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Abstract 

This work aims at assessing different Uncertainty Quantification (UQ) methodologies for the stochastic analysis and 
robust design of Organic Rankine Cycle (ORC) turbines under multiple uncertainties. Precisely, we investigate the 
capability of several state-of-the art UQ methods to efficiently and accurately compute the average and standard 
deviation of the aerodynamic performance of supersonic ORC turbine expanders, whose geometry is preliminarily 
designed by means of a generalized Method Of Characteristics (MOC).  Stochastic solutions provided by the adaptive 
Simplex Stochastic Collocation method, a Kriging-based response surface method, and a second-order accurate Method 
of Moments are compared to a reference solution obtained by running a full-factorial Probabilistic Collocation Method 
(PCM). The computational cost required to estimate the average adiabatic efficiency, Mach number and pressure 
coefficient, as well as their standard deviations, to within a given tolerance level is compared, and conclusions are 
drawn about the more suitable method for the robust design of ORC turbines.  
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1. Introduction 

The design under multiple uncertainties is a technique called Robust Optimization (RO), which allows 
achieving designs with stable performances under random variations of the design parameters. Here we 
consider an Organic Rankine Cycle (ORC) supersonic impulse expander working under stochastic 
operating and geometrical conditions.  In order to carry out a robust design, which takes into account the 
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non-deterministic nature of inputs, the sensitivity of the 2D turbulent flow through a geometry 
representative of a typical supersonic ORC turbine nozzle cascade is preliminarily investigated via different 
uncertainty quantification (UQ) algorithms coupled with an in-house finite-volume dense gas flow solver. 
The supersonic nozzle is designed by means of an in-house software based on the method of characteristics 
extended to dense gases [1], which are peculiar of ORC applications. Dense gases are molecularly complex 
gases with a strongly non-ideal thermodynamic behavior in a thermodynamic region above the liquid/vapor 
saturation curve, where the speed of sound exhibit a behavior opposite to that of standard gases when the 
fluid undergoes isentropic transformations. Unfortunately, experimental comparisons are not possible since 
for dense gas flows no experimental data of any kind are available in the literature up to now [2]. This is a 
well-known difficulty in the ORC community. Attempts to build experimental setups to provide data are 
currently underway at several universities. ORC systems are subject to multiple uncertainties, like 
fluctuating operating conditions, geometric tolerances and ill-known fluid properties, which should be taken 
into account at an early stage of the design process (see, e.g. [1]). Problems involving a high number of 
uncertain parameters suffer from the so-call "curse of dimensionality" problem [3,4], since the number of 
code runs required to approximate the statistical moments of the probability density functions associated to 
the output quantities of interest increases exponentially with the number of parameters. Besides, due to the 
complexity of the geometry and computational cost associated with the ORC geometries and working 
fluids, no advanced UQ method has been applied so far to these turbines and little work has been done on 
uncertainty quantification in turbomachinery in general [5]. A few applications of non-intrusive, sparse grid 
Generalized Polynomial Chaos methods to simple ORC turbine simulations exist [4,6]. For realistic 
applications such the ORC turbines considered in this paper, the overall computational cost of an UQ 
calculation becomes prohibitive. Computational cost is especially crucial when the aim is using robust 
design techniques in an industrial context. To overcome these limitations, the selection of efficient sampling 
techniques of the parameter space is of vital importance. Then, the aim of the paper is to assess and compare 
very different UQ techniques, in terms of accuracy and efficiency, for a realistic ORC nozzle configuration 
and to suggest useful guidelines to engineers and designers for selecting an efficient UQ method for this 
kind of problems.  

2. Dense gas solver 

In the numerical simulations presented in this work, the viscous governing equations are discretized 
using a cell-centered finite volume scheme for structured multi-block meshes of third-order accuracy, which 
allows the computation of fluids modelled by the Peng-Robinson-Stryjek-Vera cubic equation of state in 
order to take into account the real gas effects [7]. The closure of the RANS equations system is achieved 
by implementing the Spalart-Allmaras turbulence model. The scheme is obtained by correcting the 
dispersive error of the classical second-order accurate Jameson’s scheme [8]. To preserve the high accuracy 
on non-Cartesian grids, the numerical fluxes are constructed by using weighted discretization formulas, 
which take into account the mesh deformations [9]. This ensures third-order accuracy on moderately 
distorted meshes and second-order accuracy at least on highly deformed mesh. The equations are then 
integrated in time using a four-stage Runge-Kutta scheme. Local time stepping, implicit residual smoothing 
and multi-grid acceleration are used in order to drive the solution to the steady state. The accuracy of the 
numerical solver has been already demonstrated in previous works [7-10].  

3. Uncertainty quantification models 

In this Section a short description of the UQ models used in this work is provided. Two non-intrusive 
models (Simplex Stochastic Collocation (SSC) and Bayesian-Kriging (BK) methods) and one deterministic 
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model (Second Order Second Moment (SOSM) method) have been coupled with the dense gas solver in 
order to evaluate the response of the ORC injector to the stochastic variations of the inputs. As described 
in the next Section, the results are compared with those provided by a full-factorial analysis performed with 
a Probabilistic Collocation Method (PCM). 

3.1. Probabilistic Collocation Method (PCM) 

In the PCM [11] the multi-dimensional random space parameters is discretized in a full-factorial way by 
means of multiple one-dimensional tensor products. If we consider the generic partial differential equation 
system  (where x are the spatial variables and  is the random solution 
depending on time, space and the random parameter ω), the solution is decoupled in a deterministic part 

 and in a stochastic part , where  is the input random variable. The random solution  is 
expanded by means of a Lagrange polynomial chaos according the equation (1): 

 

        (1) 
 
The number of terms Np for the expansion increases exponentially as function of the number of random 
variables nξ according to the relation , where P is the degree polynomial. This feature is 
typical of the full-factorial sampling and introduces the “curse of dimensionality” problem, which has a 
dramatic impact on the computational costs. The statistics (mean and variance) are evaluated by means of 
a Galerkin projection of the solution on the polynomial basis, with the collocation points calculated as the 
nodes of the Gaussian quadrature integration performed by implementing the Golub-Welsch algorithm [12]. 

3.2. Simplex Stochastic Collocation with Extremum Diminishing (SSC-ED) method 

To alleviate the high computational cost associated to a full-factorial sampling, a more efficient 
technique is proposed in [13]. The hypercubic space parameters is discretized in a unstructured way under 
the form of simplexes by means of an adaptive Delaunay triangulation. A random sampling is performed 
in order to avoid clustering of points and high order polynomial interpolation allows to reconstruct the 
random solution for each simplex. This method is suitable for dealing with discontinuities, such as shocks, 
thanks to the local smoother based on a Local Extremum Conserving criterion. A super-linear convergence 
is reached during the simplex refinement process. The statistics are evaluated using the definition of 
expectation by means of a Monte-Carlo integration on the polynomial interpolation. The refinement process 
for a generic simplex is carried out according to a local error, which depends exponentially from the local 
polynomial degree and the number of random variables. The adaptive random sampling of the space 
parameters is expected to improve the efficiency, leading to a lower overall number of deterministic 
calculations than the full-factorial sampling. 

3.3. Bayesian Kriging (B-K) 

The third approach we compare is a Kriging-like surrogate model of the random output, derived by using 
a Bayesian framework [14]. We are interested in the value of a quantity of interest (QoI) as function of 
certain random variables at n locations  contained in the hypercube space parameters. At m of these 
locations the QoI is observed and known (by running a deterministic calculation) while at the remaining m-
n points it needs to be estimated. Following a Bayesian inference approach, the probability distribution of 
the QoI can be calculated as the posterior distribution resulting from the combination of a multivariate 
normal prior distribution and likelihood function. In the latter, the covariance matrix takes into account the 
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spatial correlation among the random variables by means of a geometrical correlation range. Then, for each 
location , the solution is approximated by a Gaussian distribution with a certain mean and variance. The 
error of the surrogate model respect to the observation is provided at the random locations i by the standard 
deviation, as , where   is the covariance matrix.  

3.4. Mean Value Second Order Second Moment method (MVSOSM) 

The Mean Value Second Order Second Moment method (MVSOSM or simply SOSM) is a so-called 
deterministic UQ model which computes the statistics of the random QoI by means of a Taylor expansion 
around the mean value. In this work the mean and variance are obtained with a second and a first order 
truncated expansion respectively, according to equations (2)-(3): 
 

       (2) 

 

         (3) 

 
The cross derivatives are neglected in the Taylor expansion, i.e. the interaction among the random 

parameters are not considered here. If a centered scheme is used for all the derivatives, the number of 
deterministic calculations Np varies linearly with the number of random variables , as . 
The method requires a relatively low number of samples and is expected to be cheap in terms of 
computational costs. An additional deterministic calculation is required in order to evaluate the QoI at the 
mean value of the random inputs. 

4. Results 

The objective of this work is to assess which is the more suitable UQ model for performing a sensitivity 
analysis of the ORC injector designed with the MOC under stochastic input parameters. After discussing 
the deterministic numerical results at nominal conditions, we analyse the stochastic solutions provided by 
the different UQ methods under investigation. 

4.1. Nominal operating conditions results 

 First of all, the performances at nominal operating conditions have been evaluated by means of the 
dense gas solver. A deterministic run requires about 10 hours of CPU time on a single processor machine. 
The Reynolds-Averaged-Navier-Stokes (RANS) equations where solved numerically on a structured C-
shaped mesh with  cells. The inlet total thermodynamic conditions, periodicity in peripheral 
direction and a supersonic outlet are imposed as boundary conditions. The working fluid is penta-fluoro-
propane R245fa, largely used in ORC applications, and the operating conditions are chosen close the 
saturation curves in the supercritical region, characterized by significant dense gas effects. The injector 
geometry has been preliminarily designed by using the MOC, with the inlet total reduced pressure and 
temperature , the target massflow G and the Mach number Me at exit section (see table 1) as input 
conditions. 
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Table 1. Design parameters of the ORC expander and nominal thermodynamic conditions 

 
 
 

     
 
 
 
 
 
 
 
 

 
 

 

Fig. 1. Mach number distribution for a viscous deterministic calculation at nominal operating conditions 

                                                                                   
 
 
 
 

 
 
                  

 

 

Fig. 2. From top-left to right: (a)  Standard deviation contours of the Mach number; (b) ANOVA analysis of the Mach number; (c) 
Mean pressure coefficient along the blade wall; (d) Variance of the pressure coefficient along the nozzle axis 
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Figure 1 shows the results at nominal operating conditions in terms of Mach number distribution. The 
flow expands up to a Mach number of 2 in the exit cross section area, as expected from the MOC design. 
Afterwards it continues to accelerate guided by the suction side wall and then is decelerated by a weak 
oblique shock departing from the trailing edge. A viscous wake is visible at the exit and an interaction 
between the oblique shock and the boundary layer can be noticed close to the suction side wall. These 
phenomena are expected to be cause of high variability in the flow and, then, a UQ analysis is carried out.  

4.2. Full-factorial sensitivity analysis with PCM 

Five uncertain parameters are considered in this analysis: inlet total reduced pressure and temperature 
(pr, Tr), with a variability of 5% around the nominal point, and inlet flow incidence angle β, blade thickness 
ε, stagger angle θ, with a variation of 1% around the design values. First of all, a full-factorial analysis via 
PCM has been carried out. By considering a second order polynomial chaos expansion and the five 
uncertain parameters, the number of deterministic calculations is , requiring 3000 hours of total 
calculation time. Second-order polynomial chaos was found to provide a good compromise between 
accuracy and computational cost [6]. In figure 2a the distribution of the Mach number variance shows the 
presence of regions with high uncertainty close to the wall of the divergent part and to the trailing edge, 
which can be addressed to the viscous effects. In a second step the random space parameters cardinality has 
been lowered in order to take into account only the most influential random parameters by means of an 
analysis of variance (ANOVA) [15]. This allows reducing the number of the deterministic calculations and, 
then, saving computation time. Figure 2b compares the contributions of the five uncertain parameters to the 
global variance of the Mach number and shows a great influence of the blade thickness, the inlet total 
pressure and temperature, while the incidence and stagger angles have a negligible effect. As consequence, 
the uncertain parameter space is reduced to these three uncertain variables and the four UQ models are 
applied to the reduced space in order to compare their performances in terms of accuracy and calculation 
time requirements.  

4.3. UQ models comparison 

The reduced parameter space has been sampled by using the UQ models described in the previous 
Section. The results are shown in figures 2c-2d under the form of pressure coefficient mean (along the blade 
wall) and variance (on the nozzle blade axis). The mean distributions provided by the four models show 
similar results, with variations below 2% respect to the PCM, while the analysis of the variance diagram 
reveals that SOSM results are not very accurate, due to the first order approximation of variance and 
neglecting cross interaction. The B-K model, trained with a set of 20 observations, under-estimates the 
variance in the leading edge region respect to SSC-ED and PCM which, instead, show very close results. 
However, the three models all agree about the higher variance on the trailing edge, where the viscous effects 
are important.  

Table 2. Performance analysis of the UQ models 
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The analysis of the UQ models performances (see table 2) in terms of calculation time provides that the 

SSC-ED model is the more expensive, with a computational cost higher and a number of deterministic 
calculations required Np slightly lower than PCM, but with higher accuracy. Indeed, a third order 
polynomial reconstruction is obtained on 83% of the total simplexes after refinement, against the 2th global 
order of PCM. In order to compare these two UQ models based on a polynomial expansion with the B-K 
surrogate model, a B-K error based criterion has been used. The nodes of the PCM full-factorial and SSC-
ED multi-dimensional grids of the parameter space have been used as training set for the B-K model and 
the cell center values as prediction set. In this way, a criterion to compare the efficiency of the discretization 
of the space parameters is provided. The maximum error value of the B-K predictions with the PCM and 
SSC-ED grids is compared with that provided by the B-K for 20 randomly distributed observations (see 
figure 3). The SSC-ED provides the lower error, with a value slightly below the B-K one. This analysis 
shows that the random adaptive unstructured SSC-ED grid refinement criterion is very accurate for this 
application, but its computational cost remains relatively high. Finally, the SOSM method is the cheapest 
one, with only 7 deterministic calculations required, however its low accuracy for calculating second 
moments makes it suitable only for fast preliminary analyses.   

 

Fig. 3. Comparison of the maximum Kriging error among the PCM, SSC-ED and B-K grids 

5. Conclusions 

In this work a comparison of different UQ methods, coupled with a numerical solver suitable for dense 
gas calculation for ORC applications, has been carried out in order to choose the more efficient and accurate 
one. The PCM, SSC-ED and B-K provide similar quantitative results. PCM and SSC-ED use approximately 
the same number of samples and then lead to a similar computational cost, however the SSC-ED is more 
accurate thanks to the higher order polynomial approximation and better distribution of points in the space 
parameters grid. Also PCM and B-K lead to almost the same results, but B-K is 70% faster for a slightly 
higher error. Then, for the present application, the B-K results to be a good compromise between low 
computational cost requirement and accuracy. The SOSM, with cross-derivatives neglected and first order 
expansion of the variance, shows low accuracy but gives useful information for engineering design 
purposes with a very low computational cost. 
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