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Scaling approach to itinerant quantum critical points
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Based on phase space arguments, we develop a simple approach to metallic quantum critical points,
designed to study the problem without integrating the fermions out of the partition function. The
method is applied to the spin-fermion model of a T=0 ferromagnetic transition. Stability criteria
for the conduction and the spin fluids are derived by scaling at the tree level. We conclude that
anomalous exponents may be generated for the fermion self-energy and the spin-spin correlation
functions below d = 3, in spite of the spin fluid being above its upper critical dimension.
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One of the explanations advanced for the breakdown
of the Fermi liquid theory in the normal state of high
temperature superconductors is the proximity to a quan-
tum critical point (QCP), hidden under the supercon-
ducting dome. The nature of this zero temperature tran-
sition remains controversial. However, in several heavy
fermion materials, the Fermi liquid state was experi-
mentally shown to break down near a well characterized
T = 0 antiferromagnetic instability [1–4]. A detailed
renormalization group study of QCPs in itinerant mag-
nets was first undertaken by Hertz [5], and later aug-
mented by Millis [6]. The key observation [5] was that
spin fluctuations relax critically in time, with a dynamic
exponent z relating the time and the length scales as
τ ∼ ξz. Thus a d-dimensional system can be viewed as
having effective dimensionality d + z. For an antiferro-
magnetic QCP, one finds z = 2, while for a ferromagnetic
QCP, z = 3. After integrating the fermions out of the
partition function, the authors of [5,6] argued that, in
d = 2 or 3 (the cases of interest for heavy fermions as
well as high-Tc superconductors), d + z ≥ 4. Thus the
effective Ginzburg-Landau theory for the spin fluid falls
above its upper critical dimension, and has Gaussian cri-
tical behaviour.
Recently, the validity of integrating out the fermions

has been questioned [7,8], since gapless fermions may lead
to singular coefficients in the Ginzburg-Landau expan-
sion. Another outstanding question is whether the Fermi
liquid theory may break down in two or three dimen-
sions, i.e. whether the quasiparticles may become ill-
defined while the magnetic fluctuations are only innocu-
ously critical, being described by a Gaussian theory. In
this case, the conduction and the magnetic fluids would
behave as if decoupled, each having its own upper crit-
ical dimension. Finally, integrating out the fermions to
describe a QCP in a metal is conceptually unsatisfactory,
as it greatly complicates a consistent account of electron
transport.

In this paper, we introdice a simple scaling approach,
designed to study a spin-fermion model at a QCP with-
out integrating the fermions out of the partition function.
Already at the tree level, it reveals that the critical be-
havior is controlled by several couplings, rather than by
the single fermion-boson coupling constant g, expected
naively. At a ferromagnetic quantum critical point, the
coupling g becomes relevant below one spatial dimension,
analogously to the four-boson coupling constant at a fer-
romagnetic QCP [5]. At the same time, the four-fermion
coupling uf , mediated by the bosons, controls the break-
down of the Fermi liquid theory, and becomes relevant
below three spatial dimensions.
We will illustrate the idea on the spin-fermion model of

a ferromagnetic quantum critical point, comprising three
parts: a conduction electron term Sf , a boson term Sb,
describing the critical magnetic modes, and Si, represent-
ing interaction between the fermions and the bosons:

S = Sf + Sb + Si (1)

Sf =

∫

dω ddk ψ
†

k

(

iω − ξk
)

ψk

Sb =

∫

dω ddq ϕ̄q

(

|ω|

q
+ q2

)

ϕq

Si = g

∫

dω1dω2d
dk1d

dk2

[

ϕk1−k2
ψ

†

k1
ψk2

+ h.c.
]

.

Here ψ (ϕ) are the fermion (boson) fields, and ξk is the
quasiparticle energy counted from the chemical potential.
For simplicity, we consider a spherical Fermi surface.
We first perform a Benfatto-Galavotti-Shankar [9,10]

renormalization at the tree level, removing the high en-
ergy degrees of freedom, and retaining only their contri-
bution to the low energy effective action. At each step
we eliminate a shell Λ/s ≤ ω ≤ Λ, where Λ is the cut-off
and s > 1. The energies and momenta are then rescaled
to restore the original cut-offs and, lastly, the fields are
rescaled to leave the quadratic part of the action intact.
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However, implementation of this program poses two
difficulties. The first one is of geometric origin: the
fermion momenta are restricted to a thin shell around the
Fermi surface, while the boson momenta are confined to
a sphere. The second difficulty stems from the different
dynamic exponents z of the fermion and boson fluids: in
the Fermi liquid, zf = 1, while the magnetic modes are
characterized by zb = 3. To perform simultaneous mode
elimination for the two species, we rescale the energies
and the momenta as per

ω′ = sω; k′⊥ = s1/zfk⊥ = sk⊥; q
′ = s1/zbq = s1/3q, (2)

while the fields rescale as per

ψ′ = s−3/2ψ; ϕ′ = s−(d+zb+2)/2zbϕ (3)

where k⊥ is defined by ξk = vFk⊥.

K1

K2

1/zf

1/zb

q

Λ

Λ
s

s

FIG. 1. An illustration of the phase space restriction for
the fermion scattering off magnetic modes, here for a ferro-
magnet. The angle between k2 and k1 is restricted by the
spin fluctuation cut-off that scales as Λs−1/zb .

Before proceeding with the scaling of different quan-
tities, let us make several observations. First, notice an
important consequence of the different rescaling of bo-
son and fermion momenta: since zb = 3 > zf = 1, the
cut-off for bosons reduces slower than for fermions and,
near each point at the Fermi surface, the fermion scat-
tering processes become restricted to a thin cylindrical
slab, whose thickness scales as Λs−1/zf = Λs−1, while its
base radius scales as Λs−1/zb = Λs−1/3, as illustrated in
Fig. 1.
Hence the fermion momentum transfer occurs predom-

inantly parallel to the base of the slab. As the initial
fermion momentum k1 spans the shell of width Λ around
the Fermi surface, the solid angle of the final fermion
momentum k2 with respect to k1 is restricted by the
magnetic modes (see Fig. 1). Thus, to deal with the scat-
tering vertex, it is convenient to separate the two fermion
momenta k1,k2 into k ≡ (k1+k2)/2 and the transferred
boson momentum q ≡ k1 − k2. Then, we divide both k

and q into the one-dimensional components k⊥ and q⊥
normal to the Fermi surface, and the (d− 1)-dimensional
components k‖ and q‖, locally tangential to the Fermi
surface. Note that, according to the above, these compo-
nents scale differently under the RG transformation:

k′⊥ = s k⊥ ; dd−1k′
‖ = dd−1k‖ ; (4)

q′⊥ = s q⊥ ; dd−1q′
‖ = s(d−1)/zb dd−1q‖ (5)

The physical reason behind dd−1k‖ not rescaling is that
the size of the Fermi surface does not change upon rescal-
ing, and that k spans the entire Fermi surface.
Finally, let us make an observation regarding consis-

tency between our rescaling procedure and momentum
conservation in a single boson scattering process. The
two fermion momenta k1,2 = kF k̂1,2(1 + η1,2), where
|η1,2| ≪ 1, are related by k1 − k2 = q. Since, near a fer-
romagnetic QCP, the boson momenta are much smaller
than kF , to first order in η1,2 one finds

θ2 [1 + η1 − η2] =

(

q

kF

)2

,

where cos θ ≡ (k̂1 · k̂2), and θ ≪ 1. From this, two points
follow: (i) rescaling of the boson momentum has to be
accompanied by rescaling of the scattering angle θ be-
twen the two fermion momenta, as in the procedure we
adopted; (ii) asymptotycally close to the Fermi surface
(η1,2 → 0), rescaling fermion and boson momenta differ-
ently is consistent with momentum conservation.
Now we are in a position to find the scaling properties

of various vertices. To obtain the rescaling of g, rewrite
Si as

Si = g

∫

dω1dω2dk⊥d
d−1k‖dq⊥d

d−1q‖(ϕqψ
†

k1
ψk2

+h.c.).

Using the scaling properties of the fields (3) and of the
different components of momenta (4,5), one arrives at the
sought scaling relation:

g′ = s
− d+zb−4

2zb g . (6)

We find that g is irrelevant for d > 1, similarly to the
four-boson coupling constant in the ϕ4 theory (zb = 3).
[5,6]
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FIG. 2. Feynman diagrams associated with a) the fermi
self-energy and b) the boson-mediated four-fermi interaction.
Solid lines are fermion and wavy lines are boson propagators.

One may inquire about the relation between the cou-
pling constant uf of the boson-mediated four-fermion in-
teraction (Fig. 2 a) and the spin-fermion scattering ver-
tex g. Naively, one would expect uf to scale as g2 and,
hence, become irrelevant in one spatial dimension or less;
we will show that this is not the case: at a ferromagnetic
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quantum critical point, uf becomes relevant already in
d < 3 spatial dimensions, possibly leading to an instabil-
ity of the Fermi liquid ground state. Notice that, of the
three independent momenta (p1, p2, p3) in the diagram
a) in Fig. 2, only the momentum transfer q ≡ p1 − p3

is subject to the phase space restriction discussed above,
whereas p ≡ (p1 + p3)/2 and p2 independently span
the entire Fermi surface. Hence the four-fermion term in
the action can be re-written to make explicit the scaling
properties of the various components of momenta:

S4f → uf

∫

dω1

s

dω2

s

dω3

s

dp⊥
s
dd−1p‖

dq⊥
s

dd−1q‖

s(d−1)/zb
× (7)

×
dp2⊥

s
dd−1p2‖ s

6ψ†
p−q/2 ψp+q/2 ψ

†
p2+q ψp2

× (8)

×
s2/zb

|ω1−ω3|
|q| + q2

, (9)

from which we read off

uf → ufs
(3−d)/zb .

Which means that, already at the tree level, uf becomes
relevant below three spatial dimensions, while g is rele-
vant only below d = 1. This indicates that the Fermi liq-
uid state may break down below three dimensions, where
the naive ϕ4 theory would be still above its upper critical
dimension.
Finally, let us illustrate how one can use (4,5) to find

the scaling of the fermion self-energy Σ(ω) in the lowest
order in g. It can be found by power counting of the
diagram b) in figure 2; its contribution to the self energy
is

Σ(ω) ≃ g2
∫

dνdq⊥d
d−1q‖Gψ(ω − ν;p− q) Gϕ(ν;q).

SinceG−1
ψ (ω;p) = iω−vFp⊥ andG−1

ϕ (ω,q) = |ω|/q+q2,
one finds, again using (3,4,5):

Σ(sω) = Σ(ω)s−d/zb (10)

This is in agreement with previous work [7,8,11], and
points to a possible non-Fermi behavior in d ≤ 3, as
previously observed in the context of gauge theories [11]
and recently noted in the context of a ferromagnet [12].
To summarize, we introduced an RG scheme in the

spirit of the Shankar approach [9], which allows to treat
the fermion and the boson degrees of freedom in the spin-
fermion models on an equal footing. We showed that, al-
ready at the tree level, the boson-mediated four-fermion
coupling is relevant below three spatial dimensions, even
though the fermion-boson coupling constant g is relevant
only above one dimension. Our approach is general and
can be applied to the theory of an antiferromagnetic QCP
– as well as to other situations where fermions interact
with critical modes, e.g. those involving different dimen-
sionalities of fermions and spin fluctuations. The phase

space restriction associated with the fermion scattering
off the critical modes is the key ingredient of the ap-
proach. A one loop RG treatment in d = 3− ǫ, including
transport properties and thermodynamics, would be a
natural extension of this work [14].
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