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Abstract

A new technique is presented for measuring the yarn deformations induced by

the complete manufacturing process of woven composites. This approach relies

on a well suited relative analysis using Digital Volume Correlation [1]. Two

pairs of composite samples observed through high-resolution X-ray computed

tomography are used as illustration. The measured differences between samples

allows identifying a clear typology of strain patterns. They are in good agree-

ment with phenomena known by experts but whose analysis is traditionally

performed through manual inspection of tomographic data. For such reasons,

these results are exploited using machine learning techniques so as to automate

the unsupervised identification of these strain patterns. These results show the

potential of the method in terms of automated inspection of 3D woven textiles

for quality control, or for fine adjustment of manufacturing parameters.

Keywords: A. Fabrics/textiles, C. Numerical analysis, D. CT analysis, E.

Resin transfer moulding (RTM)

1. Introduction

The manufacturing of 3D woven composites typically consist of (i) the weav-

ing of the yarns according to the weaving pattern, (ii) the subsequent preforming
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of the obtained textile reinforcement (iii) and the matrix infusion using resin

transfer molding (RTM). During each of these steps the yarns are subjected

to large local and global deformations, which lead to a non-negligible variabil-

ity in the internal geometry of textile composites. These differences, observed

in reference [2], were revealed via high resolution X-ray computed tomography

(micro-CT). Since this variability affects many specific (macro-)properties of the

material, much well deserved attention has been given to the deformations that

the yarns undergo (meso-scale) during the manufacturing process [3].

First, a better understanding of the forming process has been achieved. Ex-

perimental data were essential for validating the numerical simulation mod-

els [3, 4]. Digital Image Correlation (DIC) [5–7] and stereo-DIC (or 3D-DIC) [8]

have provided valuable data for the surface characterization of the forming pro-

cess of (thin) specimens, and consequently have enabled the validation of many

numerical models [9–16].

DIC and stereo-DIC are well established techniques for accurately measuring

the 2D displacements fields relating image pairs. While DIC requires only one

point of view, stereo-DIC requires multiple (at least two) views so as to provide

the 3D surface displacement. Both techniques benefit from long series of images

acquired during the deformation of the sample. These experimental techniques

are popular due to their relatively simple setup and rich full-field results.

Likewise, Digital Volume Correlation (DVC) [17, 18] is the true three-

dimensional extension to DIC. DVC allows the measurement of internal dis-

placement fields from volume pairs (3D images), such as those obtained from

X-ray computed tomography (CT).

At this point, it is important to note that current works on the forming

process rely on the observed (and measured) deformations at the surface of the

samples. Naturally, a deeper insight into the composite processes calls for an

analysis of the entire sample (i.e., micro-CT) using a full 3D measurement tool

(i.e., DVC). However, while it is possible to acquire many surface images of the

preform during its deformation, it is not feasible to do the same for tomography.

Hence the amount of experimental 3D data would be extremely reduced (e.g.,
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only before and after forming) and may not be enough for accurately performing

traditional DVC.

Second, it has recently become clear that the correct determination of the

textile configuration (due to the weaving process) is paramount for the study of

the forming process [19]. Therefore, models based on the “nominal” (theoretical)

geometry of the textile may be undesirable, in fact, current models are based on

a more realistic “as-woven” geometry of the reinforcement [20]. These geometries

can be obtained through simulations of the textile process, in which yarns are

modeled either as “solid” (or “tubular”) entities [21–26] or as “multi-filament”

(“multi-chain”) entities [19, 27–33]. These models can be initialized via some

ad hoc techniques (e.g., pre-tensioning using a fictitious thermal expansion) or

just by accessing the weaving architecture [33]. Alternatively, this configuration

can be directly extracted from high resolution CT (micro-CT) [34, 35], so as to

account for the specificities of the analyzed material.

In such sense, the former approach could be seen as the most advantageous

one. In fact, geometry modeling allows obtaining textile models without actually

manufacturing the specimen [26]; thus allowing a multitude of analyses to be

rapidly performed. On the contrary, CT volume data can be (considerably)

big and require heavy manual operations in order to identify the elements of

interest. Besides, the available tools for performing these operations are either

not generic enough or they rely heavily on the expertise of the operator e.g.,

manual inspection. As a result, CT analyses can be regarded as an approach

requiring considerable amounts of tedious work that only amount to information

for one sample (the one being studied). Moreover, each sample to be analyzed

demands the same amount of investment.

Despite these issues, the analysis of micro-CT (3D images) for the measure-

ment of yarn deformations during the whole manufacturing process could be-

come an attractive and streamlined alternative thanks to recent developments

in DVC [1, 36] for the comparative analysis of 3D woven composites. The

method is based on an assumption of constant topology, namely, the specific or-

dering or crossing of the different yarns, is preserved; hence, it aligns perfectly
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with the current goal. Multiple specimens can be analyzed so as to obtain the

relative yarn displacement and deformations (i.e., the so-called “metric differ-

ences”). Furthermore, a newly developed “complete” mechanical regularization

technique [36] (based on the equilibrium gap [37–39]) should prove helpful.

One of the many advantages of this approach is its striking simplicity. In-

deed, it does not require any custom or complex priors about the material, the

textiles themselves (as seen through CT) provide all the necessary information in

tremendous amounts. Hence, it allows identifying complex phenomena without

any particular effort in describing them previously nor in seeking them actively.

This results in a (fast) analysis capable of shedding light into phenomena that

may be unknown (or unexpected) at the time of the analysis.

Additionally, the measured information can help gain a better understanding

of some textile aspects. If desired, this knowledge could be interpreted with

respect to any of the many factors involved in the manufacturing process. Such

factors include the textile definition (e.g., weaving pattern) [40], the handling

of the preform, the draping strategy, amongst others. In sum, the advantages

provided by this strategy should overcome the “inconveniences” evoked earlier

with regards to the use of micro-CT data.

The details about the correlation procedure are detailed in Section 2. The

available data set and preparation for analysis is presented in Section 3, they

consist of two pairs of 3D woven composite samples. The results from these

analyses are shown in Section 4, they detail the results for each pair indepen-

dently as well as the advantages of “combining” both results. These show the

advantages of the proposed method for the analysis of yarn deformations in

woven composites due to the complete manufacturing process.

2. Method

2.1. Correlation procedure

The goal of the correlation procedure is the registration of a given pair of

images f(x) and g(x). These images correspond to the reference and test (i.e.,
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deformed) configurations respectively. Then, the objective translates to finding

the displacement field u(x) that minimizes the brightness conservation residuals

η(x)

η(x) = g(x+ u(x))− f(x) (1)

where η(x) captures all the phenomena not considered in the registration. In

the present case (X-ray micro-CT), they ideally correspond to only noise; but,

there are also some instances of tomographic reconstruction artefacts (e.g., ring

artefact).

As such, the sought displacement is the one that minimizes, over the region

of interest Ω, the L2 norm of the residuals η(x)

φ =

∫
Ω

η(x)2 dx (2)

This optimization problem is an ill-posed one. Hence, u(x) is constraint to

a space of lower dimension by decomposing the displacement field over a set of

known base functions ψ, such as those from the Finite Element (FE) method [41]

u(x) =
∑

i uiψi(x) (3)

Thus obtaining a “global” [42] approach that guarantees the continuity of the

solution, as well as the inter-dependence of the sought amplitudes ui.

Finally, an iterative Newton-Raphson scheme [43] leads to the following lin-

ear system

[M ] {δu} = {b} (4)

where the matrix [M ] embeds the image gradients ∇f(x) and the shape func-

tions ψi(x), the vector {b} accounts for the image residuals η(x), and {δu}
updates the degrees of freedom {u} after each iteration.

2.2. Correlation for textiles

While “classical” DVC deals with the evolution of one sample, the intended

use case deals with different composites samples [1].

As previously introduced, the approach is based on the assumption of con-

stant topology and provides a robust formulation of the correlation problem.
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This novel formulation considers a relaxed brightness conservation assumption

so as to allow for gray level variations that result from phenomena not explained

by the assumption of topology (e.g., weaving anomalies, tomographic artefacts).

Furthermore, regularization techniques are employed so as to better condi-

tion the problem. First, the displacement field is regularized using a “complete”

mechanical regularization scheme [36]. This favors displacement field locally

obeying a prescribed behavior (e.g., linear elasticity). Second, the gray level

correction fields are regularized by the L2 norm of their Laplacian. Both strate-

gies can be seen as a set of filters that locally dampen steep gradients and ensure

smooth and differentiable fields.

Finally, the correlation is performed under a multiresolution strategy that

consists in considering at first coarse images to evaluate the largest displace-

ments, and progressively images with a finer and finer resolution pre-corrected

by the previously estimated displacement fields to evaluate the details of the dis-

placement field. Hence, big textile displacements and small yarn deformations

can be both captured by the method.

3. Setup

Four composite samples sharing the same weaving pattern (i.e., relative yarn

positions) are considered in the present analysis: S1, S2, S3 and S4. In order to

ease the understanding of the results, two pairs of samples are proposed: S1-S2

and S3-S4.

The samples are observed using X-ray micro-CT. The available observed

region for pair S1-S2 contains an entire unit cell, and the observation of pair

S3-S4 is done over a wider region. Since the target scale is the meso-scale, the

voxel size is coarse enough so as to “average” the information at the micro-scale

(i.e., the carbon fibers), while being sufficiently fine so as to allow a proper

description of the textile (i.e., the yarns). Similarly, low energy X-rays are

employed in order to obtain the maximum contrast between phases. As such,

the reconstructed volumes differentiate the (carbon) yarns and the (polymer)
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resin.

All studied samples are oriented so that the x axis corresponds to the weft

orientation, the z axis to the warp orientation, and the y axis to the transversal

orientation. Some 2D slices for both pairs of samples, shown in figures 1 and 2,

illustrate on the variability of the considered samples.

Finally, the “correlation for textiles” is performed on both pairs. The samples

S1 and S3 are chosen as references for their respective pairs; therefore, samples

S2 and S4 are considered in a “deformed” configuration. The kinematic descrip-

tion for the pair S1-S2 (resp. S3-S4) is decomposed over 9600 (resp. 22572)

degrees of freedom using a regular structured mesh.

x

y

(a) S1

z

y

(b) S1

x

y

(c) S2

z

y

(d) S2

Figure 1: (x-y) and (y-z) slices for pair S1-S2, they correspond to “equivalent”

regions in the composite
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(a) S3

z

y

(b) S3

x

y

(c) S4

z

y

(d) S4

Figure 2: (x-y) and (y-z) slices for pair S3-S4, they correspond to “equivalent”

regions in the composite

4. Results

The obtained results for each pair (S1-S2 and S3-S4) will be explored in the

following. First, the analysis of each pair will be performed independently so as

to gain insights into the different phenomena induced by the entire manufactur-

ing process. Then, the strain patterns identified in the second pair will be used

for describing those of the first pair. This step will demonstrate the advantages

of using a common “language” in the analysis of woven composite deformations.

Given the nature of the found displacement fields, it is proposed to carry out

their analysis via their relative strains [44], presented in the form of the strain

tensor ε(x) field. They inform on the deformations that the test samples (S2

and S4) need to undergo to resemble their respective references (resp. S1 and

S3). Thus the relative nature of the descriptor. The logarithmic (or Hencky)

strain [45] definition is chosen to account for large strains as well as for large

rotation [46], while excluding rigid-body motion of the medium.

It should be noted that this second-order strain tensor is symmetric (i.e.,

8



εij = εji)

ε =


εxx εxy εxz

εyx εyy εyz

εzx εzy εzz

 (5)

and can be represented as a vector using the Voigt notation (order reduction) [47]

ε = (εxx, εyy, εzz, εyz, εxz, εxy) (6)

Additionally, two invariant quantities (with respect to any coordinate sys-

tem) can be obtained from the strain tensor: the trace tr(ε) and the equivalent

strain εeq [48, 49]

tr(ε) = εxx + εyy + εzz (7)

εeq =

√
2

3
·
√

tr(ε2)− 1

3
tr(ε)

2 (8)

The former accounts for normal deformations (volume change), while the latter

considers shear deformation magnitude (at constant volume).

Finally, principal strains are a useful tool for analyzing the strain tensor.

They are the eigenvalues of the strain tensor, and are labeled such that ε1 ≥
ε2 ≥ ε3.

The formalism introduced by the principal strain tensor allows a tensor

glyph visualization using ellipsoids [50, 51]. Their axes are determined by the

eigenvectors (principal orientations) and their diameters are determined by the

eigenvalues (components of the strain tensor). This visualization is useful for

identifying, at a glance, different types of strain patterns; for example, when the

ellipse approximates a sphere the strain state is isotropic. Similarly, a stretch

along a direction and or in a plane are represented by the ellipse approximating

a “cigar” or “pancake” shape, respectively.

Finally, all displacement and strain measurements presented herein will be

normalized with respect to a pair of chosen key values uo and εo.
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4.1. Analysis of pair S1-S2

The registration of this first pair can be verified through the image of resid-

uals η(x) and the displacement field u(x).

The former informs on the quality of the registration: the residual η(x) is

centered at zero with a standard deviation of 7.8 % of the initial 16 bits dynamic

range. Additionally, all the remaining high-valued residuals are easily identified

as ring artifacts (i.e., tomographic reconstruction), as seen in figure 3a. Such

behavior is highly desirable in view of the fact that even “imperfect” tomographic

images do not alter the DVC analysis, thus its result is deemed reliable.

The displacement field is shown in figures 3b to 3d for each of its components.

A noteworthy observation is that uy ≈ 0, so u is essentially parallel to the (x-z)

plane and varies mostly with y. This layered kinematics with all (x-z) planes

being mostly translated along their plane, can also be observed from ux and uz.

It makes sense because such “sliding” between the layers of the woven composite

is to be expected. In fact, each layer is essentially a 2D textile which cannot be

stretched neither along the weft nor the warp orientation (i.e., εxx = εzz = 0).

This leaves mostly rigid translation in the (x-z) plane with minimal shear εxz;

hence, the most significant strains are to be expected as shear in the planes

(x-y) and (y-z). A volume representation (iso-curves) of the strains εxy and εyz

is shown in figures 4a and 4b.

Furthermore, it is possible to visualize the deformations with respect to the

composite samples, as shown in figures 4c and 4d for the different views of sample

S1 (reference), and in figures 4e and 4f for the sample S2. As the figures 4c

to 4f show, the identified phenomena are strongly related to the meso-structure

of the composite. Furthermore, some highly localized strain patterns can be

identified: The first strain pattern B1, observed between figure 4c and figure 4e,

is the same “sliding” of layers described earlier. The second strain pattern B2,

observed between figure 4d and figure 4f, shows a similar “sliding” of yarns at

an oblique orientation. Here, the bundle of yarns to left (resp. right) of the

oblique plane slide left-downwards (resp. right-upwards). It should be noted

that these qualitative description of the strain patterns B1 and B2 is motivated
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by the underlying quantitative measurements.

Finally, on account of the predominant shear strain, the equivalent strain is

chosen for analysis, multiple (x-y) and (y-z) views for the εeq and S1 are shown

in figure 5. It can be seen that εeq is highly localized in a region constrained

between two weft layers and comprises three warp columns. The layered kine-

matics described earlier is mostly expressed in this region. It is also noteworthy

that the results are highly localized despite the considerable ring artefact.

x

y

z

(a) η(x)

y

z

(b) ux(x)

y

z

(c) uy(x)

y

z

(d) uz(x)

−0.5 −0.25 0 0.25 0.5

Figure 3: Results of correlation for pair S1-S2: (a) image of residuals and (b)-(d)

components of the displacement field (normalized with respect to uo)
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y
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(a) εxy

x

y

z

(b) εyz

x

y

(c) εxy on S1

z

y

(d) εyz on S1

x

y

B1

(e) εxy on S2

z

y

B2

(f) εyz on S2

−0.5 −0.25 0 0.25 0.5

Figure 4: (a)-(b) Selected components of the strain tensor ε (normalized with

respect to εo) shown over the corresponding slices of samples (c)-(d) S1 and

(e)-(f) S2
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x

y x1

(a) (x-y) view for z1

z

y z1

(b) (y-z) view for x1

x

y x2

(c) (x-y) view for z2

z

y z2

(d) (y-z) view for x2

x

y x3

(e) (x-y) view for z3

z

y z3

(f) (y-z) view for x3

0 0.25 0.5

Figure 5: (x-y) and (y-z) views at different z and x positions of S1 and εeq

(normalized with respect to εo)
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4.2. Analysis of pair S3-S4

The analysis of the registration between this second pair will purposely be

different than previously. In fact, the goal of this section is to provide a new

method of analysis for this type of results.

First, it can be helpful to analyze the displacement and deformation through

some visualizations. The displacement field u(x), shown in figure 6a, is ap-

plied over the reference support (mesh) and warped accordingly. This allows

observing a slight shearing along with a depression on the (y-z) surface that

corresponds to x = 0. Also, the strain tensor ε is shown in figure 6b using a

tensor glyph visualization.

y

z

(a) ‖u(x)‖2

y

z

(b) ε

0 0.5 1 1.5 2 0 0.25 0.5 0.75 1 1.25

Figure 6: Results of correlation for pair S3-S4: (a) displacement field (normal-

ized with respect to uo) and (b) strain tensor (normalized with respect to the

largest eigenvalue and εo)

Then, two components of the strain tensor are chosen for visualization: εxx

and εxy; These strains correspond to compression (or dilation) along the x axis

and shear in the (x-y) plane, respectively; a volume representation (iso-curves)

of the selected strains is shown in figures 7a and 7b. The impact of these

fields on the composite samples is shown in figures 7c and 7d for the sample

S3 (reference), and in figures 7e and 7f for the sample S4. Again, it can be

seen that the measured deformations are strongly related to the structure of the

woven composite. For example, the “dislocation” pattern B3, seen in figures 7d
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and 7f, can be explained by the top- and bottom-most layers moving relative

to the inner layers. However, a portion of the top-most layer (on the right

side) “holds” onto its the neighboring layers. This results in the “sliding” being

translated to an inner layer below, which is displayed as high values of shear in

the (x-y) plane; in turn, this creates in a region of high compression along the

x direction, as shown in figure 7e.

y

z

(a) εxx

y

z

(b) εxy

x

y

(c) εxx on S3

x

y

(d) εxy on S3

x

y

B3

(e) εxx on S4

x

y

B3

(f) εxy on S4

−2 −1 0 1 2

Figure 7: (a)-(b) Selected components of the strain tensor ε (normalized with

respect to εo) shown over the corresponding slices of samples (c)-(d) S3 and (e)-

(f) S4 (different z positions are shown in order to better illustrate the effects)

These previously described phenomena can be summarized in the diagram

shown in figure 8. A region of high compression (εxx << 0) is created when

most of the columns at inner layers (with ux > 0) “collide” with the remaining
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columns (with ux < 0). At the boundaries of these bundles of yarns some

regions with high shear (with |εxy| >> 0) are created. Again, it is important to

note that this qualitative description of the strain pattern B3 is motivated by

the measured differences between the composite samples.

x

y

Figure 8: Diagram of observed phenomena for the pair S3-S4: a compression

zone is created (with εxx << 0) when a block moves right (ux > 0) and

the other blocks move left (ux < 0); these are at the origin of shear in the (x-y)

plane, positive (εxy >> 0) and negative (εxy << 0)

4.3. Distillation of results using machine learning

This next part of the analysis consists in providing a set of quantitative

descriptors for the measured differences that will be obtained by combining the

known (observed) phenomena with unsupervised machine learning techniques.

The reader not specifically interested in the technical details of this section can

skip to section 4.4.

The relative strain measurements are studied using the Principal Component

Analysis (PCA) [52–54]. This technique consists on an orthogonal transforma-

tion that converts a dataset of possibly correlated variables into a set of linearly

independent variables. Such transformation is obtained from the covariance

matrix of the dataset

Σ = XᵀX (9)

and its eigendecomposition

Σ = QΛQ−1 (10)
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where Q is a square matrix whose i-th column is the eigenvector νi and Λ is

the diagonal matrix whose elements are the corresponding eigenvalues λi (i.e.,

Λii = λi, and Λij = 0 for i 6= j). A useful approximation can be obtained if

λd+1 through λp are (relatively) small

Σ ≈ QΛdQ
−1 (11)

where the matrix Λd is the truncation of Λ keeping only the first d largest

eigenvalues. More precisely, the amount of the variation explained by each

component is given by

λ̄i =
λi∑
j λj

(12)

Then, the first d chosen principal components form an orthonormal basis. Hence

any strain vector X can be projected onto this subspace as Zd

Zd = PdX (13)

with the projection operator Pd

Pd = QIdQ
ᵀ (14)

and the truncated identity Id.

As such, a dataset is formed from 8740 strain measurements in Voigt no-

tation. The corresponding eigenvectors and eigenvalues are shown in tables 1

and 2. Given that the first three eigenvalues represent a reasonable amount of

the variance (i.e., almost 90%), only the three first principal components are

chosen for the new basis d = 3.
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Table 1: Principal components for the relative strains dataset, the retained

eigenvectors are shown in boldface

ν εxx εyy εzz εyz εxz εxy

1 -6.3% -6.5% 0.4% 5.6% -8.0% -99.1%

2 92.7% -27.3% 0.4% 25.3% -4.5% -2.3%

3 -32.7% -28.4% 7.3% 89.2% -5.5% 9.5%

4 -17.0% -91.6% 1.9% -36.0% 1.5% 5.0%

5 3.2% 1.8% 76.8% -0.1% 63.8% -5.2%

6 -0.1% 4.0% 63.6% -9.3% -76.3% 5.6%

Table 2: Amount of individual and cumulative variance explained by each prin-

cipal components, the eigenvalues associated to the retained eigenvectors are

shown in boldface

ν λ λ̄
∑
λ̄

1 0.0259 58.5% 58.5%

2 0.0088 19.9% 78.4%

3 0.0046 10.5% 88.9%

4 0.0031 7.1% 96.0%

5 0.0010 2.2% 98.2%

6 0.0008 1.8% 100.0%

This provides the projected dataset Z3, as shown in figure 9, with the prin-

cipal components being mostly aligned with εxy (-99.1%), εxx (92.7%) and εyz

(89.2%), respectively. One can observe three distinct groups. The first two

groups (along ν1) are symmetrically opposed, they represent shear strain in the
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(x-y) plane with opposing magnitudes. On the contrary, the third group (aligned

with ν2) represents the compression (normal strain) along the x axis. Also, the

first two groups are symmetrically opposed to the third group (along ν3). Indeed

they represent shear strain in the (y-z) plane with opposing magnitudes.

Regarding the principal components, it is noteworthy that the influence of

εxz and εzz is very low. As expected from the observed layered kinematics,

they represent almost no activity in the transversal orientation of the composite

(between layers).

ν1
ν2 −0.4 −0.2 0 0.2 0.4

−0.6

−0.4

−0.2

0

0.2

ν1

ν 2

−0.4 −0.2 0 0.2 0.4

−0.2

0

0.2

ν1

ν 3

−0.6 −0.4 −0.2 0 0.2

−0.2

0

0.2

ν2

ν 3

Figure 9: Embedding of the dataset onto a two-dimensional space using PCA

It should be noted that these described “groups” belong a continuous evo-

lution of a phenomenon. That is, if ε is identified to belong to a group, then

α ∗ ε for any 0 < α < 1 is likely to happen and should belong to the same

category. As such, the identification of (typology of) strain patterns should be

independent of its magnitude. Naturally, this calls for normalizing each strain
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value by its norm (i.e., the norm associated to the full tensor), an histogram of

these magnitudes is shown in figure 10. Now the problem is reduced to identify-

ing the groups of patterns at the surface of the (6D) unit sphere. Furthermore,

given that points with low activity (i.e., norm smaller than εo) do not provide

reliable information about the sought orientations, they are removed from the

analysis. This subset of normalized points projected onto the basis defined by

P3 is shown in figure 12. For visualization purposes a (zero centered) ellipsoid

is fitted to the data using Linear Least Squares, this represents the unit sphere

projection.
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Figure 10: Histogram of the strain norms (normalized with respect to εo)

The identification of these groups will be performed via k-means [55, 56].

This clustering operation defines groups (i.e., clusters) so that data points be-

longing to the same group are more similar (according to some metric) to each

other than those in other groups. It is an iterative procedure that minimizes

the (euclidean) distance between data points and the centroid of the identified

clusters, which are then updated. The initialization of the clusters is done via

the k-means++ algorithm [57], which uses a simple heuristic to find centroid

seeds: them being initially spread out is desirable. This initialization procedure

is known to improve the convergence and quality of the final solution.

As previously identified, the selected number of strain patterns is three. As

such, using k-means on the chosen subset of normalized data points, the cluster

centroids are identified. The table 3 lists them using the basis defined by P3 (as
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they were computed). The clustered points and identified centroids are shown

in figures 11 and 12.

Additionally, they can be listed in the original space (using Voigt notation)

or in their invariant forms, as shown in tables 4 and 5, respectively. They further

highlight the predominant planar nature of the relative strains (i.e., ε3 ≈ 0), as

illustrated by the glyphs.

Table 3: Centroids found using k-means

K ν1 ν2 ν3

1 -58.0% -32.4% -9.3%

2 58.5% -34.7% -13.1%

3 1.4% -85.5% 17.5%

Table 4: Centroids projected into the original space (Voigt notation)

K εxx εyy εzz εyz εxz εxy

1 -23.3% 15.3% -1.0% -19.7% 6.6% 57.4%

2 -31.6% 9.4% -0.9% -17.2% -2.4% -58.5%

3 -85.1% 18.3% 1.0% -5.9% 2.8% 2.2%

Table 5: Centroids expressed using their invariant forms

K tr(ε) εeq ε1 ε2 ε3 glyph

1 -9.1% 22.4% -68.8% 59.1% 0.7%

2 -23.0% 24.6% -75.0% 53.8% -1.9%

3 -65.8% 63.9% -85.2% 20.1% -0.7%
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Figure 11: Centroids found using k-means, the position of the centroids is indi-

cated by the arrows

Finally, a volume representation of the different groups is shown in figure 13.

The original data points (whose spatial coordinates are known) are shown for

each cluster. As expected, the clustering analysis identifies the previously de-

scribed strain patterns. It helps “summarizing” the relatively complex phenom-

ena into quantifiable descriptors. They build upon the qualitative analysis first

presented.
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defined using PCA
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(a) Cluster for K1 (b) Cluster for K2

(c) Cluster for K3

Figure 13: Volume representation of the identified clusters
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4.4. Combined analysis of results

The previously identified strain patterns for the pair S3-S4 amount to a

reduced vocabulary of deformations. They represent the complex deformations

induced by the manufacturing process. As is, it is very limited, as it is sampled

from a reduced population (i.e., only one sample pair). Moreover, incorporating

more sample pairs into this analysis would provide a common “language” for

describing these deformations. Then, once a complete basis has been defined,

it can be used for analyses on new unseen samples. As such it helps expressing

a multitude of results under a common formalism, thus easing the comparison.

Likewise, this basis could replace the previously used FE decomposition, and be

employed for identification purposes (e.g., Integrated-DIC [58]).

For illustration purpose, the formed basis (from the pair S3-S4) will be em-

ployed for analyzing the results obtained from pair S1-S2. A database of relative

strains, projecting them using P3 — performing the normalization procedure,

and assigning the points to the cluster whose centroid is closer — is constructed.

The new points embedded in the reduced space are shown in figure 14. Their

normalized counterparts are shown in figure 15 alongside with the clusters they

belong to. Similarly, a volume representation of the clusters is provided in fig-

ure 16.
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(a) Cluster for K1 (b) Cluster for K2

(c) Cluster for K3

Figure 16: Volume representation of the identified clusters
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5. Conclusions

A novel approach based on DVC has been presented for measuring the yarn

deformations induced by the complete manufacturing process of woven compos-

ites.

Four woven composite samples observed under similar conditions (tomo-

graphic acquisition parameters) are analyzed. From these relative studies, some

interesting patterns are inferred. They inform on “sliding” between the layers

of the woven composite that occur during the manufacturing process. This

layered kinematics is motivated by the fact that each layer suffers almost to

none in-plane deformation (along warp or weft orientation), thus leaving mostly

rigid translation. Such measured phenomena does agree with some previously

observed (qualitative) deformations. Moreover, the results were presented us-

ing a diverse set of visualization techniques, each aiming at better displaying a

certain feature. Indeed, pinpointing the “best” representation of the results (for

all tasks) is a difficult assignment. However, identifying the one that best fits a

particular need (for a given task) should prove apparent.

These relative strains are then analyzed using unsupervised learning tech-

niques so as to create a reduced vocabulary of strains patterns. For the con-

struction of this “dictionary” of patterns, the learning was performed on only a

pair of samples and the testing was performed on the remaining pair of samples.

It should be noted that the current reduced number of studied samples (and

reduced number of patterns) is not sufficient to perform a thorough statistical

analysis of the phenomena. For such reason, further experimental investigations

are planned. An additional advantage of employing such vocabulary, is that it

can serve as a basis for the kinematic decomposition and thus be employed for

identification purposes [58].

Just as DIC (and Stereo-DIC) were paramount for the validation of textile

forming models, this technique has the potential to do so for 3D. Since the

proposed approach allows the quantitative analysis of the entire sample (not

only the surface), it provides a complete description of the deformations induced
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by the manufacturing process or external factors. Indeed, this technique can

be re-purposed if the deformations induced by each step of the manufacturing

process is desired. This would necessitate tomographic scans before and after a

particular process (e.g., weaving, forming, injection).

Similarly, the characterization of the so-called realistic “as-woven” configu-

rations could be enabled by this method. This would imply a rigorous statis-

tical analysis on multiple formed samples (prior to injection). Naturally, this

technique has the potential for analyzing the deformations induced by complex

shapes.

Furthermore, the proposed approach could be employed along some tex-

tile forming models. In particular, with those employing a reduced number

of “simple” parameters (e.g., not employing textile pre-processors [33]). Then,

the impact of these parameters on the final as-woven configuration could be

expressed using the measured strain patterns. As such, the validation of the

models (and the parameters) could be performed automatically.

Interestingly, this method can also be employed for a deeper comprehension

of the whole manufacturing process itself. As such, it opens the possibility

for a sensitivity analysis on the many parameters involved in the manufacturing

process. In fact, the evolution of any given parameter could be instead expressed

as an evolution on the material at any stage.

It is important to note that the presented application of DVC helps overcome

the many challenges related to the analysis of volume data obtained via X-

ray micro-CT. Not only the calculations are performed without (tedious and

long) manual operation, but they also provide full-field measurements instead

of qualitative observations.

Finally, an extension of the technique consists in endowing it with “unwrap-

ping” [59] capabilities so as to relate the observed phenomena with the under-

lying weaving pattern. As such, the impact of the different aspects of the man-

ufacturing process can be understood with respect to the textile architecture.

This approach is currently being explored.
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