

Distance Between Mutually Reachable Petri Net Configurations

Jérôme Leroux

To cite this version:

Jérôme Leroux. Distance Between Mutually Reachable Petri Net Configurations. 39th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2019, December 11-13, 2019, Bombay, India, Nov 2019, Bombay, India. hal-02156549

HAL Id: hal-02156549 <https://hal.science/hal-02156549v1>

Submitted on 14 Jun 2019

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distance Between Mutually Reachable Petri Net Configurations

Jérôme Leroux

LaBRI, CNRS, Univ. Bordeaux, France

jerome.leroux@labri.fr

Abstract

 Petri nets are a classical model of concurrency widely used and studied in formal verification with many applications in modeling and analyzing hardware and software, data bases, and reactive systems. The reachability problem is central since many other problems reduce to reachability questions. In 2015, we proved that a variant of the reachability problem, called the reversible reachability problem is exponential-space complete. Recently, this problem found several unexpected applications in particular in the theory of population protocols. In this paper we propose to revisit the reversible reachability problem in order to prove that the minimal distance in the reachability graph of two mutually reachable configurations is linear with respect to the Euclidian distance between those two configurations.

2012 ACM Subject Classification General and reference → General literature; General and reference

Keywords and phrases Dummy keyword

Digital Object Identifier [10.4230/LIPIcs.CVIT.2016.23](https://doi.org/10.4230/LIPIcs.CVIT.2016.23)

Funding *Jérôme Leroux*: The author is supported by the grant ANR-17-CE40-0028 of the French

National Research Agency ANR (project BRAVAS)

1 Introduction

 Petri nets are a classical model of concurrency widely used and studied in formal verification with many applications in modeling and analyzing hardware and software, data bases, and reactive systems. The reachability problem is central since many other problems reduce to reachability questions. Unfortunately, the reachability problem is difficult for several reasons. In fact, from a complexity point of view, we recently proved that the problem is non-elementary [6] by observing that the worst case complexity in space is at least a tower of exponential with height growing linearly in the dimension of the Petri nets. Moreover, even in practice, the reachability problem is difficult. Nowadays, no tool exists for deciding ³⁰ that problem since the known algorithms are difficult to be implemented and require many enumerations in exponentially large state spaces (see [13] for the state-of-the-art algorithm deciding the reachability problem).

 Fortunately, easier natural variants of the reachability problems can be applied in various contexts. For instance, the coverability problem which consists in deciding if a configuration can be covered by a reachable one can be applied in the analysis of concurrent programs [1] (in that context, covered means component-wise smaller than or equal). The coverability problem is known to be exponential-space complete [16, 5], and efficient tools exist [4, 8]. Another variant is the reversible reachability problem. This problem consists in deciding if two configurations are mutually reachable one from the other. This problem was proved to be exponential-space complete in [11] and find unexpected applications in population proto- cols [7], trace logics [12], universality problems related to structural liveness problems [10], and in solving the home state problem [2].

Contribution. The exponential-space complexity lower-bound of the reversible reacha-

© Jérôme Leroux; \circ \circ licensed under Creative Commons License CC-BY 42nd Conference on Very Important Topics (CVIT 2016). Editors: John Q. Open and Joan R. Access; Article No. 23; pp. 23:1–23:15 [Leibniz International Proceedings in Informatics](https://www.dagstuhl.de/lipics/) [Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany](https://www.dagstuhl.de) ⁴⁴ bility problem proved in [11] is obtained by observing that if two configurations are mutually reachable, then the two configurations belong to a cycle of the (infinite) reachability graph with a length at most doubly-exponential with respect to the size in binary of the two configurations. In this paper, we focus on the minimal length of such a cycle (called the distance in the sequel) with respect to the Euclidian distance between those two configu- rations. We prove that the distance is linearly bounded by the Euclidian distance up-to a doubly-exponential constant that only depends on the Petri net. As a direct consequence, this $_{51}$ result generalizes [11] and is shows that the distance between two nearby (for the Euclidian distance) mutually reachable configurations is small.

 Outline. In Section 2 we introduce our main problem about the distance between mutually reachable Petri net configurations and we motivate the problem. In Section 3 we present the Petri net with states basically given as a finite state automaton with transitions labeled by Petri net actions. We also introduce the subclass of structurally reversible Petri nets. Intuitively a Petri net with states is structurally reversible if the effect of every transition can be reverted as soon as we execute that transition from a large enough configuration. We provide in that section a sufficient condition to decide the reachability problem for structurally reversible Petri nets between large configurations. In Section 4 and Section 5,we recall some techniques called *rackoff extraction* to extract from executions or configurations components that are "very large" compared to others. Those techniques are applied in ⁶³ Section 6 in order to extract from a strongly connected component of the reachability graph of a Petri net, a structurally reversible Petri net with states. Intuitively, this Petri net with states is obtained by projecting away components that can be large in the considered strongly connected component. From that Petri net with states, and thanks to the sufficient condition for reachability introduced in Section 3, we proved in Section 7 our main result about the distance between mutually reachable configurations.

⁶⁹ In the paper, *d* is a positive natural number denoting the number of components of vectors. Given a vector **x** in the set of reals \mathbb{R}^d , we denote by $\mathbf{x}(1), \ldots, \mathbf{x}(d)$ its components in $\mathbf{x} = (\mathbf{x}(1), \dots, \mathbf{x}(d))$. Moreover, we introduce the norms $\|\mathbf{x}\| \stackrel{\text{def}}{=} \sum_{i=1}^{d} |\mathbf{x}(i)|$ and $\|x\|_{\infty} \stackrel{\text{def}}{=} \max_{1 \leq i \leq d} |x(i)|$. The set of integers and the set of non-negative natural numbers 73 are denoted as $\mathbb N$ and $\mathbb Z$ respectively.

⁷⁴ **2 Petri Nets**

 \mathcal{A} *R Petri net A* (*PN* for short) is a finite set of pairs $(\mathbf{a}_{-}, \mathbf{a}_{+})$ in $\mathbb{N}^{d} \times \mathbb{N}^{d}$ called *actions*. In ⁷⁶ the literature, vectors **a**[−] and **a**⁺ are respectively usually called the *pre-condition* and the p ^{*post-condition* of *a*. A *configuration* is a vector in \mathbb{N}^d . We associate to an action $a = (\mathbf{a}_-, \mathbf{a}_+)$} the binary relation $\stackrel{a}{\rightarrow}$ over the configurations defined by $\mathbf{x} \stackrel{a}{\rightarrow} \mathbf{y}$ if for some configuration **c** we have $\mathbf{x} = \mathbf{a}_+ + \mathbf{c}$ and $\mathbf{y} = \mathbf{a}_+ + \mathbf{c}$. We denote by $\stackrel{A}{\rightarrow}$ the one-step reachability relation of \mathbf{A} defined by $\mathbf{x} \stackrel{A}{\to} \mathbf{y}$ if there exists an action *a* in *A* such that $\mathbf{x} \stackrel{a}{\to} \mathbf{y}$. A PN *A* defines an \sum_{s_1} infinite graph $(\mathbb{N}^d, \stackrel{A}{\rightarrow})$ called the *reachability graph* of *A*.

A σ -execution where $\sigma = a_1 \dots a_k$ is a word of actions is a non-empty word of configurations $e = \mathbf{c}_0 \mathbf{c}_1 \dots \mathbf{c}_k$ such that the following relations hold:

$$
\mathbf{c}_0 \xrightarrow{a_1} \mathbf{c}_1 \cdots \xrightarrow{a_k} \mathbf{c}_k
$$

We denote by $src(e)$ and $tgt(e)$ the configurations \mathbf{c}_0 and \mathbf{c}_k respectively. An A^* -execution is

a *σ*-execution for some word *σ* over *A*. An $A^ω$ -execution *e* is an infinite word of configurations

such that every finite non-empty prefix is an A^* -execution. We associate to a word σ of actions $\frac{\sigma}{\sigma}$ over the configurations defined by **x** $\frac{\sigma}{\sigma}$ **y** if there exists a *σ*-execution \mathbf{A}_6 from **x** to **y**. The *displacement* of a word $\sigma = a_1 \dots a_k$ is the vector $\Delta(\sigma) \stackrel{\text{def}}{=} \sum_{j=1}^k \Delta(a_j)$ $\mathbf{a} = (\mathbf{a} - \mathbf{a}) \in \mathbf{a}$ a₊ $-\mathbf{a} - \mathbf{b}$ for every action $a = (\mathbf{a} - \mathbf{a} + \mathbf{b})$. Notice that $\mathbf{x} \stackrel{\sigma}{\to} \mathbf{y}$ implies $\Delta(\sigma) = \mathbf{y} - \mathbf{x}$ ⁸⁸ but the converse is not true in general. We introduce the *reachability relation* $\stackrel{A^*}{\longrightarrow}$ defined as ⁸⁹ the union of the relations $\stackrel{\sigma}{\to}$ where *σ* ∈ *A*[∗]. Notice that this relation is the reflexive and of transitive closure of $\stackrel{A}{\rightarrow}$.

⁹¹ The Petri net reachability problem consists in deciding given a PN *A* and two configura- \mathbf{y} tions **x** and **y** if $\mathbf{x} \stackrel{A^*}{\longrightarrow} \mathbf{y}$. In [6], we provided a non-elementary complexity lower-bound for ⁹³ the PN reachability problem. Moreover, we prove that for every natural number h , there ⁹⁴ exists a PN *A^h* such that the reachability problem for that PN is at least *h*-exponential space hard. It means that the minimal length of a word $\sigma \in A_h^*$ satisfying $\mathbf{x} \xrightarrow{\sigma} \mathbf{y}$ is at least $(6 + 1)$ -exponential with respect to $\|\mathbf{x}\| + \|\mathbf{y}\|$. This huge lower bound is no longer valid for ⁹⁷ mutually reachable configurations.

Two configurations **x** and **y** are said to be *mutually reachable* for a PN *A* if $\mathbf{x} \stackrel{A^*}{\longrightarrow} \mathbf{y}$ and **y** $\stackrel{A^*}{\longrightarrow}$ **x**. The PN reversible reachability problem consists in deciding given a PN *A* and two configurations **x** and **y** if they are mutually reachable for *A*. In [11], we proved that the PN reversible reachability problem is decidable in exponential-space by proving that there exists at most doubly-exponential long words σ and w in A^* such that $\mathbf{x} \stackrel{\sigma}{\to} \mathbf{y}$ and $\mathbf{y} \stackrel{w}{\to} \mathbf{x}$. This result can be refined by introducing the notion of distance. The *distance* between two mutually reachable configurations **x** and **y** for a PN *A* is formally defined as follows:

$$
\text{dist}_A(\mathbf{x}, \mathbf{y}) \stackrel{\text{def}}{=} \min_{\sigma, w \in A^*} \{ |\sigma w| \mid \mathbf{x} \xrightarrow{\sigma} \mathbf{y} \xrightarrow{w} \mathbf{x} \}
$$

⁹⁸ A simple lower bound on the distance can be obtained by observing that configurations along ⁹⁹ an execution are relatively closed one from each other as shown in the proof of the following ¹⁰⁰ lemma.

▶ **Lemma 1.** *Let us consider a PN* $A \subseteq \{0, \ldots, m\}^d \times \{0, \ldots, m\}^d$ *for some positive natural number m. For every mutually reachable configurations* **x** *and* **y***, we have:*

$$
\text{dist}_A(\mathbf{x}, \mathbf{y}) \ge ||\mathbf{y} - \mathbf{x}|| \frac{2}{dm}
$$

Proof. Let σ be a word in A^* such that $\mathbf{x} \xrightarrow{\sigma} \mathbf{y}$ and let us prove that $\|\mathbf{y} - \mathbf{x}\| \le m|\sigma|$. Assume t_{102} that $\sigma = a_1 \dots a_k$. Since $\Delta(a_j) \in \{-m, \dots, m\}^d$, it follows that $\Delta(\sigma) \in \{-mk, \dots, mk\}^d$. 103 In particular $\|\Delta(\sigma)\| \le dmk$. As $\Delta(\sigma) = \mathbf{y} - \mathbf{x}$ and $k = |\sigma|$, we deduce the relation $||\mathbf{y} - \mathbf{x}|| \leq md|\sigma|$. Now, let us consider a word *w* in \mathbf{A}^* such that $\mathbf{y} \stackrel{w}{\to} \mathbf{x}$ and observe that 105 we have $\|\mathbf{x} - \mathbf{y}\| \le dm|w|$ by symmetry. It follows that $|\sigma w| \ge ||\mathbf{y} - \mathbf{x}|| \frac{2}{dm}$ and we have 106 proved the lemma.

This paper focus on an upper-bound of the form $dist_A(\mathbf{x}, \mathbf{y}) \leq f_A(\|\mathbf{y} - \mathbf{x}\|)$ where f_A is a function that only depends on the PN *A* and not on the two mutually reachable configurations **x** and **y**. Such a bound cannot be derived from [11]. In fact, the best upper bound that can be derived from that paper is the following one:

$$
dist_A(\mathbf{x}, \mathbf{y}) \le 34d^2 n^{15d^{d+2}}
$$

107 where $n = (1 + 2m)(1 + 2 \max{\{\Vert \mathbf{x} \Vert, \Vert \mathbf{y} \Vert\}}).$

108 In this paper we prove that such a function f_A exists. Moreover a linear one exists as ¹⁰⁹ shown by the following theorem.

▶ **Theorem 2.** Let us consider a PN $A \subseteq \{0, \ldots, m\}^d \times \{0, \ldots, m\}^d$ for some positive natural *number m. For every mutually reachable configurations* **x** *and* **y***, we have:*

$$
dist_A(\mathbf{x}, \mathbf{y}) \le ||\mathbf{y} - \mathbf{x}||c_{d,m}
$$

where:

$$
c_{d,m} \le (3dm)^{(d+1)^{2d+4}}
$$

 $_{110}$ \triangleright Remark 3. The previous theorem provides as a corollary a new proof that the reversible ¹¹¹ reachability problem is exponential space. It also provides a bound on the minimal elements ¹¹² defining the *domain of reversibility* (introduced in [11]) of an action *a* in *A* defined as $\mathbf{D}_{a,A} \stackrel{\text{def}}{=} {\mathbf{x} \in \mathbb{N}^d \mid \exists \mathbf{y} \mathbf{x} \stackrel{a}{\to} \mathbf{y} \stackrel{A^*}{\longrightarrow} \mathbf{x}}$. In fact, this set is *upward closed* and if **x** is a minimal element for \leq in $\mathbf{D}_{a,A}$ then the vector **y** satisfying $\mathbf{x} \stackrel{a}{\to} \mathbf{y}$ is such that $\text{dist}_A(\mathbf{x}, \mathbf{y}) \leq dmc_{d,m}$ 115 since $||$ **y** − **x** $|| = ||\Delta(a)|| \le dm$. We deduce that there exists a word *σ* of actions in *A* such m_1 ⁶ $\to \infty$ with a length bounded by *dmc_{d,m}*. If a component of **x** is larger than $m|\sigma|$, the 117 vector **x** cannot be minimal since the vector **x**['] obtained from **x** by replacing that coordinate α_{118} by $m|\sigma|$ satisfies $\mathbf{x}' \stackrel{a}{\rightarrow} \mathbf{y}' \stackrel{\sigma}{\rightarrow} \mathbf{x}'$ where $\mathbf{y}' \stackrel{\text{def}}{=} \mathbf{x}' + \Delta(a)$. Hence $\|\mathbf{x}\| \leq dm^2 c_{d,m}$.

¹¹⁹ **3 Structurally Reversible Petri Nets With States**

120 A *Petri net with states* (*PNS* for short) is a tuple $\langle Q, A, T \rangle$ where *Q* is a non empty finite 121 set of elements called *states*, *A* is a Petri net, and *T* is a set of triples in $Q \times A \times Q$ called *transitions.* A *path* π from a state p to a state q labeled by a word σ of actions is a word of transitions of the form $(q_0, a_1, q_1) \ldots (q_{k-1}, a_k, q_k)$ for some states q_0, \ldots, q_k satisfying $q_0 = p$ 124 and $q_k = q$, and for some actions a_1, \ldots, a_k satisfying $\sigma = a_1 \ldots a_k$. The *displacement* of $π$ is the vector $\Delta(π) \stackrel{\text{def}}{=} \Delta(σ)$. A path is said to be *elementary* if $q_i = q_j$ implies $i = j$. A 126 path such that $q_0 = q_k$ is called a *cycle* on q_0 . A cycle is said to be *simple* if $q_i = q_j$ with $i < j$ implies $i = 0$ and $j = k$. A pair (q, \mathbf{x}) in $Q \times \mathbb{N}^d$ is called a *state-configuration* and it is denoted as $q(\mathbf{x})$ in the sequel. We associate to a path π the binary relation $\stackrel{\pi}{\rightarrow}$ over the state-configurations defined by $p(\mathbf{x}) \stackrel{\pi}{\to} q(\mathbf{y})$ if π is a path from p to q labeled by a word σ of actions such that $\mathbf{x} \stackrel{\sigma}{\to} \mathbf{y}$.

131 A PNS is said to be *structurally reversible* if for every transition (p, a, q) there exists a 132 path π from *q* to *p* such that $\Delta(a) + \Delta(\pi) = 0$. Structurally reversible PNSes are such that ¹³³ the displacement of any cycle can be canceled by the displacement of another cycle as shown ¹³⁴ by the following lemma.

135 ► Lemma 4. $-\Delta(\theta)$ *is the displacement of a cycle on q for every cycle* θ *on a state q.*

136 **Proof.** Assume that $\theta = (q_0, a_1, q_1) \dots (q_{k-1}, a_k, q_k)$ with $q_0 = q = q_k$. Since the PNS 137 is structurally reversible, for every $j \in \{1, \ldots, k\}$, there exists a path π_j from q_j to q_{j-1} such that $\Delta(a_j) + \Delta(\pi_j) = 0$. Now, observe that $θ' \stackrel{\text{def}}{=} \pi_k \dots \pi_1$ is a cycle on *q* such that $\Delta(\theta') = -\Delta(\theta).$

A partial configuration is a vector $\mathbf{x} \in \mathbb{N}^I$ where $I \subseteq \{1, \ldots, d\}$. We associate to a configuration $\mathbf{x} \in \mathbb{N}^d$ and a set $I \subseteq \{1, \ldots, d\}$ the partial configuration $\mathbf{x}|_I$ in \mathbb{N}^I defined by $\mathbf{x}|I(i) = \mathbf{x}(i)$ for every $i \in I$. Given an action $a = (\mathbf{a}_-,\mathbf{a}_+)$ of a Petri net, we extend the binary relation $\stackrel{a}{\rightarrow}$ over the partial configurations by $\mathbf{x} \stackrel{a}{\rightarrow} \mathbf{y}$ if \mathbf{x}, \mathbf{y} are two partial configurations \mathbf{I}^{144} in \mathbb{N}^I such that there exists a partial configuration $\mathbf{c} \in \mathbb{N}^I$ satisfying $\mathbf{x} = \mathbf{a}$ ₋ $|I|$ + \mathbf{c} and 145 $y = a_{+}|_{I} + c$.

A *flow function* is a function $F: Q \to \mathbb{N}^I$ for some subset $I \subseteq \{1, ..., d\}$ such that $F(p) \stackrel{a}{\rightarrow} F(q)$ for every transition (p, a, q) in *T*. In this section we prove the following result.

 \bullet **Lemma 5.** Let us consider a structurally reversible PNS with at most r states and with $a_1 a_9$ *actions in* $\{0, \ldots, m\}$ ^d \times $\{0, \ldots, m\}$ ^d for some positive natural number *m*, let $p(\mathbf{x})$ and $q(\mathbf{y})$ ¹⁵⁰ *be two state-configurations such that the following conditions hold for some flow function* 151 $F:Q\to\mathbb{N}^I$:

 $\mathbf{x}|_I = F(p) \text{ and } \mathbf{y}|_I = F(q),$

 $\mathbf{x}(i), \mathbf{y}(i) \geq mr^3(3drm)^d$ for every $i \notin I$, and

¹⁵⁴ **y** − **x** *is the sum of the displacement of a path from p to q and a vector in the subgroup* \mathcal{L}_{155} *of* $(\mathbb{Z}^d, +)$ *generated by the displacements of the cycles.*

Then $p(\mathbf{x}) \stackrel{\pi}{\rightarrow} q(\mathbf{y})$ *for a path* π *such that* $|\pi| \leq (||\mathbf{y} - \mathbf{x}|| + d \tau m)r^3(3d \tau m)^{2d}$.

¹⁵⁷ In this section, we fix such a PNS *G*. Since *G* is a disjoint union of strongly connected ¹⁵⁸ components, we can assume without loss of generality that *G* is strongly connected. The ¹⁵⁹ proof of Lemma 5 follows an extended form of the *zigzag-freeness* approach introduced 160 in [14]. Intuitively, we fix an elementary path π_0 from p to q, and we prove that there exist a 161 sequence $\theta_1, \ldots, \theta_k$ of short cycles on *q* such that for every $n \in \{0, \ldots, k\}$ the displacement of $\Delta(\theta_1 \dots \theta_n)$ is almost the vector $\frac{n-d}{k}$ **z** where **z**^{$\frac{\text{def}}{k}$ **y** − **x** − $\Delta(\pi_0)$. This result is based on} ¹⁶³ the following lemma.

Example 1 Lemma 6 ([9]). Let $\mathbf{v}_1, \ldots, \mathbf{v}_k$ be a non-empty sequence of vectors in \mathbb{R}^d such that $\|\mathbf{v}_j\|_{\infty} \leq 1$ *for every* $1 \leq j \leq k$ *and let* $\mathbf{v} = \sum_{j=1}^k \mathbf{v}_j$ *. There exists a permutation* σ *of* $\{1, \ldots, k\}$ *such that for every* $n \in \{d, \ldots, k\}$ *, we have:*

$$
\|\sum_{j=1}^n \mathbf{v}_{\sigma(j)} - \frac{n-d}{k}\mathbf{v}\|_{\infty} \le d
$$

¹⁶⁴ From the previous lemma we deduce the following two corollaries.

165 ► **Corollary 7.** Let **Z** be a set of vectors in $\{-m, \ldots, m\}$ ^d for some positive natural number ¹⁶⁶ *m, and assume that* **z** *is a finite sum of vectors in* **Z***. Then* **z** *is a finite sum of at most* μ_{167} (||**z**|| + 1)(3*dm*)^{*d*} vectors in **Z***.*

¹⁶⁸ **Proof.** By symmetry, we can assume without loss of generality that **z** ≥ **0**. Let *k* be the minimal natural number such that there exists a sequence z_1, \ldots, z_k of vectors in **Z** such 170 that $\mathbf{z} = \mathbf{z}_1 + \cdots + \mathbf{z}_k$. If $k = 0$ the lemma is proved, so let us assume that $k \ge 1$. Observe that there exists a sequence $\mathbf{e}_1, \ldots, \mathbf{e}_k$ of vectors in \mathbb{N}^d such that $\mathbf{z} = \sum_{j=1}^k \mathbf{e}_j$ and such 172 that $\mathbf{e}_j(i) \leq \max\{0, \mathbf{z}_j(i)\}\)$ for every $1 \leq i \leq d$ and every $1 \leq j \leq k$. We introduce the sequence $\mathbf{v}_1, \ldots, \mathbf{v}_k$ defined by $\mathbf{v}_j \stackrel{\text{def}}{=} \mathbf{z}_j - \mathbf{e}_j$. Notice that $\|\mathbf{v}_j\|_{\infty} \leq m$ and $\sum_{j=1}^k \mathbf{v}_j = \mathbf{0}$. ¹⁷⁴ We introduce $\mathbf{x}_n \stackrel{\text{def}}{=} \sum_{j=1}^n \mathbf{v}_j$. By applying a permutation, Lemma 6 shows that we can 175 assume without loss of generality that $\mathbf{x}_n \in \mathbf{X}$ for every $0 \leq n \leq k$ where **X** is the set ¹⁷⁶ of vectors $\mathbf{x} \in \mathbb{Z}^d$ such that $\|\mathbf{x}\|_{\infty} \leq md$. Observe that the cardinal of **X** is bounded by $177 \quad (1+2dm)^d \leq (3dm)^d$. Now, assume by contradiction that there exists $\ell \in \{0, \ldots, k-(3dm)^d\}$ satisfying $\mathbf{e}_j = \mathbf{0}$ for every $j \in \{\ell+1, \ldots, \ell + (3dm)^d\}$. Notice that there exists $p < q$ in $\{\ell, \ldots, \ell + (3dm)^d\}$ such that $\mathbf{x}_p = \mathbf{x}_q$ since the cardinal of **X** is bounded by $(3drm)^d$. 180 It follows that $\sum_{j=p+1}^{q} \mathbf{v}_j = \mathbf{0}$. From $\mathbf{e}_j = \mathbf{0}$ for every $j \in \{\ell+1,\ldots,\ell+(3dm)^d\}$ it follows that $\mathbf{v}_j = \mathbf{z}_j$ for every $j \in \{p+1,\ldots,q\}$. In particular $\sum_{j=p+1}^q \mathbf{z}_j = \mathbf{0}$. Hence *k* 182 is not minimal since we can remove the vectors $\mathbf{z}_{p+1}, \ldots, \mathbf{z}_q$ from the sequence $\mathbf{z}_1, \ldots, \mathbf{z}_k$, and we get a contradiction. It follows that for every $\ell \in \{0, \ldots, k - (3dm)^d\}$ there exists $j \in \{\ell+1,\ldots,\ell+(3dm)^d\}$ such that $\mathbf{e}_j \neq \mathbf{0}$. From $\|\mathbf{z}\| = \sum_{j=1}^k \|\mathbf{e}_j\|$, it follows that $\|\mathbf{z}\| \ge \frac{k}{(3dm)^d} - 1.$ Hence $k \le (\|\mathbf{z}\| + 1)(3dm)^d$.

► **Corollary 8.** Assume that $\mathbf{z} = \mathbf{z}_1 + \cdots + \mathbf{z}_k$ where $\mathbf{z}_1, \ldots, \mathbf{z}_k$ are vectors in $\{-m, \ldots, m\}^d$ *for some positive natural number* $m \geq 1$ *. There exists a permutation* σ *of* $\{1, \ldots, k\}$ *such that for every* $n \in \{0, \ldots, k\}$ *, we have:*

$$
\sum_{j=1}^{n} \mathbf{z}_{\sigma(j)}(i) \ge \min\{\mathbf{z}(i), 0\} - md
$$

186 **Proof.** If $k = 0$ the lemma is proved. So, we can assume that $k \geq 1$. By applying a 187 permutation, Lemma 6 shows that we can assume without loss of generality that for every $n \in$ $\{0,\ldots,k\}$, there exists a vector $\mathbf{e}_n \in \mathbb{R}^d$ such that $\|\mathbf{e}_n\|_{\infty} \leq md$ and such that $\mathbf{x}_n = \frac{n-d}{k}\mathbf{z} + \mathbf{e}_n$ $\mathbf{x}_n \in \mathbb{R}^k$ where $\mathbf{x}_n \stackrel{\text{def}}{=} \sum_{j=1}^k \mathbf{z}_j$. Let $i \in \{1, \ldots, d\}$ and let us prove that $\mathbf{x}_n(i) \ge \min\{\mathbf{z}(i), 0\} - md$. 190 Observe that if $n \in \{0, \ldots, d\}$ then the property is immediate since $\mathbf{x}_n(i) \geq -md$. So, let 191 **us assume that** $n > d$. If $z(i) \geq 0$ then $\frac{n-d}{k}z(i) \geq 0$ and we get $x_n(i) \geq e_n(i) \geq -md$. If 192 **z**(*i*) ≤ 0 then $\frac{n-d}{k}$ **z**(*i*) ≥ **z**(*i*). In particular **x**_{*n*}(*i*) ≥ min{**z**(*i*)*,* 0} − *md* also in that case. \triangleleft

¹⁹³ A cycle is said to be *full-state* if every state occurs in the cycle. We first prove that there ¹⁹⁴ exists a "short" full-state cycle with a zero displacement thanks to the following lemma.

195 **Lemma 9.** *Every transition occurs on a finite sequence* $\theta_1, \ldots, \theta_n$ *of simple cycles such that* $\Delta(\theta_1) + \cdots + \Delta(\theta_n) = \mathbf{0}$ *and such that* $n \leq (3d \cdot m)^d$ 196

Proof. Let *t* be a transition. Since *G* is strongly connected, the transition *t* occurs in a simple cycle θ_0 . Lemma 4 shows that $-\Delta(\theta_0)$ is a finite sum of displacements of simple cycles. In particular $-\Delta(\theta_0)$ is in the cone generated by the displacements of simple cycles. From Carathéodory theorem, $-\Delta(\theta_0)$ is in the cone generated by the displacements of *d* simple cycles $\theta_1, \ldots, \theta_d$. It follows that the following linear system over the sequences $(\beta_j)_{0 \leq j \leq d}$ of natural numbers

$$
\sum_{j=0}^d \beta_j \mathbf{v}_j = \mathbf{0}
$$

admits a solution satisfying $\beta_0 > 0$ where $\mathbf{v}_j \stackrel{\text{def}}{=} \Delta(\theta_j)$.

From [15], it follows that solutions of that system can be decomposed as finite sums of "minimal" solutions $(\beta_j)_{1 \leq j \leq k}$ of the same system satisfying additionally the following constraint:

$$
\sum_{j=0}^{d} \beta_j \le (1 + (d+1)rm)^d
$$

From $1 + (d+1)rm \leq (3drm)$, we derive $(1 + (d+1)rm)^d \leq (3drm)^d$. Since there exist 199 solutions of that system with $\beta_0 > 0$, there exists at least a minimal one satisfying the same ²⁰⁰ constraint. We have proved the lemma. J

 $_{201}$ **Lemma 10.** *There exists a full-state cycle with a zero displacement with a length bounded* $\int_0^{\infty} b y \ r^2 (r-1) (3 d r m)^d$.

Proof. Let us consider the set *H* of pairs $(p, q) \in Q \times Q$ such that there exists a transition 204 from *p* to *q* with $p \neq q$. For every $h \in H$ of the form (p, q) , we select a transition $t_h \in T$ from *p* to *q*. Lemma 9 shows that for every $h \in H$, there exists a sequence of at most $(3drm)^d$ 205 ²⁰⁶ simple cycles with a zero total displacement. It follows that there exists a sequence of at most μ ²⁰⁷ |*H*|(3*drm*)^{*d*} simple cycles with a zero total displacement that contains all the transitions t_h ²⁰⁸ with $h \in H$. Since the set of transitions that occurs in that sequence is strongly connected,

²⁰⁹ Euler's Lemma shows that there exists a cycle $θ$ with the same Parikh image as the sum of the Parikh images of the cycles occurring in the sequence. It follows that $|\theta| \le r |H| (3rdm)^d$. 211 Notice that $\Delta(\theta) = 0$ and θ is a full-state cycle. From $|H| \leq r(r-1)$ we are done.

212 Now, let us prove Lemma 5. Let π_0 be an elementary path from p to q, and let $\mathbf{z} \overset{\text{def}}{=} \mathbf{y} - \mathbf{x} - \Delta(\pi_0).$

²¹⁴ Let us first explain why **z** is a finite sum of displacements of simple cycles. By hypothesis, 215 there exists a path π_1 from *p* to *q* such that such that **y** − **x** − $\Delta(\pi_1)$ is in the group ²¹⁶ generated by displacements of cycles. Let $π'$ be a path from *q* to *p* and observe that z_{217} **z** = $(\mathbf{y} - \mathbf{x} - \Delta(\pi_1)) + \Delta(\pi' \pi_0) - \Delta(\pi' \pi_1)$. Since $\pi' \pi_0$ and $\pi' \pi_1$ are two cycles, it follows that ²¹⁸ **z** is in the group generated by the displacements of the cycles. Lemma 4 shows that **z** is ²¹⁹ finite sum of displacements of simple cycles.

Corollary 7 and Corollary 8 shows that there exists a sequence **z**1*, . . . ,* **z***^k* of displacements of simple cycles such that $\mathbf{z} = \sum_{j=1}^{k} \mathbf{z}_j$, $k \leq (1 + ||\mathbf{z}||)(3dm)^d$, and such that for every $n \in \{0, \ldots, k\}$, we have:

$$
\sum_{j=1}^{n} \mathbf{z}_j(i) \ge \min\{0, \mathbf{z}(i)\} - drm
$$

Lemma 10 shows that there exists a full-state cycle θ_0 with a zero displacement with a length bounded by $r^2(r-1)(3drm)^d$. Thanks to a rotation of θ_0 , we can assume that θ_0 is a cycle on *q*. Now, observe that for every $1 \leq j \leq k$, there exists a simple cycles θ'_j with a displacement equals to \mathbf{z}_j . By inserting θ'_j in the full-state cycle θ_0 , we get a cycle θ_j on q . Notice that $\Delta(\theta_j) = \mathbf{z}_j$ and $|\theta_j| \leq r^2(r-1)(3drm)^d + r$. We introduce the path π defined as follows:

$$
\pi \stackrel{\text{\tiny def}}{=} \pi_0 \theta_1 \dots \theta_n
$$

220 We are going to prove that $p(\mathbf{x}) \stackrel{\pi}{\to} q(\mathbf{y})$. To do so, let *u* be a prefix of *π* and let $i \in \{1, \ldots, d\}$ and let us prove that $\mathbf{x}(i) + \Delta(u)(i) \geq 0$. Observe that if *u* is a prefix of π_0 ²²² the property is immediate since $\Delta(u)(i) \ge -m|u| \ge -mr$. In particular **x**(*i*) + ∆(*u*)(*i*) ≥ 0. So, we can assume that there exists $n \in \{1, ..., k\}$ and a prefix u' of θ_n such that $u =$ $\pi_0 \theta_1 \dots \theta_{n-1} u'$. It follows that $\Delta(u) = \Delta(\pi_0) + \Delta(u') + \sum_{j=1}^{n-1} \mathbf{z}_j(i)$. Moreover, notice that $\Delta(u')(i) \geq -m|u'| \geq -mr^2(r-1)(3drm)^d - mr$ for every $i \in \{1, ..., d\}.$

226 We decompose the proof that $\mathbf{x}(i) + \Delta(u)(i) \geq 0$ in two cases following that $\mathbf{z}(i) \leq 0$ or 227 **z** $(i) \geq 0$.

z₂₂₈ ■ Assume first that $z(i) \ge 0$. In that case $\sum_{j=1}^{n-1} z_j(i) \ge -md$. It follows that $\Delta(u)(i) \ge$ $-mr - mr^2(r-1)(3drm)^d - mr \ge -mr^3(3drm)^d$. Hence $\mathbf{x}(i) + \Delta(u)(i) \ge 0$.

Now, assume that $\mathbf{z}(i) \leq 0$. In that case $\sum_{j=1}^{n-1} \mathbf{z}_j(i) \geq \mathbf{z}(i) - md$. It follows that $\mathbf{x}(i) + \Delta(u)(i) \geq \mathbf{x}(i) + \Delta(\pi_0) + \mathbf{z}(i) + \Delta(u')(i) - d\tau m = \mathbf{y}(i) - \Delta(u')(i) - d\tau m \geq 0$ $y(i) - mr^2(r-1)(3drm)^d - mr \ge 0.$

233 We have proved that $p(\mathbf{x}) \stackrel{\pi}{\rightarrow} q(\mathbf{y})$. Now, observe that $|\pi| \leq r + k(r^2(r-1)(3drm)^d + r)$. From $\mathbf{z}_2 = k \leq (1 + ||\mathbf{z}||)(3drm)^d$ and $||\mathbf{z}|| \leq ||\mathbf{y} - \mathbf{x}|| + d(r-1)m$, we get $|\pi| \leq (||\mathbf{y} - \mathbf{x}|| + drm)^r (3drm)^{2d}$. ²³⁵ Lemma 5 is proved.

²³⁶ **4 Extractors**

237 A *d*-dimensional extractor λ is a non-decreasing sequence $(\lambda_0 \leq \cdots \leq \lambda_{d+1})$ of positive 238 natural numbers. Given a *d*-dimensional extractor λ and a set $I \subseteq \{1, \ldots, d\}$, a (λ, I) -small *set* of a set $\mathbf{X} \subseteq \mathbb{N}^d$ is a subset $J \subseteq I$ such that $\mathbf{x}(j) < \lambda_{|J|}$ for every $j \in J$ and $\mathbf{x} \in \mathbf{X}$. The ²⁴⁰ following lemma shows that there exists a unique maximal for the inclusion (λ, I) -small set. ²⁴¹ We denote by extract_{λ ,**X**} (I) this set.

Example 11. *The class of* ($λ, I$)-small sets of a set $\mathbf{X} \subseteq \mathbb{N}^d$ is non empty and stable by ²⁴³ *union.*

²⁴⁴ **Proof.** We adapt the proof of [11, Section 8]. Since the class contains the empty set, it is 245 nonempty. Now, let us prove the stability by union by considering two (λ, I) -small sets J_1 246 and J_2 of **X** and let us prove that $J \stackrel{\text{def}}{=} J_1 \cup J_2$ is a (λ, I) -small set of **X**. Since $J_1, J_2 \subseteq I$, 247 we derive $J \subseteq I$. Let $\mathbf{x} \in \mathbf{X}$ and $j \in J$. If $j \in J_1$ then $\mathbf{x}(j) < \lambda_{|J_1|} \leq \lambda_{|J|}$ since $|J_1| \leq |J|$. Symmetrically, if $j \in J_2$ we deduce that $\mathbf{x}(j) < \lambda_{|J_2|} \leq \lambda_{|J|}$. We have proved that *J* is a ²⁴⁹ (λ , *I*)-small set of **X**.

250 The following lemma shows that components that are not in extract_λ $\chi(I)$ are large for ²⁵¹ at least one vector in **X**.

► Lemma 12. For every $i \in I\backslash$ extract_{λ}**x**(*I*) *there exists* **x** \in **X** *such that:*

$$
\mathbf{x}(i) \geq \lambda_{|I|+1}
$$

Proof. Let $J \stackrel{\text{def}}{=} \text{extract}_{\lambda, \mathbf{X}}(I)$ and assume that for some $i \in I \setminus J$, we have $\mathbf{x}(i) < \lambda_{|J|+1}$ for every $\mathbf{x} \in \mathbf{X}$. Let $J' \stackrel{\text{def}}{=} J \cup \{i\}$ and observe that J' is a (λ, I) -small set of **X**. In fact, for every $\mathbf{x} \in \mathbf{X}$ and for every $j \in J'$, we have $\mathbf{x}(j) < \lambda_{|J|} \leq \lambda_{|J'|}$ if $j \in J$, and $\mathbf{x}(j) < \lambda_{|J|+1} = \lambda_{|J'|}$ if $\dot{\gamma} = i$. We get a contradiction by maximality of extract_λ $\mathbf{x}(I)$. We deduce the lemma.

Given a set $I \subseteq \{1, \ldots, d\}$ we define extract_{λ,e} (I) for a finite word *e* of configurations by $\text{extract}_{\lambda,\varepsilon}(I) \stackrel{\text{def}}{=} I$, and by $\text{extract}_{\lambda,\varepsilon\mathbf{c}}(I) \stackrel{\text{def}}{=} \text{extract}_{\lambda,\{\mathbf{c}\}}(\text{extract}_{\lambda,\varepsilon}(I))$ for every $\mathbf{c} \in \mathbb{N}^d$ and ²⁵⁸ for every finite word *e* of configurations. Given an infinite word *e* of configurations, we observe that $(\text{extract}_{\lambda, e_n}(I))_{n \in \mathbb{N}}$ where e_n is the finite prefix of e of length n is a non-increasing ²⁶⁰ sequence of sets in $\{1, \ldots, d\}$. It follows that this sequence is asymptotically constant and ²⁶¹ equals to a set included in $\{1, \ldots, d\}$. We denote extract_{$\lambda, e(I)$} that set. The following lemma ²⁶² shows that extracting along a word of configurations in **X** asymptotically coincides with an ²⁶³ extraction of **X**.

≥64 ► Lemma 13. Let us consider a set $I \subseteq \{1, ..., d\}$, an extractor λ , a set **X** of configura-265 *tions, and an infinite word e over* **X***. We have* $\text{extract}_{\lambda, \mathbf{X}}(I) \subseteq \text{extract}_{\lambda, e}(I)$ *. Moreover,* 266 extract_{λ}**X**(*I*) = extract_{λ}^{*e*}(*I*) *if every configuration of* **X** *occurs infinitely often in e.*

Proof. We introduce $J \stackrel{\text{def}}{=} \text{extract}_{\lambda,\mathbf{X}}(I), J_{\infty} \stackrel{\text{def}}{=} \text{extract}_{\lambda,e}(I),$ the prefix e_n of length *n* of e , $_{268}$ and $J_n \stackrel{\text{def}}{=} \text{extract}_{\lambda,e_n}(I).$

269 Let us prove that $J \subseteq J_n$ for every *n*. Since $J_0 = I$ the property is proved for $n = 0$. 270 Assume that $J \subseteq J_{n-1}$ for some $n \ge 1$ and let us prove that $J \subseteq J_n$. There exists $\mathbf{x} \in \mathbf{X}$ such that $e_n = e_{n-1}$ **x**. Since $\mathbf{x} \in \mathbf{X}$, it follows that $\mathbf{x}(j) < \lambda_{|J|}$ for every $j \in J$. As $J \subseteq J_{n-1}$, ²⁷² we deduce that *J* is a (λ, J_{n-1}) -small set of $\{x\}$. Since J_n is the maximal set satisfying that 273 property, we get $J \subseteq J_n$ and we have proved the induction. It follows that $J \subseteq J_n$ for every *n*∈N. Moreover, since $J_{\infty} = \bigcap_{n \in \mathbb{N}} J_n$, we deduce the inclusion $J \subseteq J_{\infty}$.

Now, assume that every $\mathbf{x} \in \mathbf{X}$ occurs in *e* infinitely often. Since $(J_n)_{n \in \mathbb{N}}$ is a non 276 increasing sequence of $\{1, \ldots, d\}$, there exists *N* such that $J_n = J_\infty$ for every $n \geq N$. Let z_{77} **x** \in **X**. There exists $n > N$ such that $e_n = e_{n-1}$ **x**. From $J_n = \text{extract}_{\lambda, \{\mathbf{x}\}}(J_{n-1})$ and $J_n = J_{n-1} = J_{\infty}$, we derive $J_{\infty} = \text{extract}_{\lambda, {\{\mathbf{x}\}}} (J_{\infty})$. In particular $\mathbf{x}(j) < \lambda_{|J_{\infty}|}$ for every $j \in J_{\infty}$. We have proved that $\mathbf{x}(j) < \lambda_{|J_{\infty}|}$ for every $j \in J_{\infty}$ and for every $\mathbf{x} \in \mathbf{X}$. As ²⁸⁰ $J_{\infty} \subseteq I$, we deduce that J_{∞} is a (λ, I) -small set of **X**. Since *J* is the maximal set satisfying ²⁸¹ that property, we deduce that $J_{\infty} \subseteq J$. It follows that $J = J_{\infty}$.

²⁸² **5 Rackoff Extraction**

283 An A^* -execution *e* is said to be *I-cyclic* for some $I \subseteq \{1, ..., d\}$ if $\text{src}(e)|_I = \text{tgt}(e)|_I$. We say that a word $\sigma = \mathbf{a}_1 \dots \mathbf{a}_k$ of actions in *A* is obtained from an *A*^{*}-execution *e* by removing *I*-285 cycles where $I \subseteq \{1, \ldots, d\}$, if there exists a decomposition of *e* into a concatenation $e_0 \ldots e_k$ $\text{erf } \mathcal{L}$ as $\text{erf } \mathcal{L}$ for $\text{erf } \mathcal{L}$ and $\text{erf } \mathcal{L}$

An extractor $\lambda = (\lambda_0 \leq \cdots \leq \lambda_{d+1})$ is said to be *m*-adapted if for every $n \in \{0, \ldots, d\}$:

$$
\lambda_{n+1} \geq \lambda_n + m \lambda_n^n
$$

► Lemma 14 (slight extension of [16]). Let λ be an *m*-adapted extractor and *e* be an A^* *execution for a PN* $A \subseteq \{0, \ldots, m\}^d \times \mathbb{N}^d$. Let $I \stackrel{\text{def}}{=} \text{extract}_{\lambda, e}(\{1, \ldots, d\})$. There exists a *word σ that can be obtained from e by removing I-cycles such that*

$$
|\sigma|\leq \sum_{j=1}^d \lambda_j^j
$$

and such that $\text{src}(e) \stackrel{\sigma}{\rightarrow} \mathbf{c}$ *for some configuration* **c** *satisfying* $\mathbf{c}(i) = \text{tgt}(e)(i)$ *for every* $i \in I$ *, and such that for every* $i \notin I$ *we have:*

$$
\mathbf{c}(i) \geq \lambda_{|I|+1} - m \sum_{j=1}^{|I|} \lambda_j^j
$$

²⁸⁷ **Proof.** The proof follows a similar approach than the original one from Rackoff [16]. A detail ²⁸⁸ proof is given in appendix. J

²⁸⁹ **6 Strongly-Connected Components of Configurations**

²⁹⁰ A *strongly-connected component of configurations* of a PN *A* (*SCCC* for short) is a stronglyconnected component of the reachability graph $(\mathbb{N}^d, \frac{A}{\cdot})$.

292 We associate to an extractor λ and a SCCC **C** of a PN *A*, a PNS *G* defined as follows. 293 We introduce the set $I \stackrel{\text{def}}{=} \text{extract}_{\lambda, \mathbf{C}}(\{1, \ldots, d\}),$ the set of states $Q \stackrel{\text{def}}{=} {\{\mathbf{c}|_I \mid \mathbf{c} \in \mathbf{C}\}}$ and the set of transitions $T \stackrel{\text{def}}{=} \{ (\mathbf{x}|_I, a, \mathbf{y}|_I) \mid (\mathbf{x}, a, \mathbf{y}) \in \mathbf{C} \times A \times \mathbf{C} \wedge \mathbf{x} \stackrel{a}{\to} \mathbf{y} \}.$ Notice that *Q* is finite since it contains at most $\lambda_{II}^{|I|}$ ¹/_{[*I*}] elements. In particular *T* is finite as well. The PNS *G* is 296 defined as the tuple $\langle Q, A, T \rangle$.

 \sum_{297} **Lemma 15.** *The PNS G is structurally reversible.*

Proof. Let (p, a, q) be a transition in *T*. There exist $\mathbf{x}, \mathbf{y} \in \mathbf{C}$ such that $\mathbf{x} \stackrel{a}{\to} \mathbf{y}$ and such ²⁹⁹ that $p = \mathbf{x}|_I$ and $q = \mathbf{y}|_I$. Moreover since **C** is a SCCC, there exists a word σ of actions in *A* sso such that **y** $\frac{\sigma}{\rightarrow}$ **x**. We deduce that there exists a path in *G* from *q* to *p* labeled by *σ*. Notice 301 that $\Delta(a) + \Delta(\sigma) = \mathbf{y} - \mathbf{x} + \mathbf{x} - \mathbf{y} = \mathbf{0}$. It follows that *G* is structurally reversible.

³⁰² Let us prove the following technical lemma.

1 Lemma 16. *If* **C** *is not reduced to a singleton, there exists an* A^ω *-execution e of configu-*³⁰⁴ *rations in* **C** *such that every configuration of* **C** *occurs infinitely often in e.*

Proof. Since **C** is countable, there exists an infinite sequence $(c_n)_{n\in\mathbb{N}}$ such that $\mathbf{C} = \{c_n \mid n \in \mathbb{N}\}$ 306 \mathbb{N} . Moreover, by replacing that sequence by the sequence s_0, s_1, \ldots where $s_n \stackrel{\text{def}}{=} \mathbf{c}_0, \ldots, \mathbf{c}_n$, ³⁰⁷ we can assume without loss of generality that every configuration of **C** occurs infinitely often 308 in the sequence $(c_n)_{n\in\mathbb{N}}$. Since **C** is a SCCC, for every positive natural number *n*, there exists an A^* -execution from \mathbf{c}_{n-1} to \mathbf{c}_n of the form $e_n \mathbf{c}_n$. Let us introduce the word $e \stackrel{\text{def}}{=} e_1 e_2 \ldots$ ³¹⁰ Notice that since **C** is not reduced to a singleton, the word *e* is infinite. Moreover, notice t_{11} that *e* is an A^{ω} -execution satisfying the lemma.

312 Now, assume that λ is *m*-adapted for some positive natural number *m*.

▶ Lemma 17. *If* $A \subseteq \{0, \ldots, m\}^d \times \mathbb{N}^d$, for every $\mathbf{x} \in \mathbf{C}$, there exists a cycle in G on $\mathbf{x}|_I$ *labeled by a word u such that:*

$$
|u| \le \sum_{j=1}^d \lambda_j^j
$$

313 and a configuration \mathbf{x}' such that $\mathbf{x} \xrightarrow{u} \mathbf{x}', \mathbf{x}'|_{I} = \mathbf{x}|_{I}$ and such that $\mathbf{x}'(i) \geq \lambda_{|I|+1} - m \sum_{j=1}^{|I|} \lambda_j^j$ 314 *for every* $i \notin I$.

Proof. Observe that if **C** is reduced to a singleton, the lemma is trivial with $u \stackrel{\text{def}}{=} \varepsilon$. So, we can assume that **C** is not a singleton. Lemma 16 shows that there exists an A^{ω} -execution $e = c_0 c_1 \ldots$ of configurations in **C** such that every configuration of **C** occurs infinitely often. Without loss of generality, by replacing *e* by a suffix of *e* we can assume that $\mathbf{x} = \mathbf{c}_0$. Lemma 13 shows that $\text{extract}_{\lambda,e}(\{1,\ldots,d\}) = I$. It follows that there exists $N \in \mathbb{N}$ such that for every $n \geq N$ the prefix e_n of e of length n satisfies $\text{extract}_{\lambda,e_n}(\{1,\ldots,d\}) = I$. Since **x** occurs infinitely often in *e*, there exists $n \geq N$ such that **x** is the last configuration of e_n . Lemma 14 shows that there exists a word *u* that can be obtained from e_n by removing *I*-cycles such that

$$
|u| \le \sum_{j=1}^d \lambda_j^j
$$

and such that $\mathbf{x} \xrightarrow{u} \mathbf{x}'$ for some configuration \mathbf{x}' satisfying $\mathbf{x}'|_I = \mathbf{x}|_I$, and such that for every $i \notin I$ we have:

$$
\mathbf{x}'(i) \ge \lambda_{|I|+1} - m \sum_{j=1}^{|I|} \lambda_j^j
$$

 $\frac{315}{215}$ Since *u* can be obtained from e_n by removing *I*-cycles, it follows that *u* is the label of a cycle $_{316}$ on $\mathbf{x}|_I$ in the PNS *G*.

³¹⁷ Symmetrically, we deduce a similar backward property.

▶ Lemma 18. *If* $A \subseteq \mathbb{N}^d \times \{0, ..., m\}^d$, for every $y \in \mathbb{C}$, there exists a cycle in *G* on $y|_I$ *labeled by a word v such that:*

$$
|v| \le \sum_{j=1}^d \lambda_j^j
$$

 $\mathbf{y}' = \mathbf{y} \times \mathbf{y}' + \math$ 319 $\mathbf{y}'(i) \geq \lambda_{|I|+1} - m \sum_{j=1}^{|I|} \lambda_j^j$.

Proof. Let us introduce the PN $A' \stackrel{\text{def}}{=} \{(\mathbf{a}_+, \mathbf{a}_-) \mid (\mathbf{a}_-, \mathbf{a}_+) \in A\}$. Observe that **C** is a SCCC of *A'*. Let *G'* be the PNS associated to the extractor λ and the SCCC **C** of *A'*. Lemma 19 shows that there exists a cycle in G' on $y|_I$ labeled by a word *u* such that:

$$
|u|\leq \sum_{j=1}^d \lambda_j^j
$$

and a configuration \mathbf{y}' such that $\mathbf{y} \stackrel{u}{\rightarrow} \mathbf{y}'$, $\mathbf{y}|_I = \mathbf{y}'|_I$, and such that $\mathbf{y}'(i) \geq \lambda_{|I|+1} - m \sum_{j=1}^{|I|} \lambda_j^j$ 320 321 for every $i \notin I$. Assume that $u = a'_1 \dots a'_n$ with $a'_j = (\mathbf{x}_j, \mathbf{y}_j)$ and let $v \stackrel{\text{def}}{=} a_1 \dots a_n$ with $a_j \stackrel{\text{def}}{=} (\mathbf{y}_j, \mathbf{x}_j)$. Observe that since *u* is a cycle on $\mathbf{y}|_I$ in *G*^{*'*}, then *v* is a cycle on $\mathbf{y}|_I$ in *G*. Moreover, from $y \stackrel{u}{\rightarrow} y'$ we derive $y' \stackrel{v}{\rightarrow} y$. We have proved the lemma.

³²⁴ **7 Mutually Reachable Configurations**

In this section, we prove Theorem 2. We consider a PN $A \subseteq \{0, \ldots, m\}^d \times \{0, \ldots, m\}^d$ for α ³²⁶ some positive natural number *m*. We consider two mutually reachable configurations **x**, **y** 327 for *A*. Since the theorem is trivial when $\mathbf{x} = \mathbf{y}$, we can assume that $\mathbf{x} \neq \mathbf{y}$. In particular $\|{\bf y}-{\bf x}\|>1.$

We let **C** be the SCCC of *A* containing **x** and **y**. We introduce the extractor λ satisfying $\lambda_0 = 1$, and for every $n \in \{0, \ldots, d\}$:

$$
\lambda_{n+1} \stackrel{\text{def}}{=} m \sum_{j=1}^{n} \lambda_j^j + m \lambda_n^{3n} (3d\lambda_n^n m)^d
$$

S29 Observe that λ is *m*-adapted. We introduce $I \stackrel{\text{def}}{=} \text{extract}_{\lambda, \mathbf{C}}(\{1, \ldots, d\})$ and the structurally 330 reversible PNS *G* associated to **C**, λ and **A**. Notice that the number of states of *G* is bounded by $r \stackrel{\text{def}}{=} \lambda_{|I|}^{|I|}$ |*I*| . We introduce the states *p, q* of *G* defined as *p* def = **x**|*^I* and *q* def ³³¹ = **y**|*^I* . Observe 332 that **y** − **x** is the displacement of a path from *p* to *q* in *G*. We introduce the flow function 333 $F: Q \to \mathbb{N}^I$ defined as the identity.

Let us observe that $\lambda_j \leq \lambda_d$ for every $j \in \{1, ..., d\}$. In particular $r \leq \lambda_d^d$.

 \blacktriangleright **Lemma 19.** *The PNS G admits a cycle on p labeled by a word <i>u* and a cycle on q labeled *by a word v such that:*

 $|u|, |v| \leq d\lambda_d^d$

and such that there exist configurations \mathbf{x}', \mathbf{y}' *such that* $\mathbf{x} \stackrel{u}{\rightarrow} \mathbf{x}', \mathbf{y}' \stackrel{v}{\rightarrow} \mathbf{y}$ *, and such that for every* $i \notin I$ *, we have:*

$$
\mathbf{x}'(i), \mathbf{y}'(i) \ge mr^3(3drm)^d
$$

³³⁵ **Proof.** This lemma is a direct corollary of Lemma 17 and Lemma 18. J

From $\mathbf{y}' - \mathbf{x}' = \mathbf{y} - \mathbf{x} - \Delta(u) - \Delta(v)$, we deduce from Lemma 5 that there exists a word σ of actions in **A** such that $\mathbf{x}' \stackrel{\sigma}{\to} \mathbf{y}'$ and such that $|\sigma| \leq (||\mathbf{y}' - \mathbf{x}'|| + drm)r^3(3drm)^{2d}$. ³³⁸ Observe that we have:

k $||\mathbf{y}' - \mathbf{x}'|| \le ||\mathbf{y} - \mathbf{x}|| + ||\Delta(u)|| + ||\Delta(v)||$

340

$$
\leq \|\mathbf{y} - \mathbf{x}\| + dm(|u| + |v|)
$$

$$
\leq \|\mathbf{y} - \mathbf{x}\| + 2d^2m\lambda_d^d
$$

341 342

23:12 Short Runs

Let $w = u \sigma v$. Observe that $\mathbf{x} \stackrel{w}{\rightarrow} \mathbf{y}$. We derive:

344
\n
$$
|w| \le 2d\lambda_d^d + (\|\mathbf{y} - \mathbf{x}\| + 2d\lambda_d^dm + d\lambda_d^dm)\lambda_d^{3d}(3d\lambda_d^dm)^{2d}
$$
\n
$$
\le \|\mathbf{y} - \mathbf{x}\| 8d\lambda_d^dm\lambda_d^{3d}(3d\lambda_d^dm)^{2d}
$$
\n
$$
\le \frac{1}{2} \|\mathbf{y} - \mathbf{x}\| (3d\lambda_d^dm)^{6d}
$$

346

347 348

From the following Lemma 20 we derive:

 $\frac{1}{2}$ ||**y** – **x**|| $(3d\lambda_d^dm)^{6d}$

$$
|w|\leq \frac{1}{2}\|\mathbf{y}-\mathbf{x}\|(3dm)^{(d+1)^{2d+4}}
$$

³⁴⁹ We deduce Theorem 2.

▶ Lemma 20. We have:

$$
(3d\lambda_d^d m)^{6d} \le (3dm)^{(d+1)^{2d+4}}
$$

350 **Proof.** Assume first that $d = 1$. In that case, the definiton of λ_{n+1} with $n = 0$ provides $\lambda_1 = 3m^2$ and the lemma is immediate. So, let us assume that $d \geq 2$. Notice that $\lambda_j^j \leq \lambda_n^m$ 352 for every $j \in \{1, \ldots, n\}$ for every $n \in \{0, \ldots, d-1\}$. It follows that we have:

$$
\lambda_{n+1} \le 2d\lambda_n^{3n} m (3d\lambda_n^n m)^d
$$

$$
\le (3d\lambda_n m)^{(d+1)^2 - 4}
$$

By induction, we deduce that for every $n \in \{0, \ldots, d\}$, we have:

$$
\lambda_n \le (3dm)^{n((d+1)^2 - 4)^n}
$$

In particular:

$$
3d\lambda_d^d m \le (3dm)^{d^2(d+1)^{2d}}
$$

Hence

$$
(3d\lambda_d^d m)^{6d} \le (3dm)^{6d^3(d+1)^{2d}} \le (3dm)^{(d+1)^{2d+4}}
$$

where we use the inequality $6d^3 \leq (d+1)^4$.

³⁵⁷ **8 Conclusion**

 In this paper we proved that the distance in the reachability graph between two mutually reachable configurations is linear with respect to the Euclidian distance between those two configurations. As a future work, we would like to apply that result to provide lower bounds on the number of states of population protocols computing some predicates [3].

³⁶² The author thanks Alain Finkel, Igor Khmelnitsky, and Serge Haddad for promoting him ³⁶³ a Karp and Miller problem that motivated this work, and Matthias Englert and Ranko Lazic ³⁶⁴ for pointing out the Steinitz constant lemma [9].

³⁶⁵ **References**

- **2** Eike Best and Javier Esparza. Existence of home states in petri nets is decidable. *Inf. Process. Lett.*, 116(6):423–427, 2016.
- **3** Michael Blondin, Javier Esparza, and Stefan Jaax. Large flocks of small birds: on the minimal size of population protocols. In Rolf Niedermeier and Brigitte Vallée, editors, *35th Symposium on Theoretical Aspects of Computer Science, STACS 2018, February 28 to March 3, 2018, Caen, France*, volume 96 of *LIPIcs*, pages 16:1–16:14. Schloss Dagstuhl - Leibniz- Zentrum fuer Informatik, 2018. URL: <https://doi.org/10.4230/LIPIcs.STACS.2018.16>, [doi:10.4230/LIPIcs.STACS.2018.16](http://dx.doi.org/10.4230/LIPIcs.STACS.2018.16).
- **4** Michael Blondin, Alain Finkel, Christoph Haase, and Serge Haddad. Approaching the coverability problem continuously. In Marsha Chechik and Jean-François Raskin, editors, *Tools and Algorithms for the Construction and Analysis of Systems - 22nd International Conference, TACAS 2016, Held as Part of the European Joint Conferences on Theory and Practice of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2-8, 2016, Proceedings*, volume 9636 of *Lecture Notes in Computer Science*, pages 480–496. Springer, 2016.
- **5** E. Cardoza, Richard J. Lipton, and Albert R. Meyer. Exponential space complete problems for Petri nets and commutative semigroups: Preliminary report. In *STOC'76*, pages 50–54. ACM, 1976. [doi:10.1145/800113.803630](http://dx.doi.org/10.1145/800113.803630).
- **6** Wojciech Czerwinski, Slawomir Lasota, Ranko Lazic, Jérôme Leroux, and Filip Mazowiecki. The reachability problem for petri nets is not elementary (extended abstract). In *STOC*. ACM Computer Society, 2019. to appear.
- **7** Javier Esparza, Pierre Ganty, Jérôme Leroux, and Rupak Majumdar. Verification of population protocols. *Acta Inf.*, 54(2):191–215, 2017.
- **8** Thomas Geffroy, Jérôme Leroux, and Grégoire Sutre. Occam's razor applied to the petri net coverability problem. *Theor. Comput. Sci.*, 750:38–52, 2018.
- **9** V. S. Grinberg and S. V. Sevast'yanov. Value of the steinitz constant. *Functional Analysis and Its Applications*, 14(2):125–126, Apr 1980. URL: <https://doi.org/10.1007/BF01086559>, [doi:10.1007/BF01086559](http://dx.doi.org/10.1007/BF01086559).
- **10** Petr Jancar, Jérôme Leroux, and Grégoire Sutre. Co-finiteness and co-emptiness of reachability sets in vector addition systems with states. In *Petri Nets*, volume 10877 of *Lecture Notes in Computer Science*, pages 184–203. Springer, 2018.
- **11** Jérôme Leroux. Vector addition system reversible reachability problem. *Logical Methods in Computer Science*, 9(1), 2013.
- **12** Jérôme Leroux, M. Praveen, and Grégoire Sutre. A relational trace logic for vector addition systems with application to context-freeness. In *CONCUR*, volume 8052 of *Lecture Notes in Computer Science*, pages 137–151. Springer, 2013.
- **13** Jérôme Leroux and Sylvain Schmitz. Reachability in vector addition systems is primitive-recursive in fixed dimension. In *LICS*. IEEE Computer Society, 2019. to appear.
- **14** Jérôme Leroux and Grégoire Sutre. On flatness for 2-dimensional vector addition systems with states. In *CONCUR*, volume 3170 of *Lecture Notes in Computer Science*, pages 402–416. Springer, 2004.
- **15** Loic Pottier. Minimal solutions of linear diophantine systems: Bounds and algorithms. In R. V. Book, editor, *Proceedings 4th Conference on Rewriting Techniques and Applications, Como (Italy)*, volume 488 of *Lecture Notes in Computer Science*, pages 162–173. Springer, 1991.
- **16** C. Rackoff. The covering and boundedness problems for vector addition systems. *Theoretical Computer Science*, 6(2):223–231, 1978.

⁴¹⁵ **A Proof of Lemma 14**

⁴¹⁶ **Proof.** The proof of this lemma in inspired by [16]. We prove the lemma by induction over *d*. $_{417}$ Naturally, if $d = 0$ the lemma is immediate. Assume the lemma proved for every dimension 418 strictly smaller than $d \ge 1$ and let us consider an *m*-adapted extractor $\lambda = (\lambda_0 \le \cdots \le$ λ_{d+1} and an *A*^{*}-execution $e = \mathbf{c}_0 \dots \mathbf{c}_k$ for a PN $A \subseteq \{0, \dots, m\}^d \times \mathbb{N}^d$. We introduce $J_n \stackrel{\text{def}}{=} \text{extract}_{\lambda, \mathbf{c}_0 \dots \mathbf{c}_{n-1}}(\{1, \dots, d\})$ for every $n \in \{0, \dots, k+1\}$. Since $J_0 = \{1, \dots, d\}$, there 421 exists a maximal $h \in \{0, \ldots, k+1\}$ such that $J_h = \{1, \ldots, d\}$. For every $0 \leq n < h$, since $J_n = \{1, \ldots, d\}$, we deduce that $\mathbf{c}_n \in \{0, \ldots, \lambda_d - 1\}^d$. It follows that the cardinal of ${\bf c}_n \mid 0 \leq n < h$ is bounded by λ_d^d . Without loss of generality, by removing cycles from the A^* -execution *e*, we can assume that $\mathbf{c}_0, \ldots, \mathbf{c}_{h-1}$ are distinct. It follows that $h \leq \lambda_d^d$. Notice ⁴²⁵ that if $h = k + 1$ we are done. So, we can assume that $h \leq k$.

⁴²⁶ Let us introduce $J \stackrel{\text{def}}{=} J_{h+1}$. By maximality of h, it follows that J is strictly included in ${4, 27}$ ${1, ..., d}$. We introduce $d' = |J|$. Thanks to a permutation of the components, we can assume without loss of generality that $J = \{1, \ldots, d'\}$. Lemma 12 shows that $\mathbf{c}_h(i) \geq \lambda_{d'+1}$ for every $i \in \{d' + 1, \ldots, d\}$. We let $f: \mathbb{N}^d \mapsto \mathbb{N}^{d'}$ be the function defined by $f(\mathbf{z}) = (\mathbf{z}(1), \ldots, \mathbf{z}(d'))$ for every $\mathbf{z} \in \mathbb{N}^d$. We also introduce the *d*'-dimensional extractor $\lambda' = (\lambda_0 \leq \cdots \leq \lambda_{d'+1})$ and the PN $A' = \{(f(\mathbf{a}_-), f(\mathbf{a}_+)) | (\mathbf{a}_-, \mathbf{a}_+) \in A\}$. Let us introduce the $(A')^*$ -execution $e' = \mathbf{c}'_{h+1} \dots \mathbf{c}'_k$ where $\mathbf{c}'_n \stackrel{\text{def}}{=} f(\mathbf{c}_n)$, and let us introduce the sequence J'_h, \dots, J'_{k+1} defined \mathcal{L}_{n} by $J'_{n} \stackrel{\text{def}}{=} \text{extract}_{\lambda', \mathbf{c}'_{n} \dots \mathbf{c}'_{n-1}}(\{1, \dots, d'\})$ for every $n \in \{h+1, \dots, k+1\}.$

Let us first prove that $J'_n = J_n$ for every $n \in \{h+1, \ldots, k+1\}$. First of all notice ⁴³⁵ that $J'_{h+1} \subseteq J_{h+1}$. Moreover, for every $i \in J_{h+1}$ we have $\mathbf{c}'_h(i) < \lambda'_{|J_{h+1}|}$. Hence J_{h+1} is a J'_{h+1} we get $J_{h+1} \subseteq J'_{h+1}$. Hence $J'_{h+1} = J_{h+1}$. Assume by induction the property true for some $n \in \{h+1,\ldots,k\}$. Since J'_{n+1} is a (λ', J'_n) -⁴³⁸ small set of $\{\mathbf{c}'_n\}$, we deduce that $J'_{n+1} \subseteq J'_n$ and $\mathbf{c}'_n(j) < \lambda'_{|J'_n|}$ for every $j \in J'_n$. As $J'_n = J_n$, as and $\mathbf{c}'_n(j) = \mathbf{c}_n(j)$ for every $j \in \{1, \ldots, d'\}$, we deduce that J'_n is a (λ, J_n) -small set of \mathbf{c}_n . By maximality of J_{n+1} , we get $J'_{n+1} \subseteq J_{n+1}$. Symmetrically, since J_{n+1} is a (λ, J_n) -small set 441 of \mathbf{c}_n , we deduce that $J_{n+1} \subseteq J_n$ and $\mathbf{c}_n(j) < \lambda_{|J_n|}$ for every $j \in J_n$. A $J'_n = J_n$, we deduce that J_n is a (λ', J'_n) -small set of \mathbf{c}'_n . By maximality of J'_{n+1} , we get $J_{n+1} \subseteq J'_{n+1}$. We have 443 proved that $J'_n = J_n$ for every $n \in \{h+1, ..., k+1\}.$

It follows that $J'_{k+1} = J_{k+1} = I$. By induction, there exists a word σ' that can be obtained from e' by removing I -cycles such that

$$
|\sigma'|\leq \sum_{j=1}^{d'}\lambda_j^j
$$

and such that \mathbf{c}'_h σ' **c**' for some configuration **c**' $\in \mathbb{N}^{d'}$ satisfying **c**'(*i*) = **c**_k(*i*) for every *i* ∈ *I* and such that for every *i* ∈ {1, ..., *d'*} \setminus *I* we have:

$$
\mathbf{c}'(i) \geq \lambda_{|I|+1} - m \sum_{j=0}^{|I|} \lambda_j^j
$$

Since σ' can be obtained from e' by removing *I*-cycles, it follow that there exists a word *w* that can be obtained from c_h ... c_k by removing *I*-cycles, and such that σ' is the word ⁴⁴⁶ obtained from *w* by applying the function *f* on each action. Notice that for every prefix *u* of

⁴⁴⁷ *w* and for every $i \in \{d' + 1, \ldots, d\}$ we have:

$$
\mathbf{c}_h(i) + \Delta(u)(i) \geq \lambda_{d'+1} - m|w|
$$

$$
449\\
$$

$$
\geq \lambda_{d'+1} - m \sum_{j=1}^{d'} \lambda_j^j
$$

$$
\geq \lambda_{|I|+1} - m \sum_{j}^{|I|} \lambda_j^j
$$

 $\ddot{\theta}$

j=0

$$
450\n\n451
$$

The last inequality is obtained by induction by observing that λ is *m*-adapted. We deduce that $\mathbf{c}_h(i) + \Delta(u)(i) \geq \lambda_0$ with the same kind of induction. In particular the configuration $\mathbf{c} \in \mathbb{N}^d$ defined by $\mathbf{c}(i) \stackrel{\text{def}}{=} \mathbf{c}'(i)$ if $i \in \{1, ..., d'\}$ and $\mathbf{c}(i) \stackrel{\text{def}}{=} \mathbf{c}_{h+1}(i) + \Delta(w)(i)$ if $i \in \{d' + 1, ..., d\}$ satisfies $\mathbf{c}_h \stackrel{w}{\to} \mathbf{c}$. Notice that $\mathbf{c}(i) = \mathbf{c}_k(i)$ for every $i \in I$, and for every $i \notin I$, we have:

$$
\mathbf{c}(i) \geq \lambda_{|I|+1} - m \sum_{j=0}^{|I|} \lambda_j^j
$$

Let us introduce $\sigma \stackrel{\text{def}}{=} \mathbf{a}_1 \dots \mathbf{a}_h w$ where $\mathbf{a}_n \stackrel{\text{def}}{=} \mathbf{c}_n - \mathbf{c}_{n-1}$ for every $n \in \{1, \dots, h\}$. Observe that $\mathbf{c}_0 \xrightarrow{\sigma} \mathbf{c}$ and moreover we have:

$$
|\sigma| \le h + \sum_{j=1}^{d'} \lambda_j^j \le \sum_{j=1}^d \lambda_j^j
$$

452 We have proved the induction.