason to explain why we obtained different global
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minima in our design.

As a second example, we use our optimization methods
to optimize a metasurface made of spherical nano anten-
nas (see Fig. 3(a)) in order to maximize the diffraction
efficiency for the first order mode as for the rectangu-
lar case shown above, but insensitive to the polarization
change unlike the rectangular shape. In this case, we op-
timize 8 parameters (see Fig. 3(a)) we optimize the diam-
eter of each ridges (thick white arrows), the height, and
the position of the ridges represented by the red points.
We consider the same experimental constraints as for the
rectangular case.

We begin again with the CMA-ES results shown in
Fig. 3(b), similar to the rectangular case, we obtain a
global point after 300 solver calls with diffraction effi-
ciency around 85% for TM polarized waves (results for
TE polarization is also around 85%, data not shown). For
the EGO, we consider a DOE of 50 points (see blue points
in Fig. 3(b)), after that a Gaussian model is constructed
and a global point is clearly obtained with nearly 180 iter-
ations with efficiency 85%. Nevertheless, even if we have
gradient in the diameter thicknesses for the two set of ge-
ometries, the two set of parameters obtained by CMA-ES
and EGO are slightly different (see Figs. 3(e-f)). In ad-
dition, the evolution of the efficiency as a function of the
wavelength is again slightly different. This can be under-
stood again form the field maps obtained at λ = 600 nm,
in which they are similar except for the number of longi-
tudinal mode is slightly different. Here for the CMA-ES
results we obtain h = 735.835 nm, and we see nearly half
of the last mode loop in the first ridge, however, for the
results obtained from the EGO, we see a very small part
of the last mode loop in the first ridge. This can be under-
stood from the small different in height between the two
set of parameters which is about 30 nm. In order to give
more insight about this results, in Fig. 4, we consider op-
timizing the geometry shown in Fig. 3(a), but with fixed
height h = 800 nm, using the CMA-ES and compare the
results with the ones obtained with the CMA-ES with
varying the height. In Fig. 4(a), one clearly sees that
the results obtained with fixed height h = 800 nm ap-
proaches the results obtained with varying the height.
Moreover, the set of parameters obtained from both of
them are quite similar to each other. This also can be
seen from field maps in Figs. 4(e-f), in which for the ge-
ometry with h = 800 nm, the last mode loop in the first
ridge is completely inside the ridge, which provides more
phase delay and slightly higher efficiency at λ = 600 nm
as it is shown in Fig. 4(d). The convergence proof of
the spherical case can be found in the supplementary
information in Fig. 5(b), in which we investigated dif-
ferent mesh sizes and different polynomial orders. It is
worth mentioning that during the optimization process,
we used a coarse mesh of 10000 cells with fourth order
polynomial P4 which is sufficient to get accurate results
especially at λ = 600 nm (the desired wavelength) as it
is depicted in Fig. 5(b). However, all the results obtained
for the optimized geometry shown in Figs. 3(g-i) and 4(g-

j) are obtained with thin mesh of 109000 cells and second
order polynomial order P2 for better field visualization.
In Fig. 5(b)Thanks to our DGTD solver, we are able to
use show even more accurate results using higher order
curveliniar elements with different higher order polyno-
mial, in order to provide more accurate numerical results
for the comparison with our future experimental work.

Based on our numerical results shown above for both
the rectangular and spherical shaped antennas, it is clear
that the CMA-ES and EGO, ”understood” that there is a
key parameter that has the biggest influence on the min-
imization process. Here, we clearly see that for all the
results obtained above the optimizers try to set the thick-
ness of the first ridge (dy in case of rectangular and di-
ameter in case of spherical shaped antennas) to the max-
imum. Which also make sense from the physical point
of view, so as to achieve a gradient phase delay in y-z
plane and maximize the deflection efficiency for the first
order mode. The second parameter which is important,
is the height of the ridges, due to the different numbers of
longitudinal modes that can lead to the same diffraction
efficiency (taking into account the full coupling between
the ridges). The other parameters has also impact on the
deflection efficiency, but less than the thickness of the
first parameter and also the height of the ridges. This
is again a clear evidence that our optimization methods
provide meaningful results that can be interpreted from
the physical point of view. From the fabrication point of
view, the structures with h = 800 nm, are more favorable
for us and they will be considered in our future work for
the fabrication and the characterization processes.

CONCLUSION

Two advanced optimizaton techniques based on statis-
tical learning approach (EGO) and on advanced evolu-
tionary strategies (CMA-ES) have been introduced and
used in order to optimize 3D metasurface. These meth-
ods are widely used in the computational fluid dynamics
community, but here we introduce them to the metasur-
face community, and prove that they are very efficient
in obtaining different global minima/maxima using ac-
ceptable electromagnetic solver calls. We applied these
methods in order to maximize the light deflection effi-
ciency at λ = 600 nm using GaN based metasurfaces.
Our numerical results reveal that one can obtain 85%
of deflection efficiency for both TM and TE polarization
using cylindrical shaped antennas. In addition, we show
that using rectangular shaped antennas, one might ob-
tain more that 88% of deflection efficiency for TM polar-
ization. Based on the field maps obtained from our rigor-
ous DGTD solver, we provide physical insights about the
optimized geometries. The fabrication and the character-
ization of the optimized geometries will be presented in
our future work.
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element      Diameter

1                 209.746

2                 176.225      

3                 149.184   

4                 117.608   

Distance center to center  in y
element 1 and 2       308.644 nm

element 2 and 3       255.715 nm

element 3 and 4       249.377 nm

h=   735.835 nm

 

element      Diameter

1                 205.198

2                 176.448      

3                 142.317   

4                 128.255   

h=   800.00 nm

Distance center to center  in y
element 1 and 2      327.915  nm

element 2 and 3       282.344 nm

element 3 and 4       238.49 nm
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FIG. 4. (a): comparison between results obtained with CMA-ES (for the spherical shaped antenna) with changing height
(purple curve, see Fig. 3 (b)), and the ones obtained with CMA-ES with fixed h = 800nm as a function of the solver calls.
The corresponding optimized parameter values shown in (b-c). (d): diffraction efficiency as a function of the wavelength. (e-f):
field maps for <e(Hx) at λ = 600nm.
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APPENDIX

In Fig.5, we present the numerical convergence for
some of the optimized geometries shown above. In

Fig.5(a), we study the influence of the mesh and the poly-
nomial order on the optimized solution obtained in the
rectangular case (the results obtained from the CMA-
ES shown in Fig.2). As it can be seen in Fig.5(a), us-
ing fourth order polynomial order with a coarse mesh
(only 3000 cells) provides the same results when we con-
sider second order polynomial order with thin mesh (with
147000 cells). Fig.5(b), we show the convergence for the
cylindrical case using both linear elements and also curve-
linear higher order elements. As it can be noticed, the
convergence achieved with less cells in the case of the
curvelinear elements compared to the case with linear
ones (due to the feature of the cylindrical shaped anten-
nas). To conclude on this point, thanks to our DGTD
solver, we are able to prove the convergence for the opti-
mized geometries using different mesh size and/or types,
which is not trivial especially for the case of cylindrical
elements that require higher order curvelinear mesh type
for more accurate results.
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FIG. 5. Convergence study (a): for the rectangular shaped antenna with coarse mesh and fourth order polynomial P4 (blue
curve) and with thin mesh with second order polynomial P2 (purple curve). (b): convergence results for the spherical shaped
antenna, with coarse mesh and P4 (blue curve), with different mesh sizes, different polynomial orders, and different mesh types.
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