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Abstract We study the fair division problem consisting in allocating one
item per agent so as to avoid (or minimize) envy, in a setting where only
agents connected in a given network may experience envy. In a variant of
the problem, agents themselves can be located on the network by the central
authority. These problems turn out to be difficult even on very simple graph
structures, but we identify several tractable cases. We further provide practical
algorithms and experimental insights.
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1 Introduction

Fairly allocating resources to agents is a fundamental problem in economics
and computer science, and has been the subject of intense investigations [17,
23]. Recently, several papers have explored the consequences of assuming in
such settings an underlying network connecting agents [2, 6, 11, 19, 23]. The
most intuitive interpretation is that agents have limited information regarding
the overall allocation. Two agents can perceive each other if they are directly
connected in the graph.
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A fairness measure, very sensitive to the information available to agents, is
the notion of envy [31]. Indeed, envy occurs when an agent prefers the share
of some other agents over her own. Accounting for a network topology boils
down to replacing “other agents” by “neighbors”. The notion of envy can
thus naturally be extended to account for the limited visibility of the agents.
Intuitively, an allocation will be locally envy-free if none of the agents envies
her neighbors. This notion has been referred as graph, social, or local envy-
freeness [2, 6, 19, 22, 23, 30]. It finds its origins in Festinger’s work on social
comparisons which are not made globally but locally, i.e. with respect to an
individual’s neighbors in the social network [29].

In this paper, we are concerned with the allocation of indivisible goods
within a group of agents. The setting we study in this paper is arguably one of
the simplest in resource allocation, known in economics as house allocation [1,
36, 49]: agents have (strict) preferences over items, and each agent must receive
exactly one item. In the case of a complete network, envy-freeness is not a very
exciting notion in that setting. Indeed, for an allocation to be envy-free, each
agent must get her top object (and this is obviously also a Pareto-optimal
allocation in that case). When an agent is only connected to a subset of the
other agents, she may not need to get her top-resource to be envy-free. The
locations of the resources on the graph as well as the connections between the
agents are then crucial issues in order to compute a locally envy-free allocation.

To see how the network can make a difference, consider the following sce-
nario.

Example 1 Suppose for instance a team of workers taking their shifts in se-
quence, to which a central authority must assign different jobs. Workers have
preferences regarding these jobs. As the shifts are contiguous and as the em-
ployees work at the same place, they have the opportunity to see the job
allocated to some other workers, as one ends and the other one begins her
shift. This would be modeled as a line topology in our setting as depicted on
the graph in Figure 1. To make things concrete, suppose there are three jobs,
chop the tree, mow the lawn, and trim the hedge, and three gardeners (1, 2
and 3) with preferences 1 : chop � mow � trim, 2 : mow � chop � trim,
3 : chop � trim � mow, taking shifts in order 1, 2 and finally 3. On Figure 1,
rankings are mentioned over agents (with top jobs at the top, etc.)

1

chop
mow
trim

2

mow
chop
trim

3

chop
trim
mow

Fig. 1: Example of working locations and preferences of three gardeners over
three jobs to perform
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By allocating the job chop the tree to agent 1, mow the lawn to agent 2,
and trim the hedge to agent 3, we get an envy-free allocation if we disregard
the fact that agent 3 may be envious of agent 1. Note that a locally envy-free
allocation is not necessarily Pareto-optimal (take the same allocation, but the
ranking of agent 1 to be trim � chop � mow). However, giving her top item
to each agent if possible will always be an envy-free Pareto-optimal allocation
in any network.

Now, consider that we switch the locations of agent 2 and agent 3, as
depicted in the graph of Figure 2.

1

chop
mow
trim

3

chop
trim
mow

2

mow
chop
trim

Fig. 2: Switch in the working locations of the three gardeners

In this instance, there is no locally envy-free allocation. In fact, if agent 3
gets the job chop the tree, she will be envied by agent 1. If agent 1 or agent 2
gets the job chop the tree, agent 3 will be envious of one of her neighbors. From
these observations, it is worth investigating the problem of deciding whether
a locally envy-free allocation exists.

When a locally envy-free allocation does not exist, one can try to optimize
the number of agents that are locally envy-free or to optimize the degree of
non-envy in the network. Hence, by allocating the job mow the lawn to agent
1, trim the hedge to agent 3 and chop the tree to agent 2, only one agent is
envious of another agent (agent 3 is envious of agent 2). This solution both
optimizes the number of agents that are locally envy-free and the degree of non-
envy in the network. In this paper, we will also investigate these optimization
problems.

The reader may object that, in the first network of Example 1, agent 3 may
still be envious of agent 1, because she knows that this agent must have received
the task agent 2 didn’t get, i.e. chop the tree. This is a valid point, to which
we provide two counter-arguments. First, as a technical response, note that in
general agents would not know exactly who gets the items they do not see.
Thus, although agents may know that they must be envious of some agents,
they cannot identify which one, which makes a significant difference in the case
of envy. It could also be that agents actually do not know which objects are to
be allocated in the first place. For instance, while the central authority may
know the preferences of gardeners over all the possible tasks to be performed,
the gardeners themselves may not know each morning exactly which task is to
be performed on that day. Our second point is more fundamental and concerns
the model and the motivation of this work. Clearly, the existence of a network
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may be due to an underlying notion of proximity (either geographical, or
temporal as in our example) in the problem. However, another interpretation of
the meaning of links must be emphasized: links may represent envy the central
authority is concerned with. In other words, although there may theoretically
be envy among all agents, the central authority may have reasons to only focus
on some of these envy links. For instance, you may wish to avoid envy among
members of the same team in your organization, because they actually work
together on a daily basis (in that case links may capture team relationships).
Under this interpretation, a network of degree n−2 (the total number of agents
minus 2), where an agent can envy everyone except one another agent, could for
instance model a situation where agents team-up in pairs and conduct a task
together, sharing their resources. In a similar vein, we may focus on avoiding
envy among “similar” agents, because they may be legitimate to complain if
they are not treated equally despite similar competences, for instance.

1.1 Related work

Our work is connected to a number of recent contributions addressing fair
allocation on graphs.

Both Abebe et al. [2] and Bei et al. [11] studied envy-freeness and propor-
tionality for the cake cutting problem where comparisons between agents are
limited by an underlying network structure. Cake cutting deals with the fair
allocation of divisible goods (e.g. land) while the present work is devoted to
indivisible resources.

Bredereck et al. [19] introduced a model with indivisible resources which is
very close to ours. The underlying graph is directed (agent u can envy agent
v if the arc oriented from u to v exists), and the number of objects that an
agent receives is not fixed (it can be 0) and it may differ between the agents.
The present work deals with undirected graphs, and every agent must receive
exactly one object. An instance described with an undirected graph can also be
described with a directed graph because an edge can be replaced by two arcs
of opposite orientations. However, an algorithm or a reduction designed for a
kind of graphs (directed or not) may not translate to the other kind. Bredereck
et al. investigate the standard and parameterized computational complexity
of finding an allocation where the agents have additive and monotone utility
functions over the objects. Envy-freeness has to be satisfied along the arcs
of the directed graph, together with an additional requirement which can be
completeness (all the objects are assigned), Pareto-efficiency, or the fact that
the utilitarian social welfare is maximized.

There exist different fairness criteria (max-min fair share, proportionality,
envy-freeness, CEEI, etc.), which are connected by implication relations and
form a scale of fairness according to the strength of their requirement [18]. For
example, under mild assumptions on the agents’ utilities, envy-freeness implies
proportionality which implies max-min fair share. The relations between these
fairness concepts were recently enriched by Aziz et al. with a novel notion
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called graph epistemic envy-freeness [6]. Agents are solely aware of the shares
of their neighbors in a given social network (a directed graph). An agent i is
envious if her share A(i) is worse than a neighbor’s share, or any allocation
of the objects not present in the shares that she is aware of, must contain a
share that agent i finds better than A(i).

Recently, house allocation settings have been discussed, notably in rela-
tion with swap dynamics [24, 34]. In particular, Gourvès et al. [34] show how
graph structures can affect the complexity of some decision problems regard-
ing such dynamics. More specifically, they study the complexity of deciding
whether some object is reachable by a given agent or whether some allocation
is reachable by a sequence of swaps among agents. The complexity of search-
ing a Pareto-efficient solution is also studied. The reachable object problem
is re-examined by Saffidine and Wilczynski [44], assuming that the number of
swaps and the total duration of the process are limited. Even more recently,
Kondratev and Nesterov unveiled surprising connections in house allocation
settings between the minimization of the number of envious agents, and pop-
ular matchings [40]. Their notion of envy slightly differs from ours though, in
the sense that it excludes envy towards those agents who get their preferred
item (which they call “inevitable” envy).

The allocation of a graph has also recently been studied [13, 16, 37, 46]. In
this context, the nodes of the graph represent indivisible resources to allocate
and edges formalize connectivity constraints between the resources: each agent
must receive items which form a connected component in the graph. The graph
structure enables to capture dependencies between the resources, like spatial
dependencies for pieces of land or time constraints.

In a similar framework, some computational aspects of allocating agents
on a line are discussed by Aziz et al. [7]. In this setting, the line concerns slots
to allocate to the agents, and can be viewed as the problem of placing the
agents at the nodes of a line. The agents have specific target locations on the
line, which induces a domain restriction (stronger than single-peakedness).

Several ways for a central authority to control fair division have been
discussed by Aziz et al. [8]: the structure of the allocation problem can be
changed by adding or removing items to improve fairness. Interestingly our
model introduces a new type of control action: locating agents on a graph.
Finally, because envy-freeness cannot be guaranteed in general (with indivis-
ible items), and as related decision problems can be difficult even in simple
settings [38, 41], different notions of degree (or relaxation) of envy have been
studied [13, 21, 27, 41, 42], and the relation between some of these relaxations
has been studied by Amanatidis et al. [3].

1.2 Contributions and organization

A formal definition of the model, together with the definition of the main
problems that we address, are provided in Section 2. Section 3 is dedicated
to the problem, called dec-LEF, of deciding if a central planner, who has
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a complete knowledge of the social network and the agents’ rankings of the
objects, can allocate the objects such that no agent will envy a neighbor.
Note that in this setting the central planner does not decide where the agents
are located on the network. We identify intractable and tractable cases of
this decision problem, with respect to the number of neighbors of each agent,
that is the degree of the nodes in the graph representing the social network.
Remarkably, we show that the problem turns out to be intractable even on
social networks with simple structure: when agents are matched one-to-one
(Theorem 1), when agents are located on a line, or when agents are split in
teams of two equal size (Theorem 4), to cite a few examples. On the contrary,
the problem is tractable when the graph is very dense (Theorem 2). It is
also easy to see that the problem can be solved efficiently on a star network:
certainly the center node has to receive her preferred object, and then the
remaining question (whether the other agents can each be assigned an object
they prefer to the one of the center) turns out to be a matching problem. This
gives the intuition that a relevant parameter to study is the size of a vertex
cover (a subset of nodes in the network including at least one extremity of each
edge). For instance the center of a star is a vertex cover. Since at least one
of the extremities of each edge is contained in a vertex cover, the rest of the
vertices forms a set of pairwise non-adjacent vertices, and thus envy cannot
occur within the corresponding set of agents. We provide an algorithm which
shows that dec-LEF is in XP (parameterized by the size of a vertex cover)
and a proof of W[1]-hardness (Theorems 5 and 6). Our findings for dec-LEF
are summarized in Table 1.

degree of G
∆(G) = k (k ≥ 1 fixed) NP-c Cor. 1

δ(G) = n− k (k ≥ 3 fixed) NP-c Cor. 2
δ(G) = n− 2 P Th. 2

number of clusters c in a cluster graph
c ∈ {k, n/k} (k ≥ 2 fixed) NP-c Cor. 3

c ∈ {1, n} P

parameter k on the vertex cover size
XP Th. 5

W[1]-hard Th. 6

Table 1: The complexity of dec-LEF with respect to the degree of its nodes.
k is a positive integer and n denotes the number of agents. P means

polynomial time solvable and NP-c means NP-complete. ∆(G) and δ(G) are
the maximum and minimum degrees, respectively, of a vertex in G.

Given that locally envy-free allocations may not exist in the first place,
and that the associated decision problems can be hard, it is natural to take an
optimization perspective. In our ordinal setting, we shall be concerned with
the maximization of the number of non-envious agents, and of a metric aver-
aging the degree of (non-)envy in the society, solely based on the ranks of the
items that agents possess. Section 4 is dedicated to optimization problems tak-
ing these two different perspectives. We provide approximation algorithms for
both approaches. In the first case, we elaborate on the fact that, when an in-
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dependent set of agents can be identified, a simple sequential picking sequence
protocol is sufficient to guarantee that the agents in this set will be locally
non-envious (Proposition 1). In fact, this connection to the (maximum) inde-
pendent set can be further exploited to show that no constant approximation
can be found for this objective (Proposition 3), unless P = NP. In the second
case, we build on the observation that random matchings are actually likely
to give a high degree of non-envy, and exploit derandomization techniques to
obtain a polynomial-time approximation algorithm (Proposition 5).

A variant of dec-LEF called dec-location-LEF is studied in Section 5.
This problem asks if one can decide both the placement of the agents (on a
given social network) and the object allocation so as to satisfy local envy-
freeness. For instance, in Example 1, it is natural to imagine that the central
authority can also assign agents to their shifts. The problem is (unsurprisingly)
shown to be NP-complete. A much less expected result, on the positive side,
is that the special case of very dense graphs can still be resolved in polynomial
time (Theorem 8).

In Section 6 we study the likelihood, for randomly chosen instances of our
problems, to be positive (i.e. to accept a locally envy-free allocation) –in par-
ticular how does it depend on the density of the graph. We first exhibit an
asymptotic result (Proposition 6) showing that this event has negligible prob-
ability as soon as the degree of the graph is above a fraction 1/e of the number
of nodes. We complement this by empirical evidence of instances of moderate
size (recall that the underlying problems are NP-complete), studying in ad-
dition how more likely it becomes when the central authority has the extra
flexibility to assign agents on the network, as assumed in the dec-location-
LEF. These experiments are conducted on graphs of regular degree, which
are not necessarily realistic. We thus complement our results by using more
realistic graphs distributions and restrictions on agents preferences, such as
single-peaked domains. In terms of graph structures, we consider scale-free
networks, and graphs whose structure depends on the “similarity” between
agents (either because similar agents are more likely to be connected, or the
other way around).

We provide open problems and future directions in Section 7.

2 Our model and problems

A set of objects O and a set of agents N are given. We assume that |O| =
|N | = n. This hypothesis on the number of objects being equal to the number
of agent does not preclude the case where there are more agents than objects.
Indeed, one can add dummy items which will be allocated to the agents who
do not receive an object. Each agent i has a preference relation �i over O (a
linear order). Let �= (�1, . . . ,�n) denote the preference profile of the agents.
For any positive integer k, [k] stands for {1, 2, . . . , k}.

We are also given a network modeled as an undirected graph G with vertex
set N and edge set E. Each edge in E represents a relation between the
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corresponding agents. Two agents are directly connected in the network if
they can perceive each other and they may envy each other. An instance of a
resource allocation problem is thus described by a tuple 〈N,O,�, G = (N,E)〉.

When the network G is dense, it may be easier to describe it through its
complement graph G which is the unique graph defined on the same vertex set
and such that two vertices are connected if and only if they are not connected
in G.

The degree of a vertex v ∈ N , denoted by degG(v), is the number of edges
incident to v. The maximum (respectively, minimum) degree of a graph G,
denoted by ∆(G) (respectively, δ(G)) is the maximum (respectively, minimum)
degree of its vertices. A regular graph is such that all of its nodes have the
same degree. In other words, G is a regular graph if and only if δ(G) = ∆(G).

A partial allocation A is a subset of N × O in which no agent nor object
appears twice. If each object and each agent appears exactly once, this partial
allocation is called an allocation. If agent i appears in A, by an abuse of
notation, A(i) will refer to the object owned by i.

Definition 1 (Locally envy-free) An allocationA is locally envy-free (LEF)
if no pair of agents {i, j} ∈ E satisfies A(j) �i A(i).

Note that the classical notion of envy-freeness corresponds to the local
envy-freeness when graph G is complete. Therefore, the notion of local envy-
freeness generalizes the notion of envy-freeness. For a given allocation, an
agent is locally envy-free (LEF) if she prefers her object to the object(s) of
her neighbor(s).

Several notions of degrees of envy1 have been studied [21, 23, 26, 41, 42]. In
our context we shall study the number of envious agents, and a degree measure
capturing some simple notion of intensity of envy, in terms of the difference
of ranks2 between items (these two notions would correspond to esum,max,bool

and esum,sum,raw, up to normalization, under the classification of Chevaleyre
et al. [23]).

Definition 2 (Degrees of (non)-envy) Given an allocation A, the degree
of envy of agent i towards agent j is

e(A, i, j) =
1

n− 1
max(0, ri(A(i))− ri(A(j)))

where ri(o) is the rank of object o in i′s preferences, and 0 ≤ e(A, i, j) ≤ 1.
Note that for a given allocation A, an agent i envies a neighboring agent j
if and only if e(A, i, j) > 0. Observe also that e(A, i, j) = 1 when i holds an
object she ranks last, while j holds an object i ranks first.

1 The degree of a vertex in a graph should not be confused with the degree of envy which
measures how much an agent envies the share of another agent.

2 This is similar to assuming Borda utilities for the preferences of agents.
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Definition 3 (Average degree of (non-)envy) The average degree of envy
in the group is

E(A) =
1

2 |E|
∑
{i,j}∈E

e(A, i, j) + e(A, j, i)

Respectively, the average degree of non-envy in the group is

NE(A) = 1− E(A).

In other words, we simply average over all the pairs of agents that are
connected in the graph (note that the notion of envy being directed, while the
underlying graph is not, both directions need to be considered for each edge).

We mainly address four problems: dec-LEF, max-LEF, max-NE and
dec-location-LEF. The first one is a decision problem regarding the exis-
tence of an LEF allocation over a given social network. The second and the
third ones are optimization problems in which an allocation that is as close as
possible to local envy-freeness is sought, using the aforementioned criteria.

Definition 4 (dec-LEF) Given an instance 〈N,O,�, G = (N,E)〉, is there
an LEF allocation?

Definition 5 (max-LEF) Given an instance 〈N,O,�, G = (N,E)〉, find an
allocation that maximizes the number of LEF agents.

Definition 6 (max-NE) Given an instance 〈N,O,�, G = (N,E)〉, find an
allocation A that maximizes the average degree of non-envy, that is NE(A).

In dec-location-LEF, one has to place the agents on the network in
addition to allocate objects to them. This placement makes sense if we consider
Example 1 where the agents take shifts.

Definition 7 (dec-location-LEF) Given an undirected network (V,E), and
〈N,O,�〉, are there an allocation A and a bijection L : N → V (L determines
the location of the agents on the network) such that A(i) �i A(j) for every
edge {L(i),L(j)} ∈ E?

Example 2 As a warm-up, consider 5 agents located on a line, as depicted
below. Each agent has a strict ranking over objects (with top items at the top,
e.g. �1: a � b � c � d � e).

1

a
b
c
d
e

2

c
a
b
d
e

3

a
b
d
c
e

4

b
a
d
c
e

5

c
e
b
a
d



10

Is there an LEF allocation of goods to agents? If not, what is the minimum
number of envious agents? Finally, is it possible to find an LEF allocation by
relocating agents on this line?

Let us try to construct an allocation A that is LEF. Observe that agents 3
and 4, who are neighbors, both rank objects a and b as their first two preferred
objects and rank the remaining objects in the last positions of their preference
ranking following the same order. This implies that they cannot obtain one
of the remaining objects in an LEF allocation, i.e., an object within {c, d, e}.
Indeed, if only one agent between agents 3 and 4 obtains an object in this
subset, then she will be envious of the other agent. Otherwise, if they both
get an object from this subset, since their preferences over these objects are
the same, one of them will necessarily envy the other. Therefore, we have to
assign objects a and b to agents 3 and 4 in A, respectively. Consequently, agent
2, neighbor of agent 3, must obtain an object preferred to object a, which is
assigned to agent 3. The only object that agent 2 prefers to object a is object
c, so we have to assign object c to agent 2 in A. Agent 5, neighbor of agent 4,
must get an object preferred to object b, which is assigned to agent 4. The only
possible objects are objects c and e, but object c is already assigned to agent
2, thus we assign object e to agent 5 in A. Finally, there only remains object
d and agent 1. Agent 1 prefers object c, the object assigned to her neighbor
(agent 2), to object d. Therefore, by assigning object d to agent 1 in A, we
get that agent 1 is envious of agent 2. Thus, there is no LEF allocation in this
instance, implying that this is a no-instance of dec-LEF.

Observe that allocation A is almost LEF since only agent 1 is envious in
A. Therefore, there exists an allocation with only one envious agent. Because
there is no LEF allocation, this is the minimum number of envious agents that
we can obtain in any allocation. Now in terms of degree of envy, as agent 1
(who holds an object she ranks 4th) only envies agent 2 (who holds agent 1
ranks 3rd), we get that e(A, 1, 2) = (4−3)/4 = 1/4. As this is the only strictly
positive envy between any pair of agents, and as there are 4 edges in the
network, the average degree of envy is 1/8 × 1/4 = 1/32, and the degree of
non-envy is thus 31/32.

Finally, remark that, in allocation A, the only envious agent 1 gets object
d, and the only object that agent 1 likes less than d is object e. Object e is
owned by agent 5 who is located at a leaf of the path and who, on the opposite,
prefers object e to object d. Therefore, by considering a new location of the
agents on a path which is the same as the current graph except that agent 1 is
a leaf of the path who is connected to agent 5 (i.e., the new path [2, 3, 4, 5, 1]),
allocation A = {(1, d), (2, c), (3, a), (4, b), (5, e)} is LEF. Hence, this instance
is a yes-instance of dec-location-LEF.
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3 Decision problem

This section is devoted to dec-LEF. Our main findings settle the compu-
tational status of dec-LEF with respect to the degree of the nodes in the
network, as well as the size of a vertex cover.

First of all, note that some objects cannot be assigned to certain agents
for the allocation to be LEF. For example, the best object of an agent cannot
be assigned to one of her neighbors. More generally, no better object than the
one allocated to an agent can be assigned to one of her neighbors, leading to
the following observations:

Observation 1. In any LEF allocation, an agent with k neighbors must get
an object ranked among her n− k top objects.

Observation 2. In any LEF allocation, the best object for an agent is either
assigned to herself or to one of her neighbors in G.

Observation 1 implies that an agent having n − 1 neighbors must receive
her best object in any LEF allocation. Similarly, agents who do not have any
neighbor can receive any object in an LEF allocation.

3.1 dec-LEF and degree of nodes

Our first result shows that dec-LEF is computationally difficult, even if the
network is very sparse, i.e. each agent has only one neighbor in G (a graph
whose every vertex has degree one is called a matching). This is somewhat
surprising as such a network offers very little possibility for an agent to be
envious.

Theorem 1 dec-LEF is NP-complete, even if G is a matching.

Proof. The reduction is from 3SAT [32]. We are given a set of clauses C =
{c1, · · · , cm} defined over a set of variables X = {x1, · · · , xp}. Each clause is
disjunctive and consists of 3 literals. The question is whether there exists a
truth assignment of the variables which satisfies all the clauses.

Take an instance I = 〈C,X〉 of 3SAT and create an instance J of dec-
LEF as follows.

The set of objects is O = {uji : 1 ≤ i ≤ p, 1 ≤ j ≤ m} ∪ {uji : 1 ≤ i ≤
p, 1 ≤ j ≤ m}∪{qj : 1 ≤ j ≤ m}∪{tji : 1 ≤ i ≤ p, 1 ≤ j ≤ m}∪{h` : 1 ≤ ` ≤
m(p− 1)}. Here, uji and uji correspond to the unnegated and negated literals
of xi possibly present in clause cj , respectively, qj corresponds to clause cj ,

and the tji ’s and h`’s are gadgets. Thus, |O| = 4mp.
The set of agents N is built as follows. For each (i, j) ∈ [p] × [m], create

a pair of variable-agents Xj
i , Y ji which are linked in the network. For each

j ∈ [m], create a pair of clause-agents Kj , K
′
j which are linked in the network.

For each ` ∈ [m(p−1)], create a pair of garbage-agents L`, L
′
` which are linked
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in the network. Thus, the network consists of a perfect matching with 4mp
agents.

Each clause cj is associated with the pair of clause-agents (Kj ,K
′
j), qj

and 3 objects corresponding to its literals. For example, c2 = x1 ∨ x4 ∨ x5 is
associated with objects q2, u21, u24, and u25. The preferences of the clause-agents
are:

– Kj : qj � `(j, 1) � `(j, 2) � `(j, 3) � rest
– K ′j : `(j, 1) � `(j, 2) � `(j, 3) � qj � rest

where `(j, i) is the object related to the ith literal of cj , and “rest” means the
remaining objects which are arbitrarily ordered, but in the same way for Kj

and K ′j .

Each variable xi is associated with the m pairs of variable-agents (Xj
i , Y

j
i ),

1 ≤ j ≤ m. The preferences of these variable-agents are:

– X1
i : u1i � t1i � u1i � t2i � rest1i

– Y 1
i : t1i � u1i � t2i � u1i � rest1i

– X2
i : u2i � t2i � u2i � t3i � rest2i

– Y 2
i : t2i � u2i � t3i � u2i � rest2i

– X3
i : u3i � t3i � u3i � t4i � rest3i

– Y 3
i : t3i � u3i � t4i � u3i � rest3i

...
– Xm−1

i : um−1i � tm−1i � um−1i � tmi � restm−1i

– Y m−1i : tm−1i � um−1i � tmi � u
m−1
i � restm−1i

– Xm
i : umi � tmi � umi � t1i � restmi

– Y mi : tmi � umi � t1i � umi � restmi

where “restji” means the remaining objects arbitrarily ordered, but in the

same way for Xj
i and Y ji . The preferences of the garbage-agents (L`, L

′
`),

1 ≤ ` ≤ m(p− 1) are:

– L` : h` � U � rest
– L′` : U � h` � rest

where U = {uji , u
j
i : i ∈ [p], j ∈ [m]}, “rest” is the set of remaining objects,

and both U and “rest” are arbitrarily ordered in the same way for L` and L′`.
Figure 3 summarizes the construction.

We claim that there is an LEF allocation in J if, and only if, there is a
truth assignment satisfying I.

Take a truth assignment which satisfies I. One can allocate objects to each
variable-agent pair (Xj

i , Y
j
i ) in such a way that it is LEF: If xi = true, then

Xj
i gets uji and Y ji gets tj+1

i (where tm+1
i := t1i ), otherwise xi = false, Xj

i gets

uji and Y ji gets tji . One can allocate objects to each clause-agent pair (Kj ,K
′
j)
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X1
1

u11 � t11 � u11 � t21

Y 1
1

t11 � u11 � t21 � u11

· · · · · ·
Xm

p

ump � tmp � ump � t1p

Ym
p

tmp � ump � t1p � ump

L1

L′1

h1 � U

U � h1

· · · · · ·
Lm(p−1)

L′
m(p−1)

hm(p−1) � U

U � hm(p−1)

K1

q1 � `(1, 1) � `(1, 2) � `(1, 3)

K′1

`(1, 1) � `(1, 2) � `(1, 3) � q1

· · · · · ·
Km

qm � `(m, 1) � `(m, 2) � `(m, 3)

K′m

`(m, 1) � `(m, 2) � `(m, 3) � qm

Fig. 3: An overview of the instance of dec-LEF. Only the most preferred
objects of each agent are represented, and the order over the remaining

objects is the same for two connected agents. For each j ∈ {1, . . . ,m} and
i ∈ {1, 2, 3}, `(i, j) is the object related to the ith literal of cj , and U

represents an arbitrary order over {uji , u
j
i : i ∈ [p], j ∈ [m]}

in such a way that it is LEF: cj is satisfied thanks to one of its literals; Kj gets
qj and K ′j gets an unallocated object corresponding to a literal of cj . Finally,
allocate objects to each garbage-agent pair (L`, L

′
`) in such a way that it is

LEF: L` gets h` and L′` gets any unallocated objects of U .

Suppose an LEF allocation exists for J . Consider a variable xi. By con-
struction of the preferences of the variable-agent pair (X1

i , Y
1
i ), we observe

that there is absence of envy in only two cases: either (i) X1
i gets u1i and Y 1

i

gets t1i , or (ii) X1
i gets u1i and Y 1

i gets t2i . If we are in case (i), then there is
absence of envy between Xm

i and Y mi only if Xm
i gets umi and Y mi gets tmi

because t1i is already allocated, there is absence of envy between Xm−1
i and

Y m−1i only if Xm−1
i gets um−1i and Y m−1i gets tm−1i because tmi is already

allocated, and so on; the Xj
i ’s get all the uji ’s (i is fixed but 1 ≤ j ≤ m). If we

are in case (ii), then there is absence of envy between X2
i and Y 2

i only if X2
i

gets u2i and Y 2
i gets t3i because t2i is already allocated, there is absence of envy

between X3
i and Y 3

i only if X3
i gets u3i and Y 3

i gets t4i because t3i is already

allocated, and so on; the Xj
i ’s get all the uji ’s (i is fixed but 1 ≤ j ≤ m). Thus,

set xi to false (respectively, xi to true) if every Xj
i gets uji (respectively, Xj

i

gets uji ).
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Consider any clause cj . By construction of the preferences of the clause-
agent pair (Kj ,K

′
j), we observe that there is absence of envy in only three

cases: Kj gets qj and K ′j gets one of the 3 objects associated with the literals
of cj . Since the allocation is LEF, there is some i∗ such that K ′j gets either

uji∗ or uji∗ .This means that variable xi∗ is set to truth if K ′j gets uji∗ since uji∗

is not allocated to agent Xj
i∗ , and variable xi∗ is set to false if K ′j gets uji∗

since uji∗ is not allocated to agent Xj
i∗ . In both cases, this implies that cj is

satisfied since one of its literal (either xi∗ or ¬xi∗) is satisfied. To conclude,
all the clauses are satisfied.

The strength of this result lies on the fact that the network structure is
extremely simple. As a consequence, it can easily be used as a building block
to show hardness of a large variety of graphs. The following lemma shows
that one can add a pair of agent/object in an instance of dec-LEF without
changing the complexity of the problem.

Lemma 1 One can add a pair of agent/object to an instance of dec-LEF
without changing the set of LEF allocations (where the additional object is
assigned to the additional agent in all solutions). Furthermore, this result does
not depend on the set of agents connected to the additional agent in the network
(under the condition that she has at least one neighbor).

Proof. Let I = 〈N,O,�, G = (N,E)〉 denote an instance of dec-LEF, and
let a and o be the additional agent and object, respectively. The new instance,
including a and o, is denoted J = 〈N ∪ {a}, O ∪ {o},�′, G′ = (N ∪ {a}, E′)〉,
where �′= (�′i)i∈N∪{a} are the new preferences of the agents over O ∪ {o},
and E′ is the new set of edges of the network. Set E′ contains E and does
not add a new edge between two agents of N . Furthermore, the set of edges
containing a in E′ is arbitrary, but contains at least one edge. Let v denote
one of the neighbors of agent a in G′. Preference �′a of agent a will be defined
as a copy of the preference �v of agent v but with object o at its top. On the
contrary, the preference �′v of agent v will be defined as a copy of �v but with
object o at its bottom. In other words, the preferences of agent a and v differ
only on the position of object o. Finally, preference �′i of any other agent i of
N is defined as a copy of �i but with object o at its bottom.

Note first that one can extend any LEF allocation A of I into an allocation
A′ of J where each agent of N receives the same object as in A, and where
agent a receives object o. Allocation A′ is obviously LEF in J since agent a
receives her most preferred object which is also the last preferred object of
any other agent.

We show now that each LEF allocation A′ of J corresponds to an LEF
allocation A of I. First of all, note that object o should be assigned to agent a
in A′. Otherwise, either agent v receives o in A′ and agent a envies agent v, or
both agents receive an object of O in A′. In the latter case, one of the agents
necessarily envies the other one since they have the same preferences over O,
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leading to a contradiction with A′ being LEF. Since agent a receives object o
in A′, one can easily construct allocation A by assigning to each agent of N
the same object as in A′. Allocation A is obviously LEF in I since otherwise
A′ would not be LEF in J .

This concludes the proof since we have shown that there is a one-to-one
correspondence between the LEF allocations of I and J .

As a consequence of Theorem 1 and Lemma 1, the following results hold:

Corollary 1 dec-LEF is NP-complete on a line, or on a circle, and gener-
ally on graphs of maximum degree k for k ≥ 1 constant.

Proof. We only provide a formal proof for the case of the line. The other
proofs are similar. We reduce an instance I of dec-LEF where the graph is
a matching (see Theorem 1) into an instance J where the graph is a line. Let

(vi, v
′
i) denote the ith pair or connected agents in the network of instance I,

where the order over pairs is arbitrary. Instance J will be a copy of I with
an additional agent v′′i for each i ∈ {1, n2 − 1}, who will be connected to the
agents v′i and vi+1 in the network of J . The network of J forms a line. The
size of J is at most twice the size of I. According to Lemma 1, one can define
the preferences such that the set of LEF allocations of instance I is the same
as the set of LEF allocations of instance J (except for the additional agents
who receive the same additional objects in any LEF allocation). Therefore,
the complexity of dec-LEF is equivalent in instances I and J . (For the case
of a circle, we add an extra agent who will connect the first and last agent
of I; and for the case of a graph of maximum degree k, we further connect
additional agents to the agents v′′i ).

Given this result, one may suspect the problem to be hard on any graph
structure beyond a clique. Our next result shows that if the network is dense
enough, then dec-LEF is polynomial.

Theorem 2 dec-LEF in graphs of minimum degree n−2 is solvable in poly-
nomial time.

Proof. Nodes have degree either n − 2 or n − 1 in G. In G, which is the
complement graph of G, nodes have degree either 1 or 0. Let φ : N → N
be such that φ(i) is the neighbor of i in G if i has degree 1 in G, otherwise
φ(i) = i.

We reduce the problem to 2-SAT which is solvable in linear time [4]. Let
us consider Boolean variables xij for 1 ≤ i, j ≤ n, such that xij is true if and

only if object j is assigned to i. Denote by oji the object at position j in the
preference relation of agent i.

Consider the following formula ϕ:

ϕ ≡
∧
i∈N

(xio1i ∨ xio2i ) ∧
∧

1≤i<`≤n
1≤j≤n

(¬xij ∨ ¬x`j) ∧
∧
i∈N

(xio1i ∨ xφ(i)o1i )
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The first part of formula ϕ expresses that each agent must obtain an object
within her top 2, as noted in Observation 1. By combination with the second
part of ϕ, we get that the solution must be an assignment: each agent must
obtain her first or second choice but not both since every object is owned by at
most one agent and |N | = |O|. Observation 2 implies that the best object for
agent i must be assigned either to agent i or φ(i). This condition is given by the
last part of the formula. Hence, formula ϕ exactly translates the constraints
of an LEF allocation.

Interestingly, the status of dec-LEF changes between networks of degree
at least n− 2 and those of degree n− 3.

Theorem 3 dec-LEF is NP-complete in regular graphs of degree n− 3.

Proof. The reduction is from (3, B2)-SAT [12], which is a restriction of 3SAT
where each literal appears exactly twice in the clauses, and therefore, each
variable appears four times. Take an instance I = 〈C,X〉 of (3,B2)-SAT,
where C = {c1, . . . , cm} is a set of clauses defined over a set of variables
X = {x1, . . . , xp}, and create an instance J of dec-LEF as follows.

Instead of describing the network in J , we describe its complementary G.
Note that G is a regular graph of degree 2. Hence, G contains a collection of
cycles. For each variable xi, we introduce:

– dummy variable-objects q1i and q2i ,
– literal-objects u1i , u

2
i , u

1
i and u2i corresponding to its first and second oc-

currence as an unnegated and negated literal, respectively,

– a cycle in G containing literal-agents X1
i , X

1

i , X
2
i and X

2

i , connected in this
order.

We denote by Xi the subset of literal-agents containing X1
i , X

1

i , X
2
i and X

2

i .
The preferences of the literal-agents are as follows, for each i ∈ [p]:

– X1
i : q1i � q2i � u1i � . . .

– X
2

i : q2i � q1i � u2i � . . .
– X

1

i : q1i � q2i � u1i � . . .
– X2

i : q2i � q1i � u2i � . . .
Note that only the 3 top objects are represented since no object ranked

below can lead to an LEF allocation (see Observation 1). We show that in
any LEF allocation, either q1i and q2i are allocated to agents X1

i and X2
i ,

respectively, or q1i and q2i are allocated to agents X
1

i and X
2

i , respectively. For

any j ∈ {1, 2}, if qji is allocated to agent Y /∈ Xi, then agents Xj
i will envy

agent Y because they are neighbors in G and qji is the most favorite object of

agent Xj
i . Moreover, if qji is owned by agent X3−j

i (respectively, X
3−j
i ) then

agent Xj
i (respectively, X

j

i ) will be envious of agent X3−j
i (respectively, X

3−j
i )

because they are neighbors in G and qji is the most favorite object of agent Xj
i

(respectively, X
j

i ). Therefore, qji is assigned to either agent Xj
i or X

j

i . Finally,

if agent Xj
i (respectively, X

j

i ) receives qji and agent X3−j
i (respectively, X

3−j
i )

does not receive q3−ji then agent X3−j
i (respectively, X

3−j
i ) will envy agent
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Xj
i since they are neighbors in G and agent X3−j

i (respectively, X
3−j
i ) did not

receive her most favorite object and her second most favorite object is qji .
The case where q1i and q2i are allocated to agents X1

i and X2
i , respectively,

can be interpreted in I as setting xi to true, and the case where q1i and q2i are

allocated to agents X
1

i and X
2

i , respectively, as setting xi to false.
For each clause cj we introduce:

– dummy clause-objects d1j and d2j ,

– a cycle in G containing clause-agents K1
j , K2

j , and K3
j .

The preferences of clause-agent Ki
j , for j ∈ [m] and i ∈ [3], are:

– Ki
j : d1j � d2j � `(j, i) � . . .

where `(j, i) is the literal-object corresponding to the ith literal of cj . We
denote by Kj the subset of clause-agents containing K1

j ,K
2
j and K3

j . We show

that an allocation is LEF if d1j , d
2
j and one literal-object corresponding to

a literal of cj are assigned to the agents of Kj . For any i ∈ {1, 2}, if dij is

allocated to agent Y /∈ Kj then one of the agents of Kj receives neither d1j
nor d2j and will envy agent Y who is her neighbor in G. Therefore, objects d1j
and d2j are assigned among the agents of Ki. If the agent of Ki who receives

neither d1j nor d2j , say Ki
j , does not receive `(i, j) then she will envy the agent

who receives `(i, j) and who necessarily is her neighbor in G. This gadget can
be interpreted in I as the requirement for at least one literal of cj to be true.

Figure 4 summarizes the agents of the reduction introduced so far.
The reduction is almost complete but it remains to describe gadgets col-

lecting all unassigned objects. Indeed, so far we have introduced 4p+3m agents
and 6p+ 2m objects. It remains to construct garbage collectors for the 2p−m
remaining objects. Note that 2p−m ≥ 0 holds since each variable appears in
4 clauses and each clause contains 3 literals (in other words, 4p = 3m holds).
Note also that no dummy object (neither variable nor clause) may be part of
the remaining objects since they must be assigned to literal-agents or clause-
agents in any LEF allocation. Let L = {uji , u

j
i : i ∈ [p], j ∈ [2]} denote the

set of literal-objects, where literal-objects are ordered arbitrarily, and let L(i)
denote the ith element of L.

Let us now describe a gadget collecting a single object of L. For each
i ∈ [4p], we introduce:

– objects t1i and t2i ,
– a cycle in G containing gadget-agents L1

i , L
2
i and L3

i .

Furthermore, for each i ∈ [4p− 1], we introduce gadget-object hi. Globally, in
this gadget, we introduce 12p new agents and 12p−1 new objects. Preferences
are as follows, for each i ∈ [4p] (where h0 and h4p stand for h1 and h4p−1,
respectively):

– L1
i : t1i � t2i � hi−1 � . . .

– L2
i : t1i � t2i � L(i) � . . .
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X1
1

q11 � q
2
1 � u

1
1

X
2
1

q21 � q
1
1 � u

2
1

X2
1

q21 � q
1
1 � u

2
1

X
1
1

q11 � q
2
1 � u

1
1

· · · · · ·
X1

p

q1p � q
2
p � u

1
p

X
2
p

q2p � q
1
p � u

2
p

X2
p

q2p � q
1
p � u

2
p

X
1
p

q1p � q
2
p � u

1
p

K1
1

d11 � d
2
1 � `(1, 1)

L2
1

d11 � d
2
1 � `(1, 2)

L3
1

d11 � d
2
1 � `(1, 3)

· · · · · ·
K1

m

d1m � d
2
m � `(m, 1)

L2
m

d1m � d
2
m � `(m, 2)

L3
m

d1m � d
2
m � `(m, 3)

Fig. 4: A partial description of the graph of non-envy G. Note that the
neighborhood of each agent in G corresponds to the whole set of agents

except for her two neighbors in G (described in this figure). Only the most
preferred objects of each agent are represented. For each j ∈ {1, . . . ,m} and
i ∈ {1, 2, 3}, `(i, j) is the literal-object corresponding to the ith literal of cj .

– L3
i : t1i � t2i � hi � . . .

Note that in any LEF allocation, objects t1i and t2i are allocated to agents
belonging to {L1

i , L
2
i , L

3
i }, and the remaining unassigned agent receives either

hi−1, hi or L(i) (the proof is similar as the above proof for the clause-agents).
Since no more than 4p − 1 agents can receive a gadget-object, at least one
literal-object is assigned to agent L2

i for some i ∈ [4p]. Moreover, all gadget-
objects must be assigned to gadget-agents since no other agent has a gadget-
object in her top 3 objects. Therefore, in every LEF allocation, exactly one
literal-object is allocated to an agent belonging to the gadget.

Figure 5 provides a graphical description of this gadget.

Now let us show that one can allocate objects without envy in the gadget.
Let L(i) be the literal-object assigned in the gadget. This object must be
assigned to L2

i . Assign objects t1i and t2i to agents L1
i and L3

i , respectively. For
any j 6= i, assign object t1j to agent L2

j . Finally, for any j > i , object hj−1 is

assigned to L1
j and t2j is assigned to L3

j , and for any j < i, object hj is assigned

to L3
j and object t2j is assigned to L1

j .

We use exactly 2p −m copies of this gadget in order to collect all the re-
maining literal-objects of the first part of the construction, and thus obtaining
as many agents as objects in the whole reduction.
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L1
1

t11 � t
2
1 � h1

L2
1

t11 � t
2
1 � L(1)

L3
1

t11 � t
2
1 � h1

L1
2

t12 � t
2
2 � h1

L2
2

t12 � t
2
2 � L(2)

L3
2

t12 � t
2
2 � h2

· · · · · ·
L1
4p

t14p � t
2
4p � h4p−1

L2
4p

t14p � t
2
4p � L(4p)

L3
4p

t14p � t
2
4p � h4p

Fig. 5: The graph of non-envy for the gadget aiming to absorb one
literal-object not assigned to an agent of Figure 4. For each i ∈ {1, . . . , 4p},

L(i) is the ith literal-object.

We claim that C is satisfiable in instance I if and only if J has an LEF
allocation.

Suppose first that there exists a truth assignment φ of the variables in X
which satisfies all clauses in C. For each variable xi which is true (respectively,

false) in φ, we assign objects q1i to agent X1
i (respectively, X

1

i ), object q2i
to agents X2

i (respectively, X
2

i ), object u1i (respectively, u1i ) to agents X
1

i

(respectively, X1
i ) and object u2i (respectively, u2i ) to agent X

2

i (respectively,
X2
i ). Note that each agent of Xi receives either her most preferred object, or

receive her third most preferred and her two neighbors in G receive her first
and second most preferred object. Therefore, no agent of Xi envies one of her
neighbors in G. Note also that the unassigned literal-objects are associated
with literals which are true according to φ. Since each clause cj is satisfied by
φ, there exists at least one unassigned literal-object that we assign to clause-
agents Ki

j , where i is the index of its corresponding literal in cj . Note that
this is her third most preferred object. The two other clause-agents of Kj

receive their first and second most preferred objects i.e., dummy-objects d1j
and d2j . Since the three agents of Kj are not neighbors in G, none of them
envies one of her neighbors. Finally, it suffices to assign the remaining literal-
objects to garbage-agents, as previously described in the construction of the
gadgets, in such a way that no garbage-agent can be envious. We obtain an
LEF allocation.

Suppose now that there exists an LEF allocation. As shown above, in any
LEF allocation, objects q1i and q2i must be assigned either to (i) agents X1

i

and X2
i , respectively, or to (ii) agents X

1

i and X
2

i , respectively. In case (i),

literal-objects u1i and u2i must be assigned to agents X
1

i and X
2

i , respectively.
In case (ii), literal-objects u1i and u2i must be assigned to agents X1

i and X2
i ,

respectively. Let φ denote the truth assignment of the variables of X such
that for each variable xi, if literal-objects are assigned to the variable-agents
of Xi as in case (i) then xi is set to true, and otherwise xi is set to false. We
claim that φ satisfies all clauses in C. Indeed, we have shown above that in
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any LEF allocation, dummy clause-objects d1j and d2j , as well as one literal-
object corresponding to one literal appearing in cj , must be assigned to the
agents of Kj . This literal-object is true according to φ since the corresponding
literal-object is not assigned to a variable-agent. Therefore, φ satifies clause
cj .

In the same vein as for Theorem 1, the hardness result of Theorem 3 can
be extended to more general classes of graphs.

Corollary 2 dec-LEF is NP-complete on graphs of minimum degree n− k
for k ≥ 3 constant.

Proof. The proof is similar to the proof of Corollary 1 except that we add only
one additional agent who is connected to n−k agents chosen arbitrarily (note
that n refers to the number of agents in the new instance).

Related to the question of the degree of the nodes, it appears interesting
to determine how the computational hardness of dec-LEF evolves on cluster
graphs (such graphs are collections of disjoints cliques). The cluster graphs are
relevant in the context of a social network, because they may represent several
groups of agents that do not have interconnections (e.g. families or different
sport teams). In fact, the problem is computationally hard when the cluster
graph is composed of n/2 cliques because this is the case of the matching
(Theorem 1). This hardness result is extended to any cluster graph composed
of n/k cliques (for k ≥ 2 constant) according to the construction used to
obtain Corollary 1. Note that the case of n clusters is trivial since it is the
empty graph. Moreover, the problem is solvable in polynomial time when there
is only one clique in the cluster graph (the easy case of the complete graph). A
natural question is then the complexity of dec-LEF when the cluster graph is
only composed of two cliques. The next theorem shows that even in this case,
the problem is NP-complete.

Theorem 4 dec-LEF is NP-complete even when the social network is re-
stricted to two cliques of equal size.

Proof. The reduction is from an instance I of 3SAT. Let C = {c1, . . . , cm}
and X = {x1, . . . , xp} denote the set of clauses and variables, respectively.
The reduction to an instance J of dec-LEF is as follows. Let Q1 and Q2

denote the two cliques of G that we are going to construct. We introduce

– two agents Q1
1 and Q2

1 belonging to Q1,
– two agents Q1

2 and Q2
2 belonging to Q2,

– four objects q11 , q
2
1 , q

1
2 and q22 .

The preferences of agents Q1
i and Q2

i , for each i ∈ {1, 2}, are:

– Q1
i : q1i � q2i � rest

– Q2
i : q2i � q1i � rest
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where rest is an arbitrary order over the objects different from q1i and q2i ,
but in the same order for both agents Q1

i and Q2
i . We show that in any LEF

allocation, agents Q1
i and Q2

i , who are neighbors in G, will receive objects

q1i and q2i , respectively. Assume that agent Qji , with i, j ∈ {1, 2}, receives

object o 6= qji in an LEF allocation. If agent Q3−j
i receives object o′ /∈ {q1i , q2i }

then o′ �Qj
i
o ⇔ o′ �Q3−j

i
o holds and either Qji envies Q3−j

i or Q3−j
i envies

Qji , a contradiction. On the other hand, if agent Q3−j
i receives either q1i or

q2i then agent Qji envies Q3−j
i , a contradiction. Assume now that agent Qji ,

with i, j ∈ {1, 2}, receives object q3−ji . Since q3−ji is the most preferred object

for agent Q3−j
i and Qji is a neighbor of Q3−j

i in G, agent Q3−j
i envies Qji , a

contradiction. Finally, if qji receives object qji and agent Q3−j
i does not receive

object q3−ji then agent Q3−j
i envies Qji , a contradiction. Therefore, agent Qji

receives object qji for any i, j ∈ {1, 2}. As we will see later, the fact that the

allocation of each objects qji , with i, j ∈ {1, 2}, is fixed will enforce the other
agents to obtain a more preferred object according to their preference.

For each variable xi we introduce:

– variable-agent X1
i belonging to clique Q1,

– variable-agent X2
i belonging to clique Q2,

– variable-objects ui and ūi.

The preferences of variable-agent Xj
i , for each i ∈ {1, . . . , p} and j ∈ {1, 2},

are:

– Xj
i : ui � ūi � q1j � rest

where rest is an arbitrary order over the remaining objects. We show that in
any LEF allocation, objects ui and ūi are assigned to agents Xj

i and X3−j
i ,

respectively, with j either equal to 1 or 2. Assume by contradiction that agent
Xj
i , with i ∈ {1, . . . , q} and j ∈ {1, 2}, receives object o /∈ {ui, ūi} in an LEF

allocation. Since the allocation is LEF, agent Q1
j must receive object q1j (see

the proof above). However, agents Xj
i and Q1

j are neighbors in G and agent

Xj
i prefers q1j to o, and therefore agent Xj

i envies Q1
j , a contradiction. The

case where ui and ūi are assigned to agents X1
i and X2

i , respectively, can be
interpreted in I as setting variable xi to true, and the case where ui and ūi are
assigned to agents X2

i and X1
i , respectively, can be interpreted in I as setting

variable xi to false.
For each clause cj we introduce:

– clause-agents K1
j ,K

2
j and K3

j belonging to Q1,

– clause-agent Kj and dummy agents L1
j and L2

j belonging to Q2,

– clause-objects tj , t
1
j , t

2
j and t3j ,

– dummy objects h1j and h2j .

The preferences of clause-agents Ki
j and Kj and dummy agent L`j , for each

j ∈ {1, . . . ,m}, i ∈ {1, 2, 3} and ` ∈ {1, 2}, are:

– Ki
j : tij � ¯̀(j, i) � tj � q11 � rest
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– Kj : t1j � t2j � t3j � q12 � rest
– L`j : h`j � q12 � rest

where ¯̀(j, i) denotes the variable-object corresponding to the negation of literal
i in clause cj , and rest is an arbitrary order over the remaining objects. It
is easy to show that each dummy agent L`j should receive object h`j for an

allocation to be LEF since agent Q1
2 should receive object q12 . For the same

reason, agent Kj should receive either t1j , t
2
j or t3j . Assume that Kj receives

tij . In that case, agent Ki
j should receive item tj for the allocation to be LEF

since ¯̀(j, `) should be assigned to a variable-agent and q11 should be assigned
to agent Q1

1 who is a neighbor of Ki
j in G. Furthermore, for the allocation to

be LEF, ¯̀(j, i) should not be assigned to an agent of Qj since otherwise, Ki
j

would be envious of this agent. This gadget can be interpreted in I as the
requirement for at least one literal of cj to be true.

agents of Q1 preferences agents of Q2 preferences
Q1

1 q11 � q21 Q1
2 q12 � q22

Q2
1 q21 � q11 Q2

2 q22 � q12
X1

1 u1 � ū1 � q11 X2
1 u1 � ū1 � q12

. . . . . . . . . . . .
X1

p up � ūp � q11 X2
p up � ūp � q12

K1
1 t11 � ¯̀(1, 1) � t1 � q11 K1 t11 � t21 � t31 � q12

. . . . . . . . . . . .
K1

m t1m � ¯̀(m, 1) � tm � q11 Km t1m � t2m � t3m � q12
K2

1 t31 � ¯̀(1, 3) � t1 � q11 L1
1 h11 � q12

. . . . . . . . . . . .
K2

m t3m � ¯̀(m, 3) � tm � q11 L1
m h1m � q12

K3
1 t31 � ¯̀(1, 3) � t1 � q11 L2

1 h21 � q12
. . . . . . . . . . . .
K3

m t3m � ¯̀(m, 3) � tm � q11 L2
m h2m � q12

Table 2: The agents of clique Q1 (clique Q2, respectively) are listed in the
first column (third column, respectively) and their preferences are given in

the second column (fourth column, respectively). For any i ∈ {1, . . . ,m} and
j ∈ {1, 2, 3}, ¯̀(j, i) denotes the variable-object corresponding to the negation

of literal i in clause cj

We claim that C is satisfiable in I if and only if J contains an LEF
allocation. Suppose first that there exists truth assignment φ of X that satisfies
each clause of C. We construct from φ an LEF allocation in J . Assign qji to

agent Qji for each i, j ∈ {1, 2}. Furthermore, assign h`j to agent L`j for each
j ∈ {1, . . . ,m} and ` ∈ {1, 2}. Since each of these agents receives her most
preferred object, none of them will be envious. For each variable xi, assign ui
and ūi to agents X1

i and X2
i , respectively, if xi is true in φ, and otherwise

assign ui and ūi to agents X2
i and X1

i , respectively. Since X1
i and X2

i are
not neighbors in G and ui and ūi are their two most favorite objects, neither
of them will be envious. Finally, for each clause cj , pick one literal which is
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true according to φ, say literal i, and assign tij and tj to agents Kj and Ki
j ,

respectively. Furthermore, assign to the remaining clause-agents in Q1 their
most favorite objects. It is easy to check that none of these agents will be
envious, and the resulting allocation is LEF.

Suppose now that there exists an LEF allocation A for J . We construct
from A a truth assignment φ which satisfies each clause of C. As shown above,
in A either ui or ūi is assigned to agent Xi for each i ∈ {1, . . . , p}. Therefore,
set to true in φ each variable xi such that ui is assigned to Xi, and set to false
in φ each variable xi such that ūi is assigned to Xi. As shown above, for each
j ∈ {1, . . . ,m}, there exists agent Ki

j who receives object tj in A. Since Ki
j is

not envious, then no variable-agent receives ¯̀(j, i). Therefore, literal `(j, i) is
true according to φ, and each clause of C is satisfied by φ.

By adding clusters of dummy agents having their associated dummy re-
source on top of their preference ranking, we can generalize the previous neg-
ative result to any cluster graph with k ≥ 2 (k constant) clusters.

Corollary 3 dec-LEF is NP-complete in any cluster graph with k ≥ 2 clus-
ters or n/k (k ≥ 2) clusters for k constant.

Proof. As for Lemma 1, we show that we can add an agent, who is isolated
inthe network, without changing the set of LEF allocations (under the condi-
tion that each vertex of the network had at least one neighbor). Let I denote
the original instance of dec-LEF, and let J denote the new instance obtained
after adding agent a and object o. The preferences of agent a in J are arbi-
trary but object o must be on top. On the other hand, the other agents keep
in J the same preferences as in I except that object o is at the bottom of
their preferences. It is easy to check that there is a one-to-one correspondence
between the set of allocations of I and J . This is mainly due to the fact that
no agent, except a, can receive object o without envying one of her neighbors
(object o is her least preferred object). Furthermore, every LEF allocation of
I can be completed by allocating object o to agent a without creating envy.

This means that, starting from an instance of dec-LEF where the network
is a clique, on can add one by one isolated cliques of the same size without
changing the set of LEF allocation. Indeed, an additional clique, say K, can
be added vertex by vertex, starting with an isolated vertex. According to the
first paragraph, the first vertex can be added without changing the set of
LEF allocations. Furthermore, the remaining vertices will be connected to the
vertices of K already present in the graph, and therefore Lemma 1 implies
that this can be done without changing the set of LEF allocation. All in all,
one can add k−1 isolated cliques without changing the set of LEF allocations,
leading to an equivalent instance of dec-LEF containing k cliques of the same
size.
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3.2 dec-LEF and vertex cover

So far the complexity of dec-LEF has been investigated through the degree
of its nodes, but other parameters can be taken into account. Let us show how
the size of a (smallest) vertex cover can help. A vertex cover C of G = (N,E)
is a subset of nodes such that {u, v} ∩ C 6= ∅ for every edge {u, v} ∈ E. Since
at least one of the extremities of each edge is contained in C, I := N \C must
be an independent set, that is a set of pairwise non-adjacent vertices. Thus,
an agent of I can only envy an agent of C.

Theorem 5 If the network G admits a vertex cover of size k, then dec-LEF
can be answered in O(nk+3).

Proof. Let C be a vertex cover of the network and let I := N \ C be the
corresponding independent set. One can easily construct a vertex cover of
size k (if such a set exists) by testing every subset of vertices of size k. The
complexity of such a brute force algorithm is in O(nk+3) since there is at most
nk subsets of vertices of size k and testing if each of them is a vertex cover
can be done in O(n2) by checking if each edge is covered.

Then, use brute force to assign k objects of O to the agents of C with time
complexity in O(nk). For each partial allocation A without envy within C,
let O−A be the set of unassigned objects (if no such partial allocation exists,
then we can immediately conclude that no LEF allocation exists). Build a
bipartite graph (I,O−A;E′) with an edge from agent i ∈ I to object o ∈ O−A
if assigning o to i does not create envy. There is an LEF allocation which
extends A if and only if the bipartite graph admits a perfect matching. The
existence of a perfect matching in a bipartite graph can be checked in O(n3)
(see e.g., the book of Burkard, Dell’Amico and Martello [20]).

The method is efficient when k is small. For instance, dec-LEF is poly-
nomial if the network is a star because the central node of a star is a vertex
cover. More generally, Theorem 5 implies that dec-LEF is polynomial when
k = O(1).

Theorem 5 implies that dec-LEF belongs to XP when the fixed parameter
under consideration is the size of a vertex cover. Recall that a problem belongs
to FPT if there is an algorithm to solve it with time complexity in O(f(k)nc),
where c is a constant value and f is an arbitrary function depending only on k.
One could expect that dec-LEF also belongs to FPT for the same parameter
since the problem of finding a vertex cover of size k is FPT [39]. However,
the following theorem shows that there is no hope that dec-LEF belongs to
FPT.

Theorem 6 dec-LEF parameterized by the size of a vertex cover is W[1]-
hard.

Proof. We present a parameterized reduction from Multicolored Indepen-
dent Set [28]. An instance I of Multicolored Independent Set consists
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of a graph G = {V, E}, an integer k, and a partition (V1, . . . ,Vk) of V. The
task is to decide if there is an independent set of size k in G containing exactly
one vertex from each set Vi. Let m and p denote the number of vertices and
edges in G, respectively.

We construct an instance J of dec-LEF as follows. For each vertex v in V,
we introduce object ov. Let Oi denote the set of objects {ov : v ∈ Vi}, and let

O↑i denote an arbitrary order over the objects of Oi. For each edge e = {v, v′}
in E , we introduce two agents Xv

e and Xv′

e , and two edge-objects oe and o′e.

Let OE denote the set of edge-objects, and let O↑E denote an arbitrary ranking
over the objects of OE .

For each integer i ≤ k, we introduce agent Ki. The agents of {Ki}i≤k form
a clique in the network G. Furthermore, for each vertex v ∈ Vi and for each
edge e = {v, v′} in E , agent Xv

e is connected to agent Ki in G. Finally, for
each integer j ≤ |V| − k, we introduce agent Dj who is isolated in G. All in
all, there are m+ 2p agents and objects.

Preferences are the following:

– Ki : O↑i � O
↑
1 � . . . � O

↑
i−1 � O

↑
i+1 � . . . � O

↑
k � O

↑
E

– Xv
e : oe � ov � o′e � . . .

Since agent Dj is isolated in G, her preferences may be arbitrary. It is easy to
check that {Ki}i≤k forms a vertex cover in the network.

Figure 6 summarizes the construction.

K1 K2

K3Km

· · ·· · ·

Xv
e

oe � ov � o′e

Xv′
e

oe � ov′ � o′e

Fig. 6: The graph of envy constructed by the reduction. Agents
K1,K2, . . . ,Km form a clique and the agents out of this clique are only

connected to one agent belonging to the clique. We assume that e = (v, v′) is
an edge of E , v belongs to V1 and v′ belongs to V2.

We show that G has an independent set of size k containing one vertex
in each set Vi if and only if an LEF allocation exists in J . Assume first that
{v1, . . . , vk} is an independent set in G, where vi ∈ Vi for each i ≤ k. We
construct an LEF allocation in J as follows. For each i ≤ k, assign ovi to Ki,
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and for each edge e = (vi, v
′) in E , assign oe to Xvi

e . For each agent Xv
e such

that v is not selected in the independent set (i.e., v /∈ {v1, . . . , vk}), assign
oe to Xv

e if it is still available, and otherwise assign o′e to Xv
e . Finally, assign

the remaining objects arbitrarily. We claim that this allocation is envy-free.
Indeed, each agent Ki receives an object of Oi. Therefore, no agent Ki will
envy another agent Kj with j 6= i. Furthermore, for each vertex v in Vi and
for each edge e in E , agent Xv

e has a single neighbor who is Ki. If Ki receives
ovi and v = vi then Xvi

e receives oe, and otherwise Xv
e receives o′e. In both

cases, agent Ki does not envy Xv
e since Xv

e receives an object of OE , and agent
Xv
e does not envy agent Ki since agent Xv

e receives either her most favorite
object or her third most favorite object while agent Ki does not receive ov
(the second most favorite object of agent Xv

e ).
Assume now that an LEF allocation A exists in J . We claim that each

agent Ki should receive an object of Oi in A. By contradiction, assume that
agent Ki receives object o 6∈ Oi in A. Note that for any j 6= i, Ki and Kj are
neighbors. Hence, for any object o′, if o 6∈ Oj and o′ 6∈ Oi∪Oj then o �Ki

o′ if
and only if o �Kj

o′ holds. Furthermore, if agent Kj receives an object of Oi
in A then agent Ki will envy her. This implies that if o 6∈ Oj then an object
of Oj must be assigned to Kj in A to avoid envy between agents Ki and Kj .
Therefore, if o ∈ OE then each agent Kj , with j 6= i, receives an object of
Oj in A and agent Ki will envy them, a contradiction. On the other hand, if
o ∈ Oj for some j 6= i then agent Kj receives an object of Oj in A and either
Ki envies Kj or Kj envies Ki since o �Ki

o′ if and only if o �Kj
o′ holds, a

contradiction. Hence, each agent Ki should receive an object of Oi in A. Let
ovi denote the object assigned to Ki in A. We claim that {v1, . . . , vk} forms an
independent set in G. By contradiction assume that an edge, say e, connects
vi and vj in G. This implies by construction that Xvi

e and X
vj
e are neighbors

of Ki and Kj in G, respectively. On one hand, if Xvi
e does not receive oe in A

then she envies Ki who receives vi. On the other hand, if X
vj
e does not receive

oe in A then she envies Kj who receives vj . Therefore, oe must be assigned
to both Xvi

e and X
vj
e , leading to a contradiction since oe cannot be assigned

twice.

4 Optimization

In light of Section 3, we know that both max-LEF and max-NE are NP-hard
even on very simple graph structures. We present in this section approximation
algorithms for max-LEF and max-NE.

4.1 Maximizing the number of LEF agents

This subsection is dedicated to max-LEF, which aims at maximizing the num-
ber of non-envious agents. A general method is proposed in Algorithm 1. For
a maximization problem, an algorithm is ρ-approximate, with ρ ∈ [0, 1], if it
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outputs a solution whose value is at least ρ-times the optimal value, for any
instance.

Algorithm 1:

Data: An instance 〈N,O,�, G = (N,E)〉
Result: An allocation A

1 Let A be an empty allocation
2 Find an independent set I of graph G (in any opportune way)
3 foreach i ∈ I do
4 Agent i receives in A her most preferred object according to �i within O
5 Remove A(i) from O

6 Complete A (in any opportune way) and return A

Proposition 1 Algorithm 1 is |I|n -approximate for max-LEF, where I is the
independent set computed in step 2 of Algorithm 1.

Proof. By construction, every member of I is LEF, and the largest number of
LEF agents is |N | = n.

Proposition 2 The construction of I in Algorithm 1 (Step 2) can be done so
that a polynomial time (∆(G)+1)−1-approximation for max-LEF is produced,
where ∆(G) is the maximum degree in G as introduced previously.

Proof. The independent set is built as follows. I is initially empty and while
N 6= ∅, do: choose i ∈ N , add i to I, and remove i and its neighbors from
N . Since a node has at most ∆(G) neighbors, I is an independent set of
size at least n/(∆(G) + 1). Use Proposition 1 to get the expected ratio of
(∆(G) + 1)−1.

The (∆ + 1)−1-approximation algorithm is long known for the maximum
independent set problem (that is, find an independent set of maximum
cardinality) and slight improvements were proposed [43]. The following lemma
shows that max-LEF shares exactly the same inapproximability results as
maximum independent set.

Lemma 2 Any ρ-approximate algorithm for max-LEF is also a ρ-
approximate algorithm for maximum independent set.

Proof. Suppose that we have a ρ-approximate algorithm for max-LEF and
let us construct a ρ-approximate algorithm for maximum independent set.
Let G denote the graph of s vertices for which we look for an independent
set of maximum size. Consider a set of s agents with identical preferences
over a set of m objects. The agents are embedded in G. Note that for any
allocation A of objects to agents, the set of non-envious agents for A forms
an independent set of G. Indeed, a non-envious agent receives a better object
in A than any of her neighbors. Therefore, each of her neighbors envies her,
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and no two neighbors can be non-envious. Furthermore, for each independent
set I of G, one can construct an allocation of objects to agents such that no
agent of I is envious (one can use Algorithm 1). Therefore, the largest set of
non-envious agents for any allocation of objects to agents is at least as large
as the largest independent set in G.

A ρ-approximate algorithm for max-LEF computes for this instance an
allocation A. Let I denote the set of non-envious agents for A. As it was shown
above, this set is an independent set. Furthermore, the size of I is at least
ρ times the size of the largest set of non-envious agents for any allocation of
objects to agents. Since the largest set of non-envious agents for any allocation
of objects to agents is at least as large as the largest independent set in G, I
is a ρ-approximation for maximum independent set in G.

Maximum independent set in general is Poly-APX-hard, meaning it
is as hard as any problem that can be approximated to a polynomial factor.
Lemma 2 implies that max-LEF is also Poly-APX-hard.

Proposition 3 max-LEF is Poly-APX-hard.

Thus, as long as we assume that P 6= NP, there is no constant
approximation-ratio algorithm for max-LEF [5].

Interestingly, there are graph classes where the size of an independent set
can be expressed as a fraction of n. Therefore, this fraction corresponds to the
approximation ratio of Algorithm 1.

Proposition 4 A polynomial time 0.5-approximate algorithm for max-LEF
exists if the network is bipartite.

Proof. Suppose that the network is a bipartite graph (N1, N2;E). By defi-
nition both N1 and N2 are independent sets. If |N1| ≥ |N2|, then run Al-
gorithm 1 with I := N1, otherwise run Algorithm 1 with I := N2. Since
|I| = max{|N1|, |N2|} and |N | ≤ 2 max{|N1|, |N2|}, a polynomial time 0.5-
approximation is reached.

Proposition 4 can be easily extended to k-partite graphs (whose vertex set
can be partitioned into k different independent sets), leading to a polynomial
time k−1-approximation algorithm.

Note that if the network admits a vertex cover C of size k, then Algorithm
1 with I := N \ C provides a (1− k/n)-approximate solution to max-LEF.

4.2 Optimizing degree of (non)-envy

Instead of simply counting the number of non-envious agents, we will now
focus on a more subtle criterion, measuring the degree of envy among agents.
This leads to the max-NE optimization problem (defined in Section 2) which
consists in minimizing the average degree of envy E(A) (or equivalently maxi-
mizing the average degree of non-envy NE(A) = 1−E(A)). Before describing
the algorithm, we first state the following lemma
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Lemma 3 Let Un denote the uniform distribution over all matchings from n
agents to n objects. Then we have EA∼Un [NE(A)] = 5

6 − o(1).

Proof. In the following, by an abuse of notation we write x, x′ ∼ O and
u, u′ ∼ [n] to mean that both x and x′ (respectively both u and u′) are drawn
uniformly at random from O (respectively [n]).

EA∼Un [E(A)] =
1

2 |E|
∑
{i,j}∈E

EA∼Un [e(A, i, j) + e(A, j, i)]

=
1

|E| (n− 1)

∑
{i,j}∈E

Ex,x′∼O [max (0, ri (x)− ri (x′)) : x 6= x′]

=
1

|E| (n− 1)

∑
{i,j}∈E

Eu,u′∼[n] [max (0, u− u′) : u 6= u′]

=
1

|E| (n− 1)
|E| · Eu,u′∼[n] [max (0, u− u′) : u 6= u′]

=
1

(n− 1)
Eu,u′∼[n] [max (0, u− u′) : u 6= u′]

By the law of total expectation, we have:

Eu,u′∼[n] [max (0, u− u′) : u 6= u′] = Eu,u′∼[n] [u− u′ : u > u′] · P (u > u′ :

u 6= u′) + 0 · P (u′ > u : u 6= u′)

=
1

2
Eu,u′ [u− u′ : u > u′]

=
1

n(n− 1)

n−1∑
k=1

k(n− k)

=
n+ 1

6

Thus, EA∼Un [NE(A)] = 1 − EA∼Un [E(A)] = 1− 1
(n−1) ·

n+1
6 = 1 −

n+1
6(n−1) = 5

6 − o(1).

This tells us that with high probability, random matchings yield high de-
grees of non-envy. To get a deterministic algorithm based on this idea, we
apply a standard derandomization technique. In our algorithm (Algorithm 2),
at each step i, agent i receives one of the remaining unallocated objects. Ai
denotes the partial allocation built up to step i where each agent j ≤ i is
assigned an object. This object is chosen so as to minimize the conditional ex-
pectation of E (line 5). Axi is one of the possible allocations built from Ai−1 by
allocating x to agent i. We will show below that this conditional expectation
can be computed efficiently.



30

Algorithm 2:

1 A0 is an empty allocation
2 for each agent i ∈ N do
3 U is the set of unassigned objects in Ai−1

4 for each object x ∈ U do
5 Ax

i ← Ai−1 ∪ {(i, x)}
6 vx ← EA∼Un

[
E(A) : Ax

i ⊆ A
]

7 x∗ ← arg minx∈U vx
8 Ai ← Ai−1 ∪ {(i, x∗)}

Proposition 5 Algorithm 2 is a polynomial-time 5
6 − o(1) approximation al-

gorithm for max-NE.

Proof. First, by standard arguments of the derandomization method (similar
to e.g. page 132 of Vazirani’s book on approximation algorithm [48]) together
with Lemma 3, we will show that this algorithm outputs an allocation AN
such that NE(AN ) ≥ 5

6 − o(1). By design we have NE(A∗) ≤ 1 where A∗
is the assignment which maximizes the degree of non-envy, so the approxi-
mation ratio holds. Let us show that E(AN ) ≤ 1

6 + o(1). Because AN is not
a partial allocation, E(AN ) = EA∼Un [E (A) : AN ⊆ A], so showing by induc-
tion that for all i ∈ N , EA∼Un [E (A) : Ai ⊆ A] ≤ 1

6 + o(1) will conclude this
part of the proof. At iteration i = 1, we have EA∼Un [E (A) : Ai−1 ⊆ A] =
EA∼Un [E (A)] = 1

6 + o(1) by Lemma 3. At iteration i > 1 of the algorithm, by
the law of total expectation we have

EA∼Un [E (A) : Ai−1 ⊆ A] ≥ min
x

EA∼Un [E (A) : Ai−1 ∪ {(i, x)} ⊆ A]

= EA∼Un [E (A) : Ai ⊆ A]

Thus, the conditional expectations are non increasing. Therefore, at itera-
tion i = N we have E(AN ) ≤ 1

6 + o(1).

Next, to show that the algorithm runs in polynomial time, we need
to bound the computation time of vx. If A is a partial allocation, define
P (A, l) as the set of goods that agent l can own without violating A. For
example, if A is a complete allocation, P (A, l) = A(l) and if A = {},
then P (A, l) = O. First note that due to the fact that the expectation
operator is linear, vx can be calculated as a sum of conditional expecta-
tions 1

2|E|
∑
{l,h}∈E EA∼Un

[
e(A, l, h) + e(A, h, l) : Axi ⊆ A

]
. Next, note that

for any l, h ∈ N the expectation EA∼Un [e(A, l, h) : Axi ⊆ A]is equal to
1

|Zl,h|·(n−1)
∑

(a,b)∈Zl,h
max(0, rl(a) − rl(b)) where Zl,h =

{
(a, b) ∈ P (l,Axi ) ×

P (h,Axi ) : a 6= b
}

. The computation of vx can thus be done in O(n4).
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5 Location and allocation

This section is dedicated to dec-location-LEF. The problem asks whether
there exists an assignment of agents to positions of the graph as well as an
assignment of objects to agents such that the resulting allocation is locally
envy-free. The following theorem shows that this problem is computationally
challenging.

Theorem 7 dec-location-LEF is NP-complete.

Proof. The reduction is from problem independent set which is NP-
complete [32] and can be defined as follows. An instance I of independent
set is described by an undirected graph G = (V, E) and a positive integer
k ≤ |V|, the question is whether there exists an independent set I ⊆ V of size
k. Let s denote the size of V, and V = {v1, · · · , vs}.

We construct an instance J of dec-location-LEF as follows. The set
of objects is O = Q ∪ T , where Q = {q1, · · · , qs−k} and T = {t1, · · · , tk}.
The set of agents is N = {X1, . . . , Xs−k} ∪ {L1, . . . , Lk}. Let Q−i denote

the set Q \ {qi}, and let Q↑−i, Q
↑ and T ↑ denote partial orders over Q−i, Q

and T , respectively, where objects are ranked by increasing order of indices.
Preferences are as follows:

– Xi : qi � Q↑−i � T ↑
– Lj : T ↑ � Q↑

Finally, the network is G = G = (V, E).
We claim that we can place agents in G and allocate them objects such

that there is no envy in J if, and only if, G contains an independent set of size
k in I.

Assume that I is an independent set of size k in G. We can assume without
loss of generality that I = {v1, . . . , vk}. We construct A and L as follows.
If vi ∈ I then L(Li) = vi and (Li, ti) ∈ A. Otherwise, agents are placed
arbitrarily on G and receive their most preferred object (i.e., (Xi, qi) ∈ A).
Thus, no agent Xi will envy one of her neighbors. Furthermore, no two vertices
L(Li) and L(Lj) are neighbors in G. Therefore, no agent Lj will envy one of
her neighbors, say Xi, who receives object qi that is less preferred by agent Lj
to object ti.

Assume now that there exists L and A such that no agent envies one of her
neighbors in G when her position is defined by L and her assignment is defined
by A. For any Li and Lj , either A(Li) �Lj

A(Lj) or A(Lj) �Li
A(Li) holds

since Li and Lj have the same preferences. Therefore, L(Li) and L(Lj) cannot
be neighbors in G since otherwise either Li would envy Lj or Lj would envy
Li. Hence, {L(L1), . . . ,L(Lk)} forms an independent set of size k in G.

Interestingly, the above reduction also holds when A is fixed, i.e. the allo-
cation of objects to agents is imposed by the problem.

We shall extend the polynomial time result obtained for dec-LEF on net-
works of degree at least n− 2.
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We claim that two agents having the same top object must be neighbors
in G in any yes-instance. Indeed, otherwise if one of them obtains her most
preferred object then the other will be envious, and if this object is assigned
to one of her common neighbor in G (see Observation 2) then this vertex will
have a degree at most n− 3 in G. Therefore, one can focus on L�, defined as
the set of location functions such that each pair of agents having the same top
object are neighbors in G (or equivalently, not neighbors in G).

If an instance contains three (or more) agents with the same top object
then it must be a no-instance since each vertex in G has degree at most 1 and
no three agents can be neighbors in G. The following lemma shows that the
location functions of L� are all equivalent for the search of an LEF allocation.

Lemma 4 If A is an LEF allocation for some L, and A is Pareto-optimal
among the LEF allocations determined with respect to L, then A is also LEF
for any location function of L�.

Proof. First of all, L must belong to L� for A to be LEF. Let L′ be another
function of L�. Since any pair of agents having the same top object should
be neighbors in G for any location function of L�, they have the same set
of neighbors in G in both L and L′. Therefore, if none of these agents envies
one of her neighbors under L with allocation A, then they neither envy their
neighbors under L′ with allocation A.

Let i be an agent who is the only one to rank some object o at the first
position in her preferences. On one hand, if L(i) is a vertex of degree n − 1
then Observation 2 implies that she must receive o. On the other hand, if
L(i) is a vertex of degree n − 2 and j is the unique neighbor of i in G then
Observation 2 implies that o is assigned either to i or to j. But j must also be
the unique agent to have some object o′ ranked first in her preferences, where
o 6= o′, because otherwise the other agent who ranks o′ first in her preference
would not be the neighbor of j under L(i). Therefore, either agent i or j must
receive o′. Since by hypothesis A is Pareto-optimal among the LEF allocations
determined with respect to L, o must be assigned to i and o′ must be assigned
to j. All in all, agent i must receive her top object in A and envies none of
the other agents. Therefore, no agent will envy her neighbor under L′ with
allocation A.

In order to solve dec-location-LEF, one can compute a function L of L�
by assigning the agents having the same top object to vertices connected in G,
and by assigning the other agents arbitrarily. If such a location does not exist
then the instance is a no-instance. Once L is fixed, one can use the algorithm
presented in Theorem 2 to compute an LEF allocation if such an allocation
exists. If an LEF allocation A is returned then the algorithm returns L and A.
Otherwise, we know by Lemma 4 that no function in L� can lead to an LEF
allocation (if an LEF allocation for L had existed, then an LEF allocation
which is Pareto-optimal among the LEF allocations determined with respect
to L would necessarily exist), and the algorithm returns false. This algorithm
clearly runs in polynomial time, leading to the following theorem:
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Theorem 8 dec-location-LEF in graphs of minimum degree n− 2 is solv-
able in polynomial time.

6 The likelihood of locally envy-free allocations

In order to better understand the impact of the structure of the graph on local
envy-freeness, we run some experiments where we investigate the influence of
different characteristics of the network. In particular, we observe the impact
of the degree of the nodes in all the problems that we have studied and the
behavior of specific classes of graphs close to real networks in the existence of
locally envy-free allocations.

6.1 Impact of the degree of the nodes

In this subsection we generate random instances of our decision and optimiza-
tion problems and use mixed integer linear program formulations to compute
the optimal solutions of these instances. We build on the ones proposed by
Dickerson et al. [25] (which address envy-freeness and the minimization of
maximum pairwise envy among any two agents [41], in a context of additive
utilities with several goods per agent). To fit our setting, we adapt it so as to
account for graph constraints, the constraint that exactly one object per agent
is to be allocated, and strict ordinal (linear) preferences over these objects. We
further design three variants, two where the objective functions correspond to
max-LEF and max-NE, and another one where the locations of agents on
the graph are treated as decision variables, to address the more challenging
dec-location-LEF. The interested reader may find this MIP formulation in
Appendix A.

For these experiments, we generate random regular graphs of degree k
with 8 vertices for k ranging from 1 to 7. We rely on the graph generator
of the Python module NetworkX [35], which produces random regular graphs
using the algorithm of Steger and Wormald [45]. Agents’ preferences are ran-
domly drawn from impartial culture [15, 33], that is, all possible preference
orders are equally likely and chosen independently. Table 3 shows the results
(averaged over 1,000 runs). The entry LEF gives the likelihood of picking a
yes-instance of the LEF problem, whereas Loc-LEF gives this likelihood for
dec-location-LEF. On line max-LEF, we report the number of remaining
envious agents after solving the max-LEF optimization problem, and max-
NE gives the average degree of non-envy after solving max-NE optimization
problem. Finally, the entry MMPE corresponds to the “classical” minimiza-
tion of maximum pairwise envy (MMPE) of Lipton et al. [41] which in our
context can be interpreted as the maximum number of agents envied by any
agent.
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Degree 1 2 3 4 5 6 7
LEF 1 0.72 0.22 0.05 0.02 <0.01 <0.01

Loc-LEF 1 1 1 0.92 0.49 0.07 <0.01
max-LEF 0 0.28 0.93 1.52 1.95 2.44 2.78
max-NE 1 0.99 0.99 0.99 0.98 0.98 0.98
MMPE 0 0.28 0.83 1.19 1.42 1.69 1.91

Table 3: Experimental results for our decision and optimization problems in
1,000 instances with 8 agents and graphs of regular degree. The LEF and
Loc-LEF lines refer to the likelihood of existence of an LEF allocation in

dec-LEF and dec-location-LEF problems. The max-LEF and max-NE
lines refer to the number of LEF agents in average and to the average degree

of non-envy, respectively, after optimization. The MMPE line gives the
maximum number of agents envied by any agent, after optimization.

Discussion about the results. The first question that we address is how the
likelihood to pick a positive instance of dec-LEF evolves, under impartial
culture. It must clearly decrease: in the extreme case of a complete graph,
recall that all agents must have a different preferred item, which occurs with
a low probability, i.e. with probability equal to n!/nn.

In fact, asymptotically (as the number of agents grows to infinity), it can
be shown that the likelihood to pick a positive instance is negligible, as soon
as the degree of the graph is above a fraction of 1/e (' 0.36) of the overall
number of nodes. The following proposition formally states this:

Proposition 6 Assume agent preferences are drawn from impartial culture.
Suppose that δ(G) ≥ cn, where c > e−1 is some constant. Then almost surely
G is not locally envy-free.

Proof. Consider a fixed allocation A. For any agent i, define NE(i) as the
event that i does not envy her neighbors. Clearly, since preference lists are
completely independent, the events NE(i) and NE(j) are independent for
all i 6= j. We note also that as preference lists are random permutations,
P (NE(i)) = 1

degG(i)+1 for every agent i. Thus, clearly

P (A is locally envy-free) ≤
(

1

δ(G) + 1

)n
Let X be the number of locally envy-free allocations. It follows that E[X] ≤
n!
(

1
cn

)n ≤ √
2πn

(
n
e

)n
e

1
12n

(
1
cn

)n
, by Stirling’s formula. Thus, E[X] ≤

3
√
n
(

1
ec

)n
. Thus, by Markov’s inequality, the probability that there is an LEF

allocation is at most 3
√
n
(

1
ec

)n
= o(1), since ce > 1.

On the other hand, for graphs of small degrees, it is often the case that
an LEF can be found. The question is thus how this drop will occur. Our
experiments, displayed in Table 3, suggest that this decrease is sharp.
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Now let us turn our attention to dec-location-LEF. The ability to allo-
cate agents on the network gives the central authority some extra-power when
it comes to finding an LEF. However, note that this power heavily depends on
the structure of the graph (for instance, it is useless when the graph is com-
plete, as all the different ways to label the graph with agents are isomorphic).
The entry Loc-LEF of Table 3 shows that this power can be significant: the
likelihood to pick an instance where an LEF allocation exists in that context
remains above 90% until degree 4, while it was as low as 5.5% in the basic
problem.

Although an LEF allocation may not exist, positive results are obtained
regarding the measures we optimize. Even with a complete graph, it is on
average possible to allocate items so as to make envious only about a third
of the agents, and such that no agent envies more than two other agents in
our instance with 8 agents. Indeed, when the degree of the graph is 7 (i.e. the
graph is complete), the average number of envious agents (max-LEF) is 2.78
and the average maximum number of agents envied by any agent (MMPE) is
1.91.

6.2 Empirical existence of LEF allocations in realistic networks

In this subsection, we are especially concerned with the frequency of positive
instances of dec-LEF, that is how often a locally envy-free allocation ex-
ists, and how many LEF allocations there are when they exist. We conduct
experiments in more realistic settings, in particular by considering domain re-
strictions for preferences, and graph structures which may be induced by those
agents’ individual preferences.

Like in the first subsection, we run 1,000 instances with 8 agents. The linear
preferences of the agents are generated either from impartial culture (IC), with
no restriction of domain, or following two different distributions for preferences
restricted to the single-peaked domain [14]. Let us recall that a preference order
�i is single-peaked with respect to an axis >O over the objects if there exists
a unique peak object x∗ ∈ O such that for every couple of objects a and b,
x∗ >O a >O b implies that x∗ �i a �i b and a >O b >O x∗ implies that
x∗ �i b �i a. In our experiments, the single-peaked preferences are generated
from the single-peaked uniform culture (SP-U), i.e., they are uniformly drawn
from the urn containing all single-peaked rankings with respect to a given
axis over the objects, or from the single-peaked uniform peak culture (SP-
UP), i.e., they are generated by uniformly drawing a peak alternative on a
given axis over the objects and then by iteratively choosing the next preferred
alternatives with equal probability either on the left of the peak in the axis,
or on the right.

We restrict ourselves to specific classes of graphs, and more precisely to
Barabási-Albert random graphs [10], graphs with homophily, and graphs com-
plementary to graphs with homophily (we refer to them as graphs with het-
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erophily). These graphs are supposed to be closer to real networks than simple
random graphs.

The Barabási-Albert graphs are typical scale-free networks. The scale-free
property is usually found in real networks and has been formulated in [10].
A network is scale-free if the degree of its vertices follows a power-law dis-
tribution, that is the fraction of vertices of degree k is proportional to k−γ ,
for some constant γ. The main observable feature on a scale-free network is
that it contains many hubs, that are nodes with high degree. The Barabási-
Albert random graphs are scale-free because the degree of their nodes follows a
power-law distribution with degree exponent γ equal to three. In such random
graphs, the network is iteratively constructed by adding to a subgraph a new
node which is connected with higher probability to high degree nodes, follow-
ing a preferential attachment mechanism. More precisely, given a subgraph G′

defined on a subset of vertices N ′ ⊆ N , a new graph G′′ is constructed by
adding a new node i ∈ N \ N ′ and a new edge connecting i and any node

j ∈ N ′ with probability pj = degG′ (j)∑
i′∈N′ degG′ (i

′) .

A network respects homophily if two “similar” nodes tend to be connected
in the graph. In the context where agents are embedded in a network, two
agents can be considered similar if they have close preferences over the set of
objects. We generate graphs with homophily by following a protocol adapted
for taking into account ordinal preferences: the more the agents agree on pair-
wise comparisons of the objects, the more likely they are connected. More
precisely, two agents i and j are connected via edge {i, j} in G with prob-
ability equal to qij = |{(a, b) ∈ O2 : a �i b and a �j b}|/

(
n
2

)
. Intuitively,

in this model, the probability of connection between two agents is inversely
proportional to the Kendall-Tau distance between their respective preference
rankings. In particular, two agents with exactly the same preferences are nec-
essarily connected.

The results concerning the frequency of existence of an LEF allocation are
presented in Figure 7.

Observe that the likelihood of finding an LEF allocation in a graph with ho-
mophily is extremely low. Indeed, the closer the preferences of two agents, the
more likely they are to be connected in the network with homophily. Therefore,
it appears natural that finding an LEF allocation in such instances is difficult.
On the contrary, when this is the complementary graph, i.e., the non-envy
graph G, that respects homophily, the likelihood of finding an LEF allocation
is clearly higher. Naturally, there are more LEF allocations when the com-
plementary graph respects homophily because two agents with very different
preferences are more likely to be connected than two agents with similar pref-
erences. Therefore, it should be easier to find an LEF allocation in such graphs.
The likelihood of existence of an LEF allocation in such graphs is even higher
for single-peaked profiles: an LEF allocation exists in 30% of the instances
under impartial culture whereas this frequency is around 40% for SP-U pro-
files and more than 60% for SP-UP profiles. The significant increase in the
frequency of existence of LEF allocations for single-peaked profiles where the
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Fig. 7: Likelihood of existence of an LEF allocation in dec-LEF problem for
different classes of graphs (with homophily, with heterophily or of type
Barabási-Albert) and different types of ordinal preferences (IC, SP-U or

SP-UP) in 1,000 generated instances with 8 agents

top object of each agent is uniformly drawn (SP-UP) is due to the fact that
preference orders that are single-peaked with the same top object (or peak) are
very close regarding the number of common pairwise comparisons of objects.
Therefore, in single-peaked profiles, two agents having the same top object
are very likely to be connected in graphs respecting homophily, and thus are
very likely to not be connected in graphs with heterophily. On the contrary,
by construction of a single-peaked preference order, two preference orders with
different peak objects, and especially two peak objects that are far from each
other on the single-peaked axis over the objects, tend to agree on a very few
number of pairwise comparisons of objects. This is typically the case for the
two extreme points of the single-peaked axis which induce unique preference
orders that are completely reversed; two agents having these respective prefer-
ences are necessarily connected in graphs with heterophily. Preference orders
with different peak objects appear more frequently in single-peaked profiles
SP-UP than in single-peaked profiles SP-U. Indeed, in the SP-UP distribu-
tion, the probability to pick a preference order with a given peak object o ∈ O
is equal to 1/n for every object o whereas, for instance, the probability of pick-
ing the unique single-peaked preference order with an “extreme” object (in the
single-peaked axis) as its peak is equal to 1/2n−1 in the SP-U distribution.

Concerning the Barabási-Albert graphs, the likelihood of finding an LEF
allocation is high under impartial culture (around 80%), low for SP-U profiles
(around 30%) and medium for SP-UP profiles (around 50%). For these graphs,
contrary to graphs where the complement respects homophily, the likelihood of
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finding a locally envy-free allocation is significantly higher in profiles generated
uniformly (IC). This can be explained by the fact that the preferences of the
agents are less correlated and thus globally the agents do not desire the same
objects. Similarly, as with graphs whose complement respects homophily, the
likelihood of finding an LEF allocation is higher in SP-UP profiles than in
SP-U profiles because the preferences of the agents are more diverse.

Regarding the number of LEF allocations, the results are presented in
Table 4. The numbers are given in average without counting the negative
instances for existence in order to have a clearer idea and not being noised by
the numerous instances with no LEF allocations. The instances are the same
as those considered for testing the likelihood of existence. Recall that the total
number of possible house allocations for instances with 8 agents is equal to
8! = 40, 320.

IC SP-U SP-UP
Homophily 4.26 0 1.5
Heterophily 9.86 267.08 146.40

Barabasi-Albert 7131.24 18006.51 11744.64

Table 4: Number of LEF allocations in positive instances of dec-LEF for
different classes of graphs with 8 agents

In accordance with the likelihood of existence which is very weak for net-
works with homophily, the number of locally envy-free allocations is also ex-
tremely low in such graphs. For the other types of graphs, the number of LEF
allocations is rather high, especially for Barabási-Albert graphs. This is due to
the very low density of Barabási-Albert graphs compared to the other graphs.
Globally, the number of LEF allocations is smaller under impartial culture,
even for Barabási-Albert graphs for which the frequency of LEF existence is
the highest under impartial culture. Moreover, the number of LEF allocations
is the highest for SP-U profiles. This may be surprising because the likelihood
of existence of an LEF allocation is the lowest for SP-U profiles (see Figure 7).
This phenomenon may be explained by the fact that the few instances with
existence of LEF allocations in SP-U profiles may exhibit opportune configu-
rations where the LEF allocations are very numerous.

7 Conclusion and future work

We have studied different aspects of local envy-freeness in house allocation
settings. First of all, deciding whether a locally envy-free allocation exists in a
given instance is computationally hard even for very simple and sparse graphs.
Nevertheless, we were able to provide some tractable cases according to the
network topology. See Table 1 for the details of the complexity results and
polynomial cases, with respect to some parameters of the graph. Interestingly,
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dec-LEF is solvable in polynomial-time in graphs of degree at least n−2. This
case is very interesting because it relies on meaningful envy-graphs. Indeed,
the graphs with degree at least n − 2 refer to the case where the non-envy
graph is of degree at most 1, and thus includes the case where the non-envy
graph is composed of couples of agents within which there is no reason for
envy to exist.

We have also investigated an optimization perspective, and have tried to
maximize the number of LEF agents or minimize the average envy with re-
spect to specific degrees of envy. We have provided for both cases approxima-
tion algorithms. Due to its connection with maximum independent set (cf.
Lemma 2), significant improvements for max-LEF are unlikely.

In a third direction, we have studied the power of the central authority by
assuming that, given the structure of the network, she can assign in addition to
the items to the agents, the agents to the locations on the graph. This problem
can be understood as assigning tasks to workers as well as time slots (see
Example 1). Although hard in general, this problem is solvable in polynomial
time for the interesting case of graphs of degree at least n− 2.

Finally, the experiments confirm the intuition that the likelihood of finding
a locally envy-free allocation is higher in sparse graphs. But they also highlight
the fact that for some graphs close to real social networks, such as non-envy
graphs with neighbors having similar preferences or scale-free networks, the
probability of existence of an LEF allocation is rather high as well as the
number of such allocations.

There are several interesting future directions to explore. We give below
some preliminary thoughts on the ones we find the most stimulating.

Constraints on the allocation. Two other relevant challenges related to dec-
LEF are: Given a partial allocation of the objects, can a full LEF allocation
be found? Given some forbidden object-agent pairs, can an LEF allocation be
found?

Pareto-efficiency and LEF. This paper leaves aside efficiency concerns, except
for the fact that objects should not be wasted. A natural question is how LEF
requirements interplay with Pareto-efficiency. As we have seen already, as soon
as the network is not complete, an LEF allocation is not necessarily Pareto-
efficient. More interestingly, it is also not the case that at least one of the LEF
allocation is Pareto. This can be seen on the example depicted in Figure 8.

This instance admits a single LEF allocation {(1, a), (2, b), (3, d), (4, c)},
which is Pareto-dominated by {(1, c), (2, b), (3, d), (4, a)}, which is not LEF
(agent 3 would envy agent 4). Based on these remarks, it would be interesting
to study Pareto-efficient allocations within the set of LEF allocations (a notion
which also emerged in Lemma 4, but remains to be studied in depth).

Oriented graphs. A natural extension of dec-LEF is to consider a network
modeled with a directed graph. An arc (u, v) indicates that u possibly envies
v, but it does not indicate that v possibly envies u, unless the arc (v, u) is also
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Fig. 8: The only LEF allocation is not Pareto

present. In this directed case, an allocation A is said to be LEF if A(j) 6�i A(i)
for every arc (i, j). It is not difficult to see that dec-LEF is NP-complete
in this directed case (use the proof of Theorem 1 where each edge {u, v} is
replaced by the arcs (u, v) and (v, u)). Interestingly, the directed variant of
dec-LEF can be solved efficiently in directed acyclic graphs (DAGs). Indeed,
if the network is a DAG, then an LEF allocation must exist, and it can be
computed in polynomial time. In fact, a DAG has at least one source, i.e. a
vertex with indegree 0. If a source of a DAG is deleted, then we get a (possibly
empty) DAG. The algorithm computing an LEF allocation works as follows:
while the network is non empty, find a source s, allocate s her most preferred
object os ∈ O, remove os from O, and delete s. The algorithm also guarantees
a Pareto-optimal allocation and mimics a serial dictatorship [47].

DAGs have also been considered by Bredereck et al. [19, Observation 3] but
their algorithm is different because giving nothing to an agent is not allowed
in our setting.

Note that DAGs actually characterize exactly those graphs guaranteeing
LEF to exist (if a cycle exists, simply set the preferences of all agents to
be exactly the same within the cycle to get a no-instance). But this leaves
other interesting questions open: for instance, are there other natural classes of
graphs admitting polynomial time algorithms for dec-LEF in oriented graphs?

Domain restrictions. There is a long tradition in social choice to consider do-
main restrictions on agents’ preferences to obtain positive results. This would
be natural to study our setting under such assumptions. For example, we can
fix the number of different rankings. To take a concrete question, how difficult
dec-LEF and dec-location-LEF are when there are only two categories of
agents: those with ranking �1 on the objects and those with ranking �2? More
generally, can well-known domain restrictions, such as single-peakedness, be
useful? Since the relevance of this domain restriction in the context of house
allocation has recently been emphasized [9, 24], this might be an interesting
road to pursue. As a first step in that direction, we have conducted experi-
ments which provide some insights regarding the likelihood of locally envy-free
allocations in this domain.
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A Appendix: MIP formulation for dec-location-LEF

We describe the MIP formulation used to solve the dec-location-LEF problem. We are
given a set of objects O, a set of agents N equipped with preferences over those objects (for
the ease of exposure we refer here to ri,o as the rank of object o in the preference order of
agent i), and a graph G = (V,E).

Together with the real valued decision variable e, which will be used to express the envy
bound we try to minimize, we make use of the following (binary) decision variables:

– xi,o: agent i holds object o
– li,p: agent i is located on node p
– si,j,o: agent i sees that agent j holds object o

We first express that each agent must receive exactly one object, and that each object
must be assigned to exactly one agent (constraints (1) and (2)). Similarly, each agent must
be assigned to a single node of the network, and each node must have a single agent assigned
(constraints (3) and (4)).

∀i ∈ N :
∑

o∈O xi,j = 1 (1)

∀o ∈ O :
∑

i∈N xi,o = 1 (2)

∀i ∈ N :
∑

p∈V li,p = 1 (3)

∀p ∈ V :
∑

i∈N li,p = 1 (4)

When agent i is located on a node p connected to a node q where agent j holds o, i sees
that j holds o:

∀i, j ∈ N, ∀{p, q} ∈ E : li,p + lj,q + xj,o − 2 ≤ si,j,o (5)

Finally, we try to minimize the amount of envy between any pair of agents (MMPE),
which is expressed by setting, together with the objective function min e, constraint (6):

∀i, j ∈ N :
∑
o∈O

ri,o × si,j,o −
∑
o∈O

ri,o × xi,o ≤ e (6)

Note that in the case of dec-location-LEF, we are only interested in whether we can
find a solution which sets the envy bound e at 0, i.e., whether an LEF allocation exists.
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39. Kleinberg, J.M., Tardos, É.: Algorithm Design. Addison-Wesley (2006)
40. Kondratev, A.Y., Nesterov, A.S.: Minimal envy and popular matchings. CoRR

abs/1902.08003 (2019)
41. Lipton, R.J., Markakis, E., Mossel, E., Saberi, A.: On approximately fair allocations of

indivisible goods. In: Proceedings of the 5th ACM Conference on Electronic Commerce
(EC-04), pp. 125–131. ACM, New York, NY, USA (2004)

42. Nguyen, T.T., Rothe, J.: Minimizing envy and maximizing average Nash social welfare
in the allocation of indivisible goods. Discrete Applied Mathematics 179, 54–68 (2014)

43. Paschos, V.T.: A (∆/2)-approximation algorithm for the maximum independent set
problem. Information Processing Letters 44(1), 11–13 (1992)

44. Saffidine, A., Wilczynski, A.: Constrained swap dynamics over a social network in dis-
tributed resource reallocation. In: Proceedings of the 11th International Symposium on
Algorithmic Game Theory (SAGT-18), pp. 213–225. Springer, Beijing, China (2018)

45. Steger, A., Wormald, N.C.: Generating random regular graphs quickly. Combinatorics,
Probability and Computing 8(4), 377–396 (1999)

46. Suksompong, W.: Fairly allocating contiguous blocks of indivisible items. Discrete Ap-
plied Mathematics 260, 227–236 (2019)

47. Svensson, L.G.: Strategy-proof allocation of indivisible goods. Social Choice and Welfare
16(4), 557–567 (1999)

48. Vazirani, V.V.: Approximation Algorithms. Springer (2001)



44

49. Zhou, L.: On a conjecture by Gale about one-sided matching problems. Journal of
Economic Theory 52(1), 123 – 135 (1990)


