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Abstract

Digital Volume Correlation is an appealing technique for establishing a novel
comparison (differentiating) tool based on full field measurements of structured
materials such as 3D woven composites. This approach provides a quantifiable
description of the weaving distortions on woven composites. It also offers ap-
plications ranging from the quantification of the influence of different weaving
conditions, up to nondestructive testing of composite parts. The method is
validated on real 3D woven composite samples revealing both “metric differ-
ences” (deformations of a textile with respect to reference one) and “topological
differences” (such as the occurrence of missing yarns).

Keywords: Woven Composites, Textiles, Digital Volume Correlation,
Tomography

1. Introduction

Woven composites are fast becoming key in many industries such as aeronau-
tical and aerospace mainly due to their very attractive specific properties (e.g.
strength to weight ratio). Particularly, 3D woven composites (three-dimensional
weaving pattern) have appeared in many new applications requiring high me-
chanical properties such as the turbomachine fan blade and casing developed
for the LEAP motor [1]. Evidently the increasing interest in these materials
has generated a high demand for proper characterization methods, accurate FE
simulations, suitable nondestructive testing (NDT) techniques, and adequate
visualization techniques.
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The structured nature of woven composites, as described by their weaving
pattern, allows for a new type of analysis: namely one that takes into account
their topology. This powerful statement exploits the property that different wo-
ven samples (sharing a weaving pattern) can be related by means of continuous
displacements.

The quantitative analysis of such deformations is of great interest for woven
composites. For instance, the evaluation of yarn displacements and deforma-
tions, such as stretching and bending, may help in defining acceptable or unac-
ceptable weaving distortions. Furthermore, this analysis could help identify the
step in the manufacturing process or the set of parameters in need of optimiza-
tion so as to avoid undesired results [2]. Here, the evaluation is carried out at
the meso-scale, which implies that any phenomena occurring at the micro-scale
is neglected [3].

This quantitative characterization drastically improves over qualitative
methods that do not provide enough information to detect subtle deformations
and even not so subtle ones. Thereby, image correlation can be used as a
compelling NDT technique for the manufacturing of high technology composite
materials.

Here is presented the effectiveness of image correlation for registering pairs
of tomographic volumes of 3D woven composites. This allows the measurement
of “metric differences” as well as the so-called “topological differences”. The
former quantify all yarn displacements and deformations in the studied sample.
And the latter encompass all weaving anomalies that cannot be eliminated by
a simple continuous deformation of the medium, such as loops and missing (or
extra) yarns.

The paper is structured as follows. Section 2 presents the mathematical
framework of the image correlation technique. Section 3 recalls briefly the adap-
tation of Digital Volume Correlation (DVC) for the analysis of woven compos-
ites, as well as some additional analysis tools. The robustness of the approach is
demonstrated in Section 4 with two challenging examples that target the “metric
differences” and “topological differences” respectively. Finally, some conclusions
and outlook are given in Section 5.

2. Image correlation

Digital Image Correlation (DIC) [4] is a popular technique to accurately
measure 2D displacements fields from images pairs. As an extension of standard
DIC, Digital Volume Correlation (DVC) [5] is a fast growing technique [6] that
measures the internal displacement fields from a pair of volumes (3D images).
As a true three dimensional technique, DVC is distinct from the 3D surface de-
formation methods that rely on two-angle planar images (stereo-correlation [7]).

The analysis of displacement fields from mechanical tests is a key ingredient
to bridge the gap between experiments and simulations. It also allows the
subsequent extraction of mechanical properties or quantitative evaluations of
constitutive law parameters [8, 9], one of the most important steps of the analysis



in Solid Mechanics [10]. This explains the increasing interest of measuring the
displacement fields of surfaces or volumes belonging to stressed specimens and
structures using images acquired at different stages of loading. As such the
displacement field is measured by means of the observed image texture that
is assumed to passively follow the displacement of the analyzed solid. It is
desirable that this texture have strong contrasts so as to be sensitive to small
displacements. DVC usually relies on the natural texture of the studied material
as a basis for correlation [11] since most procedures used to improve the contrast
of the material texture will also modify its mechanical properties (which may
be of interest).

DIC and DVC approaches can be of local [5] or global [12, 13] nature. The
former evaluates the apparent mechanical transformation through a large num-
ber of independent analyses on sub-images or correlation windows, while the
latter does so over the entire region of interest (ROI). In reference [14], it is
shown that global approaches generally out-perform the local ones thanks to
the embedded continuity requirements which help capturing more complex dis-
placements fields.

2.1. Correlation procedure

The registration between the reference configuration f(x) and the deformed
configuration g(x) is based on the brightness conservation assumption [13]

f(@) = g(x) (1)

with
9(x) = g(x + u(x)) (2)
where u is the Lagrangian displacement vector field applied at any material
point x, and g(x) defines the corrected (back-deformed) configuration,
The goal is to find the displacement u needed to reach full coincidence of f
and ¢ by minimizing the squared norm of residuals n, defined as

n=f-g (3)

This is an 4ll-posed problem since the available information (intensity levels)
is insufficient to uniquely determine a vector displacement field. For such a
reason, u is restricted to a space of low dimensionality, which results in a well-
posedness and (depending on the choice of this space) a good conditioning of the
problem. A convenient choice is the decomposition of u on a set of well chosen
kinematics fields 1; (forming a basis), such as those used in the framework of
the finite element (FE) method

u(x) ~ ) aii(x) (4)

Then, the overall solution is given by the vector {a} containing the am-
plitudes that minimize the squared norm of the residuals 1 over the region of

interest ).
T = / n* dz (5)
Q



The superposition of the chosen kinematics basis over {2 makes the sought am-
plitudes a; interdependent, hence the term “global”.

Finally, a classical Newton-Raphson routine [15], an iterative linearised op-
timization procedure, is used to solve for

or

o(ay " 8
which leads to the linear system:
[M]{éa} = {b} (7)
with
My = [ (V16 (VF 0 da (®)
Q
and
b= [ (V50 (f - ) de )
Q
As such, the unknown degrees of freedom are updated with:
{a}""" = {a}" + {sa} (10)

This allows to recompute g and 7 until convergence is reached.

2.2. Relazed brightness conservation

Sometimes, the brightness conservation assumption is not respected due to
factors extrinsic to the displacement. Typically, such changes account for light
source intensity variations or spurious reflections induced by the geometry. Ad-
ditionally, these changes can also have some physical meaning such as oxidation
or wetting. In the case of volumetric analysis, these changes can originate from
the acquisition method. In particular for tomography, effects such as the ring
artefact or the cupping artefact (resulting from the phenomenon known as “beam
hardening” in which outer elements seem to be more absorbing) need to be taken
into account.

The relaxed brightness conservation assumption redefines the corrected im-
age as:

3(@) = g(@ + u(@)) + v(@, gl@ + u(z)) (11)

where

v(a,h) =) vy() WP (x) (12)

For simplicity, the functional v(z,-) is applied over the reference image f and
not over the test image g. This implies handling a constant Hessian matrix
(equivalent to being computed only at convergence where § approximates f),
which accelerates the optimization procedure. Additionally, it is usual to limit
the correction up to the second order. This is written as:

9(@) = g(x + u(x)) + vo(x) + vi(x) - f() (13)



Traditionally, the first and second order corrections (vo(x) and vq(x)) are called
“brightness” and “contrast” respectively, since such are the phenomena they
describe in the surface of a sample. However, such terminology is not suited
for the volumetric case since f refers to the absorption of X-rays. Nonetheless,
due to their standard use in the field of image analysis, they will be kept in the
following as such.

Following the same development as previously shown, equations (8) and (9)
become:

M, - / (®:(f) - 1) - (B:(]) - 1) dae (14)
Q

and

b= [ (@) ) (= d)de (15)
where the type of degree of freedom associated to ¢ defines

V f, if associated to displacement
O,(f) =141, if associated to brightness (16)
1 if associated to contrast

This allows to identify the type of correction associated to each degree of
freedom enumerated by index ¢. Then the resolution of the problem follows the
aforementioned iterative scheme.

Finally, it should be noted that while the correlation procedure does solve
for the correction fields (i.e. u(x), vo(x) and v1(x)), the correction proposed
by only the displacement can be computed at any time. Hence, the following
notation is proposed in order to accommodate equations (2) and (13)

gu(®) = g(z + u(x)) (17)
and
Guo(®) = gu(@) + vo(2) + 01(2) - f(2) (18)
with the correlation residuals based on kinematics only
N = Gu— [ (19)

and based on the full correction
Nuv = guv - f (20)

with the optimization being performed on the squared norm of 7.

2.3. Mechanical regularization

Regularization techniques can be used in order to further condition the DVC
problem, as well as to reduce the measurement uncertainty. While a classical
soft Tikhonov regularization [16] could be used, it is preferred to introduce a
penalization based on the “distance” between the estimated displacement field



and that of the solution to a homogeneous elastic problem [17, 18]. This distance
is known as the equilibrium gap [19] which assumes an elastic behavior at a small
scale and a boundary regularization [13, 20, 21].

Then, by defining the strain tensor € as the measure of deformation inside
the material

€= % (Vu+Vu') (21)

the relevant state of an elastic medium can be described by the constitutive
equation
oc=C:e¢ (22)

where the (Cauchy) stress tensor o is related to the strain tensor € by means
of the elasticity tensor C (also called Hooke tensor), which summarizes the
constitutive law of the elastic material.

As such, the displacement field u(x) in the bulk of an elastic body can be
described with the Lamé operator:

Lam(u) =V - o (23)

which, in the context of the FE method can be expressed using the stiffness
matrix K as nodal forces

(K] {u} = {Fn} (24)

and in the absence of body forces Fi,, the equilibrium equations read:
[K]{u} =0 (25)

Then, the minimization of the quadratic norm of Lam(u), the so-called “equi-
librium gap”, effectively penalizes any deviation and mechanically regularizes the
sought displacement field u. The standard functional defined in equation (5)
is supplemented with this new functional. Nonetheless, the nature of the (sec-
ond order differential) Lamé operator calls for a proper weighting scheme. Such
is obtained with a factor proportional to the fourth power of a regularization
length, £* as shown by dimensional analysis.

It is important to note that this strategy does not require the studied volume
to strictly obey linear elasticity. Rather it can be seen as a filter that locally
dampens abrupt displacement gradients (high spatial frequencies) in order to
guarantee a smooth and differentiable displacement field. Such filter is tuned by
means of the regularization length £, which, if smaller than the finite element
size, nullifies the mechanical regularization. In this case, the benefit of referring
to elasticity is a natural way to ensure Galilean invariance.

Furthermore, this technique can be adapted for the regularization of the gray
level correction fields presented previously. For such, it suffices to substitute the
Lamé operator with the Laplace operator

Av=V2.p (26)

As such, two new functionals are derived from the quadratic norm of Awvy and
Awv;. The optimization procedure follows identically to the previous. Finally,



two regularization lengths are employed: &, for the displacement field and &,
for the gray level correction fields (&,, and &,, are chosen to be equal).

It should be noted that &, and &, need to be tuned so as to achieve a good
balance between a well-posed problem not prone to noise and a problem with
enough flexibility (freedom). In fact, too short &, and &, may lead to a confusion
between the corrections related to displacement and those related to gray level
modifications. The choice of these parameters should be guided by a correct
interpretation of the results as well as of the obtained residuals.

2.4. Multiscale analysis

Since it is possible to compute the cost function 7 and its gradients for any
set of parameters a, the optimization can (in principle) be performed with any
iterative numerical algorithm which should more or less quickly converge to a
solution. In most cases, the convergence towards the local minimum closer to
the initial guess is of concern. Many different strategies have been employed in
that sense [22]. Particularly, a multiscale algorithm [23] has been shown to be
extremely robust and capable to benefit from an optimization by descent while
limiting the effects of spurious local minima. This method has shown good
results for local and global approaches [10].

The idea behind the multiscale algorithm is to start with strongly low-pass
filtered (smoothed) images in order to artificially enlarge the effective correlation
length and hence the basin of attraction of approximate displacement determi-
nations. The algorithm is repeatedly applied over less filtered images (gradually
restoring the details), using the displacement obtained from the coarser images
as an initial guess. The recursion stops when the original image is recovered.

2.5. Image of residuals

The image of residuals 7 is a useful criterion to evaluate (qualitatively or
quantitatively) the obtained solution. Obviously, if the registration were perfect,
the residuals would contain nothing but image noise. Usually they are found to
be a small fraction of the full dynamic range of the gray levels. Moreover, the
residual field allows correlation errors to be spatially located. They also help to
quickly verify the proper convergence of the algorithm, and to possibly correct
or extend the chosen kinematic basis.

2.6. Discretisation effects

It should be noted that while f and g are the discretisation of a continu-
ous phenomenon, they have been treated as continuous functions by means of
interpolation schemes; this is implicitly expressed in equation (1). Such formu-
lation requires the intensity values in the deformed image at arbitrary points
2 + u(x). The errors induced by this interpolation take the form of an over- or
under-estimation of the displacement components. The average of these errors
exhibits a symmetry with respect to the half-pixel displacement [24], which can
be used to determine the a priori level of errors and uncertainty to be expected
from of the interpolation scheme. It may be worth adding that because of the



expected differences at very small scales, it makes no sense to spend time for a
very accurate interpolation. Hence, the trilinear interpolation is suitable.

Finally, the choice of a discretisation method for the displacement field is
crucial as a good spatial resolution will be accompanied by a high displacement
uncertainty and viceversa. Finer meshes induce a better spatial resolution but
displacement uncertainties are larger [10, 25| because of the fewer pixels per
kinematic degree of freedom considered in the analysis.

3. Multiresolution isotropic approach

The hierarchy of information is an important notion in image analysis. This
happens due to a natural nesting of several objects or features (of different sizes)
within a single image. Developing robust methods capable of dealing with fine
details —which usually are not a highly discriminant source of information—
while also coping with broad definitions and still remain numerically efficient,
proves to be a complex task. Coarse-to-fine resolution strategies often provide a
simple yet effective solution. These include the traditional (Gaussian) pyramidal
approach [26] or the more recent scale space theory [27], both being strongly
related. The pyramidal method uses the results obtained on a lower resolution
image to guide the processing on a higher resolution image, repeatedly until
the original image is reached. Thus, the coarser levels will help to capture the
largest displacements, which will be iteratively refined at each finer resolution
level.

Additionally, this multiresolution strategy aligns perfectly with the multi-
scale analysis presented in section 2.4. While the former deals with the different
scales of interest present in the textile, the latter ensures algorithmic speed up
and convergence.

Moreover, when dealing with displacements, the notion of anisotropy should
be addressed in the image analysis. For the present case study, the yarn cross-
sections are of great interest. Though initially (in the manufacturing process)
approximately circular in shape, the yarn cross-sections on the final textile are
greatly flattened, thus giving rise to elongated structures. In fact, they are
commonly modelled after ellipses or lenticular shapes [28]. As such, similar
displacements in different directions will not have the same impact. A straight-
forward solution is a simple geometric transformation in order to make the im-
age isotropic, where yarn cross-sections approximate a circular shape. However,
this affinity does not need to be exceptionally “precise”, but rather approxi-
mate since the goal is to obtain in average more isotropic shapes. A similar
argument can be made for textiles with more complex shapes. While in such
case the anisotropy removal may be less effective, it remains beneficial for the
aforementioned reasons.

Finally, the multiresolution isotropic approach is pursued by first removing
the anisotropy using a convenient scaling factor (per axis), followed by the
construction of a Gaussian pyramid from the now isotropic image. Here the
pyramid levels are constructed up to the point where the smallest scale remains
distinguishable. In this case, the smallest case is the yarn cross-section. An



example of the procedure can be seen in figure 1. Additionally, the calculations
are only performed on the isotropic levels of the pyramid. The obtained results
can be extrapolated to the anisotropic case if needed.

Subsequently, the correlation procedure is applied on each pyramid level and
with the lower levels providing the initialization for the upper levels. The DVC
technique used here is based on the relaxed brightness conservation assump-
tion, with a displacement field mechanically regularized (using the previously
described elastic behavior), and a gray level correction field regularized by pe-
nalizing the Laplacian obtained on each scalar field independently.

Figure 1: Volumes constructed for the multiresolution isotropic approach. The
original (anisotropic) volume is shown in (a) while the first three levels of the
(isotropic) pyramid are shown from (b) to (d).

8.1. Metric differences

The found displacement field allows a quantitative analysis through the mea-
surement of the existing “metric differences” between the studied samples. Such
differences highlight the relative yarn displacements needed to accommodate the
test sample towards the reference one.

Furthermore, the displacement field can be used to compute a powerful de-
scriptor: the relative strain. It describes the deformation in terms of relative
displacement and excludes rigid-body motion of the medium. This descriptor,
while numerically identical to the strain definition given in continuum mechan-
ics, proposes a novel key concept: it does not relate different configurations for
a single medium, but rather different configurations corresponding to different
media. Thus the relative nature of the descriptor.

The convention used here for obtaining the relative strain is that of the log-
arithmic strain, also known as true strain or Hencky strain [29]. This definition
accounts for large strains as well as large for large rotations [30]. As such, the
obtained symmetric tensor € describes normal and shear phenomena in a given
coordinate system (e.g. Cartesian). Additional useful tools (for the small strain
assumption) are the tensor invariants which remain constant despite of the ref-
erence frame. These can be used to obtain the positive invariant quantity known



as the equivalent [31, 32] or Von Mises strain
2 /1
Eeq = g Il - 3[2 (27)

Il = tr(e) (28)

where

and
I = 5 {[tr(e)?] — tx(e”)) (20)

are respectively the first and second invariants of the strain tensor €. These use-
ful invariant indicators account respectively for volume changes through tr(e),
as well as for shear at constant volume through e.,.

Finally, the set of indicators presented here will be used in the following be-
cause of their ability to describe the targeted applications. However, the means
in which the “metric differences” can be exploited are not limited to just these
indicators. In fact, it is imperative that they be regarded with respect to the
application or context in mind. Awareness on this subject will reinforce the im-
portance of “metric differences” for composite materials. For instance, composite
manufacturing can benefit considerably from proper quantitative indicators by
allowing a precise feedback on yarn displacements and deformations [33] or by
doting them with some predictive capabilities over the final behavior on the
manufactured sample.

8.2. Topological differences

As it was previously introduced, woven composite materials share a key
intrinsic information: the underlying weaving pattern. Such weaving pattern is
represented in a unit cell, which is then tessellated (tiled) to form a full scale
textile. Hence, this procedure of correlation on woven composites is based on the
assumption of a constant topology: properties preserved through deformations,
twisting, and stretching (tearing and closing are not allowed).

Hence, in principle, different specimens made with the same weaving pat-
tern can always be set into correspondence using a continuous displacement
field. And whenever this assumption is invalidated, the so-called “topological
differences” come into sight. Such event will occur in the presence of weaving
anomalies (loops, missing yarns) between the studied volumes since no contin-
uous displacement field is capable of bringing the volumes into full coincidence.

It is important to note that the procedure (and the assumption of topology) is
only valid between regions of interest Q) (of arbitrary size and shape) containing
the same sample of the weaving pattern, i.e. containing the same textile, as
shown in figure 2.

Finally, the “topological differences” are evaluated through the image of resid-
uals which accounts only for the found displacement field, as in equation (19).
The proper analysis of the residuals will showcase high-valued regions which are
not dispersed at random, but rather highly structured and meaningful. More-
over, multiple indicators can be envisaged from these “topological differences”.
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Figure 2: Sample textile showing multiple tessellated L} unit cells conformed by
the arrangement of  warp and M weft yarns, which define some topologically
equivalent [ regions of interest €.

These can in turn be fed as low level features into specialized image processing
or machine learning algorithms for the segmentation, classification and identi-
fication of structures of interest. Possible applications of such indicators fall
within the realm of NDT tools used on composite materials.

4. Results

Two pairs of 3D woven composites specimens are used in the present analy-
sis. These samples were obtained through X-ray micro-tomography and under
similar acquisition conditions. Since the analysis is performed at the meso-scale,
the chosen image resolution is coarse enough so as to “average” the information
at the micro-scale (i.e., the carbon fibers), while being sufficiently fine so as to
allow a proper description of the yarn itself. Furthermore, the acquisition is
performed with low energy X-rays in order to get the maximum differentiation
between the (carbon) yarns and the (polymer) resin. This helps obtaining (after
reconstruction) very different gray levels for each phase, despite the fact that
both have very close atomic numbers. Finally, all imaged volumes contain an
entire unit cell and the reference configuration for each studied pair is chosen
at random.

The first pair of volumes corresponds to two preform specimens manufac-
tured after a given weaving pattern. These specimens only contain the woven
yarns, i.e. the reinforcement phase of the composite. Neither of the specimens
exhibit any anomaly. On the other hand, being different samples, their yarn
disposition is not strictly identical. Thus, measuring their “metric differences”
and extracting useful indicators such as the relative strainsis of great interest.

The second pair of volumes corresponds to two injected specimens manufac-
tured after a given weaving pattern different from the first pair. These speci-
mens contain some intentional weaving anomalies. One of the specimens was
manufactured with two missing yarns, while the other was manufactured with
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one missing yarn (different from the previous two), clearly incurring into a dis-
agreement with the assumption of topology. Hence measuring their “topological
differences” and analyzing their residuals will be a key point.

Both pairs of volumes undergo the multiresolution isotropic approach with
similar parameters. First of all, appropriate anisotropic scale factors are chosen
for each volume pair. Then, the image pyramids are constructed with as many
levels as needed: 5 levels for the first pair and 4 for the second. For all levels in a
pyramid, the kinematic basis is described using a single structured regular mesh
composed of only cube-shaped finite elements (H8). In particular, the element
size at the smallest scale is set to 2 x 2 x 2voxels and scales accordingly with
the pyramid levels. Then the meshes are constructed so as to fill up the entire
workable area. Furthermore, the regularization lengths are defined at the highest
scale and kept constant for all levels. Since they do not scale, the correlation
perceives an effect of regularization relaxation progressively from lower to higher
levels. The regularization lengths concerned with the displacement field &,
are set with respect to the element size at the highest pyramid level for both
pairs: twice the size for the first and equal size for the second. Additionally,
the regularization lengths for the gray level correction &, are set to twice the
regularization length for the displacement field £, in all cases. This is motivated
by the fact that the phenomena that are expected to be captured by the gray
level correction (e.g., beam hardening) are of much longer wavelength (slowly
varying) than those pertaining the displacement.

Finally, no initialization is provided since the multiresolution isotropic ap-
proach is capable of handling such step by means of the lower pyramid levels.

4.1. Metric differences

The results from the first volume pair are used to reveal their “metric dif-
ferences”. This can be achieved through the analysis of the found displacement
field as well as the analysis of the computed relative strains. Figures 3a and 3b
showcase some slices of the analyzed volumes, as well as the kinematic decom-
position used for the analysis.

To begin with, the correctness of the correlation results must be verified
with the image of residuals 7,,, shown in figure 3c. Here are highlighted all the
details that the correlation procedure was not able to register, such as the inner
yarn “texture” which corresponds to the carbon fibres (filaments) bundled to-
gether. However, with the present analysis being carried out at the meso-scale,
the target is to capture the yarn displacement while disregarding the complex
behavior each carbon fibre exhibits. This choice is implicitly made when select-
ing the kinematic decomposition. Registration can be considered successful in
finding the proper displacement field that aligns both volumes. Additionally,
the corrected (back-deformed) image §g,, shown in figure 3d, provides a nice
tool for visualizing the DVC result.

Then, as it can be seen in figure 4, the obtained (continuous) displacement
field is known in the entire ROI. Since such full-field measurement can lead to an
extensive and complex analysis, a more convenient representation is sought so
as to better identify the occurring phenomena. Thus a virtual FE model is built
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from the tomographic acquisition of the test sample using an in-house tool [34]
that accommodates the resin and each yarn as different entities. Therefore, the
projection of the computed fields onto the new model allow a detailed analysis
of the yarn behavior by concealing that of the resin.

In particular, the computed relative strains projected onto the model depict
two highly localized distinct behaviors. The first one, seen in figures 5a to 5c,
characterize respectively the relative compression and dilation that experience
some regions in the test volume (so as to resemble the reference). The sec-
ond phenomenon, depicted in figures 5d to 5f, corresponds to a shearing effect
between yarn layers.

Figure 3: Slices (y-z) for the first pair of volumes analyzed for extracting the
“metric differences”. The slices shown for the reference image (a) and test im-
age (b) are “equivalent”, nonetheless the textile is not completely aligned. The
residual image (c) validates the registration with the good alignment of yarns
and only highlights the inner differences between yarns. The corrected im-
age (d) is, as expected, properly aligned with the reference. The mesh used for
kinematic decomposition is overlayed on the reference image.

Y Y Y

(a) ug (b) Uy (c) u.

Figure 4: Found displacement field w (in pixels) for the first pair of images.
The z, y and z components of the vector field are shown in (a), (b) and (c)
respectively.

4.2. Topological differences

The results from the second volume pair are used to reveal their “topological
differences”. This can be achieved through the analysis of the different images
of residuals 7, and 7, obtained with equations (19) and (20) respectively.
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(d) €ay (e) eyz (f) €eq

Figure 5: Diverse relative strain fields that characterize the found metric dif-
ferences between first pair of volumes by projecting them onto a known virtual
model of the textile. The chosen normal relative strains highlight the volume
change in the = direction, in the z direction and in all directions simultaneously,
these are shown in (a), (b) and (c) respectively. The remaining relative strains
expose the type of deformation at constant volume normal to the z direction,
normal to the z direction and invariant to the orientation, these are shown
in (d), (e) and (f) respectively.

As companion to these indicators, it can be useful to introduce the residual

no(z) = g(sR x +1t) — f(z) (30)

which merely accounts for a simple rigid registration thanks to the (isotropic)
scaling s, the rotation matrix R and the translation vector ¢.

It should be noted that the rigid adjustment observed between samples can
be traced back to factors extrinsic to the manufacturing process. These include
the physical placement of the samples inside the tomograph, the manual in-
tervention usually carried out during a reconstruction process, or even the final
manipulation of the reconstructed volumes. Generally, these are estimated prior
to any correlation procedure using a cross-correlation measure. Here they were
instead inferred from the found displacement field w using a Procrustes analy-
sis, i.e. a posteriori. As such, it was found that only a small translation in one
dimension was required for aligning this volume pair (rotation and scaling were
negligible). Here is included a convenient indicator for the analysis of “metric
differences” in addition to the relative strain tensor and its invariants introduced
earlier.

At this moment, in view of the flagrant anomaly introduced by the missing
yarns, the “simple” analysis of the residual 7, seems a sensible proposition.
This can be observed with the slices (y-z) shown in figures 6a and 6b as well
as in the (orthogonal) slices (z-z) in figures 7a and 7b. However, as it can
be seen in the corresponding slice for the initial residual 7, in figure 6e, the
multiple spurious high valued regions forbids such reasoning. All these zones are
altogether unrelated to the topology and thus hide the actual zones of interest.

Conversely, the residual 7, leads to a radically different analysis. As it can
be seen in the slices (y-z) and (z-z) shown in figures 6f and 7d respectively, only
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the structures that contravene the assumption of topology are accentuated. This
fact is even clearer on the volumetric representation shown in figure 8a. These
“topological differences” are not only highly located but also highly structured
(into the shape of yarns). Furthermore, they easily distinguish between “addi-
tional” yarns with respect to the reference image (high positive residual values)
and the ones missing (high negative residual values). As well as offering a clear
differentiation between high valued residuals which hold a clear meaning and the
multiple spurious low valued regions which do not. This represents an effort-
less separation between the unanticipated phenomena and the anticipated ones,
such as gaps not produced by missing yarns but rather by the textile definition.

Furthermore, the residual 7, verifies that the algorithm correctly identifies
the proper correction fields u(x), vo(x) and vy (x). After all, the minimization
of this residual is precisely what is being sought, and thus is expected to tend
to zero. In fact, the residual 7,, is centred at zero with a standard deviation
of 4.5 % of the initial 16 bits dynamic range. Alike the previous volume pair,
the inner yarn “texture” as well as the yarn boundaries contribute with non-zero
residual values, as the slices (y-z) and (2-z) show in figures 6g and 7f. Moreover,
the remaining high-valued residuals are easily traced back to two sources: a ring
artefact and some high density particles. These can be identified on the volu-
metric representations shown in figures 8b and 8c respectively. This confirms
that the isotropic multiresolution approach is robust enough even in the pres-
ence of considerable reconstruction artefacts. Finally, as it can be inferred from
the slices (y-z) shown in figure 9, the fields vo(x) and v1 (x) work together so as
to remove the clear cupping artefact and to handle the “topological differences”.

Figure 6: Slices (y-z) for the second pair of volumes analyzed for extracting
the “topological differences”. The slices are chosen so as to showcase the refer-
ence image (a) and the test image (b) at “equivalent” positions. The corrected
images are obtained considering the kinematic only (c¢) and considering all the
corrections (d). The residual images are obtained considering rigid body mo-
tion only (e), considering the kinematic only (f) and considering all the correc-
tions (g). The arrows point to the location of two extracted yarns and their
topologically equivalent ones. The “topological differences” can be observed as
the yarn cross-sections highlighted in the residuals due to kinematic only.
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Figure 7: Slices (z-y) for the second pair of volumes analyzed for extracting
the “topological differences”. Here is provided an alternative (orthogonal) view
of those shown in figure 6. The “topological difference” can be observed as the
yarn highlighted in the residuals due to kinematic only.
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Figure 8: Volumetric representations of the residual image at different threshold
values with respect to the initial dynamic range. These are obtained considering
the kinematic only (a) and considering all the corrections with either a low
threshold (b) or a higher one (c). The “topological differences” (pointed at by
the arrows) can be observed as the solid three-dimensional structures highlighted
in the residuals due to kinematic only.
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Figure 9: Slices (y-z) for the correction fields involved in the analysis for extract-
ing the “topological differences”. The first (a) and second (b) order contributions
amount to a complete (¢) contribution to the solution. The latter corresponds
to removing the “additional” yarns by subtracting them from the test image, as
well as accounting for the cupping artefact.

5. Conclusions and outlook

Digital Volume Correlation under the multiresolution isotropic approach is
employed for a comparative analysis of 3D woven composites. This method
allows the measurement of “metric differences” and “topological differences”. The
former quantify yarn deformations in the studied sample, while the latter handle
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weaving anomalies, such as loops and missing yarns. These can subsequently
be re-purposed for the extraction of quantitative indicators such as the relative
strains, as well as qualitative ones such as the residual images. Furthermore,
the proposed formulation that results into these “differences” allows analyzing
each type of phenomenon independently, without interference from the other
(e.g., variation of contrast due to beam hardening will not hinder the analysis
relative strains), provided that the regularization has been well tuned.

This full-field analysis takes advantage of the abundant information provided
in the simplest manner: using a reference. This a priori embeds multiple (com-
plex) observations without the need to explicitly (manually) address them. Not
only does it inform on current the state of the sample, but rather on its entire
history. This provides a better insight into the variability of the manufacturing
processes.

It should be noted that the choice of a reference (which may not be “ideal”)
could be considered as a fragility of the approach, since the results are only rela-
tive in nature. For this reason, the obtained results should always be subjected
to a careful examination. For example, when a strong and localized strain is
revealed, it is important to determine which one of the two volumes is locally
satisfactory, and which one is not. Additionally, it is possible, from a long se-
ries of such analyses, to evaluate a mean displacement field. This would allow
to compute a virtual reference volume (that would not exist physically). Such
a choice may lead to a more solid interpretation of large differences (be they
“metric” or “topological”) of a studied volume as acceptable or not.

Other means of including the textile information are either of local na-
ture [35, 36], which does not embed the global textile definition and thus risks
betraying its topology, or they require multiple parameters [37, 38] so as to have
a solid foundation. The approach presented here profits from the structured
nature of woven composites without the need of further “custom” descriptors.
Additionally, the procedure proves to be robust enough even in the presence of
sizeable “topological differences” and reconstruction artefacts.

This technique has many possible applications for the analysis of composite
materials. For instance, the quantitative feedback of weaving deformations can
be put in relation with any of the manufacturing parameters [39] (weaving,
forming, injection). This can help reducing the number of iterations needed for
achieving a particular complex textile structure. Alternatively, the technique
can serve as a tool for NDT in which extreme “metric differences” (that surpass
some threshold) in conjunction with pertinent “topological differences” can be
used for detecting and identifying weaving anomalies. In such case, a specific
(manufactured) composite sample can be selected as a standard and then be
used as reference for any test samples using the procedure presented here.

Finally, this method can be swiftly improved just by reformulating the ref-
erence configuration. As such, a reference sample can be replaced with a virtual
textile model that corresponds to the ideal weaving pattern. This form is usually
easily accessible through virtual modelling of the element (FE, CAD). Evidently,
this has the advantage of removing all the phenomena related to the manufac-
turing process that would otherwise be interpreted by the algorithm as a priori
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corresponding to the textile. Moreover, this provides a wider perspective by
consider the test sample as in a deformed or warped configuration with respect
to the ideal configuration. These ideas are currently being explored and will be
presented in future works.
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