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Abstract6

Petri nets are a classical model of concurrency widely used and studied in formal verification with7

many applications in modeling and analyzing hardware and software, data bases, and reactive8

systems. The reachability problem is central since many other problems reduce to reachability9

questions. In 2015, we proved that a variant of the reachability problem, called the reversible10

reachability problem is exponential-space complete. Recently, this problem found several unexpected11

applications in particular in the theory of population protocols. In this paper we propose to revisit12

the reversible reachability problem in order to prove that the minimal distance in the reachability13

graph of two mutually reachable configurations is linear with respect to the Euclidian distance14

between those two configurations.15
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1 Introduction21

Petri nets are a classical model of concurrency widely used and studied in formal verification22

with many applications in modeling and analyzing hardware and software, data bases, and23

reactive systems. The reachability problem is central since many other problems reduce24

to reachability questions. Unfortunately, the reachability problem is difficult for several25

reasons. In fact, from a complexity point of view, we recently proved that the problem is26

non-elementary [6] by observing that the worst case complexity in space is at least a tower27

of exponential with height growing linearly in the dimension of the Petri nets. Moreover,28

even in practice, the reachability problem is difficult. Nowadays, no tool exists for deciding29

that problem since the known algorithms are difficult to be implemented and require many30

enumerations in exponentially large state spaces (see [13] for the state-of-the-art algorithm31

deciding the reachability problem).32

Fortunately, easier natural variants of the reachability problems can be applied in various33

contexts. For instance, the coverability problem which consists in deciding if a configuration34

can be covered by a reachable one can be applied in the analysis of concurrent programs [1]35

(in that context, covered means component-wise smaller than or equal). The coverability36

problem is known to be exponential-space complete [16, 5], and efficient tools exist [4, 8].37

Another variant is the reversible reachability problem. This problem consists in deciding if38

two configurations are mutually reachable one from the other. This problem was proved to39

be exponential-space complete in [11] and find unexpected applications in population proto-40

cols [7], trace logics [12], universality problems related to structural liveness problems [10],41

and in solving the home state problem [2].42

Contribution. The exponential-space complexity lower-bound of the reversible reacha-43
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bility problem proved in [11] is obtained by observing that if two configurations are mutually44

reachable, then the two configurations belong to a cycle of the (infinite) reachability graph45

with a length at most doubly-exponential with respect to the size in binary of the two46

configurations. In this paper, we focus on the minimal length of such a cycle (called the47

distance in the sequel) with respect to the Euclidian distance between those two configu-48

rations. We prove that the distance is linearly bounded by the Euclidian distance up-to a49

doubly-exponential constant that only depends on the Petri net. As a direct consequence, this50

result generalizes [11] and is shows that the distance between two nearby (for the Euclidian51

distance) mutually reachable configurations is small.52

Outline. In Section 2 we introduce our main problem about the distance between53

mutually reachable Petri net configurations and we motivate the problem. In Section 3 we54

present the Petri net with states basically given as a finite state automaton with transitions55

labeled by Petri net actions. We also introduce the subclass of structurally reversible Petri56

nets. Intuitively a Petri net with states is structurally reversible if the effect of every transition57

can be reverted as soon as we execute that transition from a large enough configuration.58

We provide in that section a sufficient condition to decide the reachability problem for59

structurally reversible Petri nets between large configurations. In Section 4 and Section 5,we60

recall some techniques called rackoff extraction to extract from executions or configurations61

components that are “very large” compared to others. Those techniques are applied in62

Section 6 in order to extract from a strongly connected component of the reachability graph63

of a Petri net, a structurally reversible Petri net with states. Intuitively, this Petri net with64

states is obtained by projecting away components that can be large in the considered strongly65

connected component. From that Petri net with states, and thanks to the sufficient condition66

for reachability introduced in Section 3, we proved in Section 7 our main result about the67

distance between mutually reachable configurations.68

In the paper, d is a positive natural number denoting the number of components of69

vectors. Given a vector x in the set of reals Rd, we denote by x(1), . . . ,x(d) its components in70

such a way x = (x(1), . . . ,x(d)). Moreover, we introduce the norms ‖x‖ def=
∑d
i=1 |x(i)| and71

‖x‖∞
def= max1≤i≤d |x(i)|. The set of integers and the set of non-negative natural numbers72

are denoted as N and Z respectively.73

2 Petri Nets74

A Petri net A (PN for short) is a finite set of pairs (a−,a+) in Nd × Nd called actions. In75

the literature, vectors a− and a+ are respectively usually called the pre-condition and the76

post-condition of a. A configuration is a vector in Nd. We associate to an action a = (a−,a+)77

the binary relation a−→ over the configurations defined by x a−→ y if for some configuration c78

we have x = a− + c and y = a+ + c. We denote by A−→ the one-step reachability relation of79

A defined by x A−→ y if there exists an action a in A such that x a−→ y. A PN A defines an80

infinite graph (Nd, A−→) called the reachability graph of A.81

A σ-execution where σ = a1 . . . ak is a word of actions is a non-empty word of configura-
tions e = c0c1 . . . ck such that the following relations hold:

c0
a1−→ c1 · · ·

ak−→ ck

We denote by src(e) and tgt(e) the configurations c0 and ck respectively. An A∗-execution is82

a σ-execution for some word σ over A. An Aω-execution e is an infinite word of configurations83
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such that every finite non-empty prefix is an A∗-execution. We associate to a word σ of actions84

the binary relation σ−→ over the configurations defined by x σ−→ y if there exists a σ-execution85

from x to y. The displacement of a word σ = a1 . . . ak is the vector ∆(σ) def=
∑k
j=1 ∆(aj)86

where ∆(a) def= a+−a− for every action a = (a−,a+). Notice that x σ−→ y implies ∆(σ) = y−x87

but the converse is not true in general. We introduce the reachability relation A∗−−→ defined as88

the union of the relations σ−→ where σ ∈ A∗. Notice that this relation is the reflexive and89

transitive closure of A−→.90

The Petri net reachability problem consists in deciding given a PN A and two configura-91

tions x and y if x A∗−−→ y. In [6], we provided a non-elementary complexity lower-bound for92

the PN reachability problem. Moreover, we prove that for every natural number h, there93

exists a PN Ah such that the reachability problem for that PN is at least h-exponential94

space hard. It means that the minimal length of a word σ ∈ A∗h satisfying x σ−→ y is at least95

(h+ 1)-exponential with respect to ‖x‖+ ‖y‖. This huge lower bound is no longer valid for96

mutually reachable configurations.97

Two configurations x and y are said to be mutually reachable for a PN A if x A∗−−→ y and
y A∗−−→ x. The PN reversible reachability problem consists in deciding given a PN A and two
configurations x and y if they are mutually reachable for A. In [11], we proved that the
PN reversible reachability problem is decidable in exponential-space by proving that there
exists at most doubly-exponential long words σ and w in A∗ such that x σ−→ y and y w−→ x.
This result can be refined by introducing the notion of distance. The distance between two
mutually reachable configurations x and y for a PN A is formally defined as follows:

distA(x,y) def= min
σ,w∈A∗

{|σw| | x σ−→ y w−→ x}

A simple lower bound on the distance can be obtained by observing that configurations along98

an execution are relatively closed one from each other as shown in the proof of the following99

lemma.100

I Lemma 1. Let us consider a PN A ⊆ {0, . . . ,m}d ×{0, . . . ,m}d for some positive natural
number m. For every mutually reachable configurations x and y, we have:

distA(x,y) ≥ ‖y− x‖ 2
dm

Proof. Let σ be a word in A∗ such that x σ−→ y and let us prove that ‖y− x‖ ≤ m|σ|. Assume101

that σ = a1 . . . ak. Since ∆(aj) ∈ {−m, . . . ,m}d, it follows that ∆(σ) ∈ {−mk, . . . ,mk}d.102

In particular ‖∆(σ)‖ ≤ dmk. As ∆(σ) = y − x and k = |σ|, we deduce the relation103

‖y− x‖ ≤ md|σ|. Now, let us consider a word w in A∗ such that y w−→ x and observe that104

we have ‖x− y‖ ≤ dm|w| by symmetry. It follows that |σw| ≥ ‖y− x‖ 2
dm and we have105

proved the lemma. J106

This paper focus on an upper-bound of the form distA(x,y) ≤ fA(‖y− x‖) where fA is a
function that only depends on the PN A and not on the two mutually reachable configurations
x and y. Such a bound cannot be derived from [11]. In fact, the best upper bound that can
be derived from that paper is the following one:

distA(x,y) ≤ 34d2n15dd+2

where n = (1 + 2m)(1 + 2 max{‖x‖, ‖y‖}).107

In this paper we prove that such a function fA exists. Moreover a linear one exists as108

shown by the following theorem.109

CVIT 2016
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I Theorem 2. Let us consider a PN A ⊆ {0, . . . ,m}d×{0, . . . ,m}d for some positive natural
number m. For every mutually reachable configurations x and y, we have:

distA(x,y) ≤ ‖y− x‖cd,m

where:
cd,m ≤ (3dm)(d+1)2d+4

I Remark 3. The previous theorem provides as a corollary a new proof that the reversible110

reachability problem is exponential space. It also provides a bound on the minimal elements111

defining the domain of reversibility (introduced in [11]) of an action a in A defined as112

Da,A
def= {x ∈ Nd | ∃y x a−→ y A∗−−→ x}. In fact, this set is upward closed and if x is a minimal113

element for ≤ in Da,A then the vector y satisfying x a−→ y is such that distA(x,y) ≤ dmcd,m114

since ‖y− x‖ = ‖∆(a)‖ ≤ dm. We deduce that there exists a word σ of actions in A such115

that y σ−→ x with a length bounded by dmcd,m. If a component of x is larger than m|σ|, the116

vector x cannot be minimal since the vector x′ obtained from x by replacing that coordinate117

by m|σ| satisfies x′ a−→ y′ σ−→ x′ where y′ def= x′ + ∆(a). Hence ‖x‖ ≤ dm2cd,m.118

3 Structurally Reversible Petri Nets With States119

A Petri net with states (PNS for short) is a tuple 〈Q,A, T 〉 where Q is a non empty finite120

set of elements called states, A is a Petri net, and T is a set of triples in Q×A×Q called121

transitions. A path π from a state p to a state q labeled by a word σ of actions is a word of122

transitions of the form (q0, a1, q1) . . . (qk−1, ak, qk) for some states q0, . . . , qk satisfying q0 = p123

and qk = q, and for some actions a1, . . . , ak satisfying σ = a1 . . . ak. The displacement of124

π is the vector ∆(π) def= ∆(σ). A path is said to be elementary if qi = qj implies i = j. A125

path such that q0 = qk is called a cycle on q0. A cycle is said to be simple if qi = qj with126

i < j implies i = 0 and j = k. A pair (q,x) in Q× Nd is called a state-configuration and it127

is denoted as q(x) in the sequel. We associate to a path π the binary relation π−→ over the128

state-configurations defined by p(x) π−→ q(y) if π is a path from p to q labeled by a word σ of129

actions such that x σ−→ y.130

A PNS is said to be structurally reversible if for every transition (p, a, q) there exists a131

path π from q to p such that ∆(a) + ∆(π) = 0. Structurally reversible PNSes are such that132

the displacement of any cycle can be canceled by the displacement of another cycle as shown133

by the following lemma.134

I Lemma 4. −∆(θ) is the displacement of a cycle on q for every cycle θ on a state q.135

Proof. Assume that θ = (q0, a1, q1) . . . (qk−1, ak, qk) with q0 = q = qk. Since the PNS136

is structurally reversible, for every j ∈ {1, . . . , k}, there exists a path πj from qj to qj−1137

such that ∆(aj) + ∆(πj) = 0. Now, observe that θ′ def= πk . . . π1 is a cycle on q such that138

∆(θ′) = −∆(θ). J139

A partial configuration is a vector x ∈ NI where I ⊆ {1, . . . , d}. We associate to a140

configuration x ∈ Nd and a set I ⊆ {1, . . . , d} the partial configuration x|I in NI defined by141

x|I(i) = x(i) for every i ∈ I. Given an action a = (a−,a+) of a Petri net, we extend the binary142

relation a−→ over the partial configurations by x a−→ y if x,y are two partial configurations143

in NI such that there exists a partial configuration c ∈ NI satisfying x = a−|I + c and144

y = a+|I + c.145

A flow function is a function F : Q → NI for some subset I ⊆ {1, . . . , d} such that146

F (p) a−→ F (q) for every transition (p, a, q) in T . In this section we prove the following result.147
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I Lemma 5. Let us consider a structurally reversible PNS with at most r states and with148

actions in {0, . . . ,m}d × {0, . . . ,m}d for some positive natural number m, let p(x) and q(y)149

be two state-configurations such that the following conditions hold for some flow function150

F : Q→ NI :151

x|I = F (p) and y|I = F (q),152

x(i),y(i) ≥ mr3(3drm)d for every i 6∈ I, and153

y− x is the sum of the displacement of a path from p to q and a vector in the subgroup154

of (Zd,+) generated by the displacements of the cycles.155

Then p(x) π−→ q(y) for a path π such that |π| ≤ (‖y− x‖+ drm)r3(3drm)2d.156

In this section, we fix such a PNS G. Since G is a disjoint union of strongly connected157

components, we can assume without loss of generality that G is strongly connected. The158

proof of Lemma 5 follows an extended form of the zigzag-freeness approach introduced159

in [14]. Intuitively, we fix an elementary path π0 from p to q, and we prove that there exist a160

sequence θ1, . . . , θk of short cycles on q such that for every n ∈ {0, . . . , k} the displacement161

of ∆(θ1 . . . θn) is almost the vector n−d
k z where z def= y− x−∆(π0). This result is based on162

the following lemma.163

I Lemma 6 ([9]). Let v1, . . . ,vk be a non-empty sequence of vectors in Rd such that
‖vj‖∞ ≤ 1 for every 1 ≤ j ≤ k and let v =

∑k
j=1 vj. There exists a permutation σ of

{1, . . . , k} such that for every n ∈ {d, . . . , k}, we have:

‖
n∑
j=1

vσ(j) −
n− d
k

v‖∞ ≤ d

From the previous lemma we deduce the following two corollaries.164

I Corollary 7. Let Z be a set of vectors in {−m, . . . ,m}d for some positive natural number165

m, and assume that z is a finite sum of vectors in Z. Then z is a finite sum of at most166

(‖z‖+ 1)(3dm)d vectors in Z.167

Proof. By symmetry, we can assume without loss of generality that z ≥ 0. Let k be the168

minimal natural number such that there exists a sequence z1, . . . , zk of vectors in Z such169

that z = z1 + · · ·+ zk. If k = 0 the lemma is proved, so let us assume that k ≥ 1. Observe170

that there exists a sequence e1, . . . , ek of vectors in Nd such that z =
∑k
j=1 ej and such171

that ej(i) ≤ max{0, zj(i)} for every 1 ≤ i ≤ d and every 1 ≤ j ≤ k. We introduce the172

sequence v1, . . . ,vk defined by vj
def= zj − ej . Notice that ‖vj‖∞ ≤ m and

∑k
j=1 vj = 0.173

We introduce xn
def=

∑n
j=1 vj . By applying a permutation, Lemma 6 shows that we can174

assume without loss of generality that xn ∈ X for every 0 ≤ n ≤ k where X is the set175

of vectors x ∈ Zd such that ‖x‖∞ ≤ md. Observe that the cardinal of X is bounded by176

(1+2dm)d ≤ (3dm)d. Now, assume by contradiction that there exists ` ∈ {0, . . . , k−(3dm)d}177

satisfying ej = 0 for every j ∈ {` + 1, . . . , ` + (3dm)d}. Notice that there exists p < q in178

{`, . . . , ` + (3dm)d} such that xp = xq since the cardinal of X is bounded by (3drm)d.179

It follows that
∑q
j=p+1 vj = 0. From ej = 0 for every j ∈ {` + 1, . . . , ` + (3dm)d} it180

follows that vj = zj for every j ∈ {p + 1, . . . , q}. In particular
∑q
j=p+1 zj = 0. Hence k181

is not minimal since we can remove the vectors zp+1, . . . , zq from the sequence z1, . . . , zk,182

and we get a contradiction. It follows that for every ` ∈ {0, . . . , k − (3dm)d} there exists183

j ∈ {` + 1, . . . , ` + (3dm)d} such that ej 6= 0. From ‖z‖ =
∑k
j=1 ‖ej‖, it follows that184

‖z‖ ≥ k
(3dm)d − 1. Hence k ≤ (‖z‖+ 1)(3dm)d. J185

CVIT 2016
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I Corollary 8. Assume that z = z1 + · · ·+ zk where z1, . . . , zk are vectors in {−m, . . . ,m}d
for some positive natural number m ≥ 1. There exists a permutation σ of {1, . . . , k} such
that for every n ∈ {0, . . . , k}, we have:

n∑
j=1

zσ(j)(i) ≥ min{z(i), 0} −md

Proof. If k = 0 the lemma is proved. So, we can assume that k ≥ 1. By applying a186

permutation, Lemma 6 shows that we can assume without loss of generality that for every n ∈187

{0, . . . , k}, there exists a vector en ∈ Rd such that ‖en‖∞ ≤ md and such that xn = n−d
k z+en188

where xn
def=

∑k
j=1 zj . Let i ∈ {1, . . . , d} and let us prove that xn(i) ≥ min{z(i), 0} −md.189

Observe that if n ∈ {0, . . . , d} then the property is immediate since xn(i) ≥ −md. So, let190

us assume that n > d. If z(i) ≥ 0 then n−d
k z(i) ≥ 0 and we get xn(i) ≥ en(i) ≥ −md. If191

z(i) ≤ 0 then n−d
k z(i) ≥ z(i). In particular xn(i) ≥ min{z(i), 0} −md also in that case. J192

A cycle is said to be full-state if every state occurs in the cycle. We first prove that there193

exists a “short” full-state cycle with a zero displacement thanks to the following lemma.194

I Lemma 9. Every transition occurs on a finite sequence θ1, . . . , θn of simple cycles such195

that ∆(θ1) + · · ·+ ∆(θn) = 0 and such that n ≤ (3drm)d196

Proof. Let t be a transition. Since G is strongly connected, the transition t occurs in a
simple cycle θ0. Lemma 4 shows that −∆(θ0) is a finite sum of displacements of simple cycles.
In particular −∆(θ0) is in the cone generated by the displacements of simple cycles. From
Carathéodory theorem, −∆(θ0) is in the cone generated by the displacements of d simple
cycles θ1, . . . , θd. It follows that the following linear system over the sequences (βj)0≤ j≤d of
natural numbers

d∑
j=0

βjvj = 0

admits a solution satisfying β0 > 0 where vj
def= ∆(θj).197

From [15], it follows that solutions of that system can be decomposed as finite sums
of “minimal” solutions (βj)1≤j≤k of the same system satisfying additionally the following
constraint:

d∑
j=0

βj ≤ (1 + (d+ 1)rm)d

From 1 + (d + 1)rm ≤ (3drm), we derive (1 + (d + 1)rm)d ≤ (3drm)d. Since there exist198

solutions of that system with β0 > 0, there exists at least a minimal one satisfying the same199

constraint. We have proved the lemma. J200

I Lemma 10. There exists a full-state cycle with a zero displacement with a length bounded201

by r2(r − 1)(3drm)d.202

Proof. Let us consider the set H of pairs (p, q) ∈ Q×Q such that there exists a transition203

from p to q with p 6= q. For every h ∈ H of the form (p, q), we select a transition th ∈ T from204

p to q. Lemma 9 shows that for every h ∈ H, there exists a sequence of at most (3drm)d205

simple cycles with a zero total displacement. It follows that there exists a sequence of at most206

|H|(3drm)d simple cycles with a zero total displacement that contains all the transitions th207

with h ∈ H. Since the set of transitions that occurs in that sequence is strongly connected,208
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Euler’s Lemma shows that there exists a cycle θ with the same Parikh image as the sum of209

the Parikh images of the cycles occurring in the sequence. It follows that |θ| ≤ r|H|(3rdm)d.210

Notice that ∆(θ) = 0 and θ is a full-state cycle. From |H| ≤ r(r − 1) we are done. J211

Now, let us prove Lemma 5. Let π0 be an elementary path from p to q, and let212

z def= y− x−∆(π0).213

Let us first explain why z is a finite sum of displacements of simple cycles. By hypothesis,214

there exists a path π1 from p to q such that such that y − x − ∆(π1) is in the group215

generated by displacements of cycles. Let π′ be a path from q to p and observe that216

z = (y−x−∆(π1)) + ∆(π′π0)−∆(π′π1). Since π′π0 and π′π1 are two cycles, it follows that217

z is in the group generated by the displacements of the cycles. Lemma 4 shows that z is218

finite sum of displacements of simple cycles.219

Corollary 7 and Corollary 8 shows that there exists a sequence z1, . . . , zk of displacements
of simple cycles such that z =

∑k
j=1 zj , k ≤ (1 + ‖z‖)(3drm)d, and such that for every

n ∈ {0, . . . , k}, we have:
n∑
j=1

zj(i) ≥ min{0, z(i)} − drm

Lemma 10 shows that there exists a full-state cycle θ0 with a zero displacement with a length
bounded by r2(r−1)(3drm)d. Thanks to a rotation of θ0, we can assume that θ0 is a cycle on
q. Now, observe that for every 1 ≤ j ≤ k, there exists a simple cycles θ′j with a displacement
equals to zj . By inserting θ′j in the full-state cycle θ0, we get a cycle θj on q. Notice that
∆(θj) = zj and |θj | ≤ r2(r − 1)(3drm)d + r. We introduce the path π defined as follows:

π
def= π0θ1 . . . θn

We are going to prove that p(x) π−→ q(y). To do so, let u be a prefix of π and let220

i ∈ {1, . . . , d} and let us prove that x(i) + ∆(u)(i) ≥ 0. Observe that if u is a prefix of π0221

the property is immediate since ∆(u)(i) ≥ −m|u| ≥ −mr. In particular x(i) + ∆(u)(i) ≥ 0.222

So, we can assume that there exists n ∈ {1, . . . , k} and a prefix u′ of θn such that u =223

π0θ1 . . . θn−1u
′. It follows that ∆(u) = ∆(π0) + ∆(u′) +

∑n−1
j=1 zj(i). Moreover, notice that224

∆(u′)(i) ≥ −m|u′| ≥ −mr2(r − 1)(3drm)d −mr for every i ∈ {1, . . . , d}.225

We decompose the proof that x(i) + ∆(u)(i) ≥ 0 in two cases following that z(i) ≤ 0 or226

z(i) ≥ 0.227

Assume first that z(i) ≥ 0. In that case
∑n−1
j=1 zj(i) ≥ −md. It follows that ∆(u)(i) ≥228

−mr −mr2(r − 1)(3drm)d −mr ≥ −mr3(3drm)d. Hence x(i) + ∆(u)(i) ≥ 0.229

Now, assume that z(i) ≤ 0. In that case
∑n−1
j=1 zj(i) ≥ z(i) − md. It follows that230

x(i) + ∆(u)(i) ≥ x(i) + ∆(π0) + z(i) + ∆(u′)(i) − drm = y(i) − ∆(u′)(i) − drm ≥231

y(i)−mr2(r − 1)(3drm)d −mr ≥ 0.232

We have proved that p(x) π−→ q(y). Now, observe that |π| ≤ r+k(r2(r−1)(3drm)d+r). From233

k ≤ (1+‖z‖)(3drm)d and ‖z‖ ≤ ‖y− x‖+d(r−1)m, we get |π| ≤ (‖y− x‖+drm)r3(3drm)2d.234

Lemma 5 is proved.235

4 Extractors236

A d-dimensional extractor λ is a non-decreasing sequence (λ0 ≤ · · · ≤ λd+1) of positive237

natural numbers. Given a d-dimensional extractor λ and a set I ⊆ {1, . . . , d}, a (λ, I)-small238

set of a set X ⊆ Nd is a subset J ⊆ I such that x(j) < λ|J| for every j ∈ J and x ∈ X. The239

following lemma shows that there exists a unique maximal for the inclusion (λ, I)-small set.240

We denote by extractλ,X(I) this set.241
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I Lemma 11. The class of (λ, I)-small sets of a set X ⊆ Nd is non empty and stable by242

union.243

Proof. We adapt the proof of [11, Section 8]. Since the class contains the empty set, it is244

nonempty. Now, let us prove the stability by union by considering two (λ, I)-small sets J1245

and J2 of X and let us prove that J def= J1 ∪ J2 is a (λ, I)-small set of X. Since J1, J2 ⊆ I,246

we derive J ⊆ I. Let x ∈ X and j ∈ J . If j ∈ J1 then x(j) < λ|J1| ≤ λ|J| since |J1| ≤ |J |.247

Symmetrically, if j ∈ J2 we deduce that x(j) < λ|J2| ≤ λ|J|. We have proved that J is a248

(λ, I)-small set of X. J249

The following lemma shows that components that are not in extractλ,X(I) are large for250

at least one vector in X.251

I Lemma 12. For every i ∈ I\ extractλ,X(I) there exists x ∈ X such that:

x(i) ≥ λ|I|+1

Proof. Let J def= extractλ,X(I) and assume that for some i ∈ I\J , we have x(i) < λ|J|+1 for252

every x ∈ X. Let J ′ def= J ∪{i} and observe that J ′ is a (λ, I)-small set of X. In fact, for every253

x ∈ X and for every j ∈ J ′, we have x(j) < λ|J| ≤ λ|J′| if j ∈ J , and x(j) < λ|J|+1 = λ|J′| if254

j = i. We get a contradiction by maximality of extractλ,X(I). We deduce the lemma. J255

Given a set I ⊆ {1, . . . , d} we define extractλ,e(I) for a finite word e of configurations by256

extractλ,ε(I) def= I, and by extractλ,ec(I) def= extractλ,{c}(extractλ,e(I)) for every c ∈ Nd and257

for every finite word e of configurations. Given an infinite word e of configurations, we observe258

that (extractλ,en
(I))n∈N where en is the finite prefix of e of length n is a non-increasing259

sequence of sets in {1, . . . , d}. It follows that this sequence is asymptotically constant and260

equals to a set included in {1, . . . , d}. We denote extractλ,e(I) that set. The following lemma261

shows that extracting along a word of configurations in X asymptotically coincides with an262

extraction of X.263

I Lemma 13. Let us consider a set I ⊆ {1, . . . , d}, an extractor λ, a set X of configura-264

tions, and an infinite word e over X. We have extractλ,X(I) ⊆ extractλ,e(I). Moreover,265

extractλ,X(I) = extractλ,e(I) if every configuration of X occurs infinitely often in e.266

Proof. We introduce J def= extractλ,X(I), J∞
def= extractλ,e(I), the prefix en of length n of e,267

and Jn
def= extractλ,en

(I).268

Let us prove that J ⊆ Jn for every n. Since J0 = I the property is proved for n = 0.269

Assume that J ⊆ Jn−1 for some n ≥ 1 and let us prove that J ⊆ Jn. There exists x ∈ X270

such that en = en−1x. Since x ∈ X, it follows that x(j) < λ|J| for every j ∈ J . As J ⊆ Jn−1,271

we deduce that J is a (λ, Jn−1)-small set of {x}. Since Jn is the maximal set satisfying that272

property, we get J ⊆ Jn and we have proved the induction. It follows that J ⊆ Jn for every273

n ∈ N. Moreover, since J∞ =
⋂
n∈N Jn, we deduce the inclusion J ⊆ J∞.274

Now, assume that every x ∈ X occurs in e infinitely often. Since (Jn)n∈N is a non275

increasing sequence of {1, . . . , d}, there exists N such that Jn = J∞ for every n ≥ N . Let276

x ∈ X. There exists n > N such that en = en−1x. From Jn = extractλ,{x}(Jn−1) and277

Jn = Jn−1 = J∞, we derive J∞ = extractλ,{x}(J∞). In particular x(j) < λ|J∞| for every278

j ∈ J∞. We have proved that x(j) < λ|J∞| for every j ∈ J∞ and for every x ∈ X. As279

J∞ ⊆ I, we deduce that J∞ is a (λ, I)-small set of X. Since J is the maximal set satisfying280

that property, we deduce that J∞ ⊆ J . It follows that J = J∞. J281
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5 Rackoff Extraction282

An A∗-execution e is said to be I-cyclic for some I ⊆ {1, . . . , d} if src(e)|I = tgt(e)|I . We say283

that a word σ = a1 . . .ak of actions in A is obtained from an A∗-execution e by removing I-284

cycles where I ⊆ {1, . . . , d}, if there exists a decomposition of e into a concatenation e0 . . . ek285

of I-cyclic A∗-executions e0, . . . , ek such that tgt(ej−1) aj−→ src(ej) for every 1 ≤ j ≤ k.286

An extractor λ = (λ0 ≤ · · · ≤ λd+1) is said to be m-adapted if for every n ∈ {0, . . . , d}:

λn+1 ≥ λn +mλnn

I Lemma 14 (slight extension of [16]). Let λ be an m-adapted extractor and e be an A∗-
execution for a PN A ⊆ {0, . . . ,m}d × Nd. Let I def= extractλ,e({1, . . . , d}). There exists a
word σ that can be obtained from e by removing I-cycles such that

|σ| ≤
d∑
j=1

λjj

and such that src(e) σ−→ c for some configuration c satisfying c(i) = tgt(e)(i) for every i ∈ I,
and such that for every i 6∈ I we have:

c(i) ≥ λ|I|+1 −m
|I|∑
j=1

λjj

Proof. The proof follows a similar approach than the original one from Rackoff [16]. A detail287

proof is given in appendix. J288

6 Strongly-Connected Components of Configurations289

A strongly-connected component of configurations of a PN A (SCCC for short) is a strongly-290

connected component of the reachability graph (Nd, A−→).291

We associate to an extractor λ and a SCCC C of a PN A, a PNS G defined as follows.292

We introduce the set I def= extractλ,C({1, . . . , d}), the set of states Q def= {c|I | c ∈ C} and293

the set of transitions T def= {(x|I , a,y|I) | (x, a,y) ∈ C×A×C ∧ x a−→ y}. Notice that Q is294

finite since it contains at most λ|I||I| elements. In particular T is finite as well. The PNS G is295

defined as the tuple 〈Q,A, T 〉.296

I Lemma 15. The PNS G is structurally reversible.297

Proof. Let (p, a, q) be a transition in T . There exist x,y ∈ C such that x a−→ y and such298

that p = x|I and q = y|I . Moreover since C is a SCCC, there exists a word σ of actions in A299

such that y σ−→ x. We deduce that there exists a path in G from q to p labeled by σ. Notice300

that ∆(a) + ∆(σ) = y− x + x− y = 0. It follows that G is structurally reversible. J301

Let us prove the following technical lemma.302

I Lemma 16. If C is not reduced to a singleton, there exists an Aω-execution e of configu-303

rations in C such that every configuration of C occurs infinitely often in e.304
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Proof. Since C is countable, there exists an infinite sequence (cn)n∈N such that C = {cn | n ∈305

N}. Moreover, by replacing that sequence by the sequence s0, s1, . . . where sn
def= c0, . . . , cn,306

we can assume without loss of generality that every configuration of C occurs infinitely often307

in the sequence (cn)n∈N. Since C is a SCCC, for every positive natural number n, there exists308

an A∗-execution from cn−1 to cn of the form encn. Let us introduce the word e def= e1e2 . . ..309

Notice that since C is not reduced to a singleton, the word e is infinite. Moreover, notice310

that e is an Aω-execution satisfying the lemma. J311

Now, assume that λ is m-adapted for some positive natural number m.312

I Lemma 17. If A ⊆ {0, . . . ,m}d × Nd, for every x ∈ C, there exists a cycle in G on x|I
labeled by a word u such that:

|u| ≤
d∑
j=1

λjj

and a configuration x′ such that x u−→ x′, x′|I = x|I and such that x′(i) ≥ λ|I|+1−m
∑|I|
j=1 λ

j
j313

for every i 6∈ I.314

Proof. Observe that if C is reduced to a singleton, the lemma is trivial with u def= ε. So, we
can assume that C is not a singleton. Lemma 16 shows that there exists an Aω-execution
e = c0c1 . . . of configurations in C such that every configuration of C occurs infinitely
often. Without loss of generality, by replacing e by a suffix of e we can assume that x = c0.
Lemma 13 shows that extractλ,e({1, . . . , d}) = I. It follows that there exists N ∈ N such
that for every n ≥ N the prefix en of e of length n satisfies extractλ,en

({1, . . . , d}) = I. Since
x occurs infinitely often in e, there exists n ≥ N such that x is the last configuration of
en. Lemma 14 shows that there exists a word u that can be obtained from en by removing
I-cycles such that

|u| ≤
d∑
j=1

λjj

and such that x u−→ x′ for some configuration x′ satisfying x′|I = x|I , and such that for every
i 6∈ I we have:

x′(i) ≥ λ|I|+1 −m
|I|∑
j=1

λjj

Since u can be obtained from en by removing I-cycles, it follows that u is the label of a cycle315

on x|I in the PNS G. J316

Symmetrically, we deduce a similar backward property.317

I Lemma 18. If A ⊆ Nd × {0, . . . ,m}d, for every y ∈ C, there exists a cycle in G on y|I
labeled by a word v such that:

|v| ≤
d∑
j=1

λjj

and a configuration y′ such that y′ v−→ y, y′|I = y|I , and such that for every i 6∈ I:318

y′(i) ≥ λ|I|+1 −m
∑|I|
j=1 λ

j
j.319
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Proof. Let us introduce the PN A′
def= {(a+,a−) | (a−,a+) ∈ A}. Observe that C is a SCCC

of A′. Let G′ be the PNS associated to the extractor λ and the SCCC C of A′. Lemma 19
shows that there exists a cycle in G′ on y|I labeled by a word u such that:

|u| ≤
d∑
j=1

λjj

and a configuration y′ such that y u−→ y′, y|I = y′|I , and such that y′(i) ≥ λ|I|+1−m
∑|I|
j=1 λ

j
j320

for every i 6∈ I. Assume that u = a′1 . . . a
′
n with a′j = (xj ,yj) and let v def= a1 . . . an with321

aj
def= (yj ,xj). Observe that since u is a cycle on y|I in G′, then v is a cycle on y|I in G.322

Moreover, from y u−→ y′ we derive y′ v−→ y. We have proved the lemma. J323

7 Mutually Reachable Configurations324

In this section, we prove Theorem 2. We consider a PN A ⊆ {0, . . . ,m}d × {0, . . . ,m}d for325

some positive natural number m. We consider two mutually reachable configurations x,y326

for A. Since the theorem is trivial when x = y, we can assume that x 6= y. In particular327

‖y− x‖ ≥ 1.328

We let C be the SCCC of A containing x and y. We introduce the extractor λ satisfying
λ0 = 1, and for every n ∈ {0, . . . , d}:

λn+1
def= m

n∑
j=1

λjj +mλ3n
n (3dλnnm)d

Observe that λ is m-adapted. We introduce I def= extractλ,C({1, . . . , d}) and the structurally329

reversible PNS G associated to C, λ and A. Notice that the number of states of G is bounded330

by r def= λ
|I|
|I|. We introduce the states p, q of G defined as p def= x|I and q

def= y|I . Observe331

that y− x is the displacement of a path from p to q in G. We introduce the flow function332

F : Q→ NI defined as the identity.333

Let us observe that λj ≤ λd for every j ∈ {1, . . . , d}. In particular r ≤ λdd.334

I Lemma 19. The PNS G admits a cycle on p labeled by a word u and a cycle on q labeled
by a word v such that:

|u|, |v| ≤ dλdd
and such that there exist configurations x′,y′ such that x u−→ x′, y′ v−→ y, and such that for
every i 6∈ I, we have:

x′(i),y′(i) ≥ mr3(3drm)d

Proof. This lemma is a direct corollary of Lemma 17 and Lemma 18. J335

From y′ − x′ = y − x − ∆(u) − ∆(v), we deduce from Lemma 5 that there exists a336

word σ of actions in A such that x′ σ−→ y′ and such that |σ| ≤ (‖y′ − x′‖+ drm)r3(3drm)2d.337

Observe that we have:338

‖y′ − x′‖ ≤ ‖y− x‖+ ‖∆(u)‖+ ‖∆(v)‖339

≤ ‖y− x‖+ dm(|u|+ |v|)340

≤ ‖y− x‖+ 2d2mλdd341
342
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Let w = uσv. Observe that x w−→ y. We derive:343

|w| ≤ 2dλdd + (‖y− x‖+ 2dλddm+ dλddm)λ3d
d (3dλddm)2d

344

≤ ‖y− x‖8dλddmλ3d
d (3dλddm)2d

345

≤ 1
2‖y− x‖(3dλddm)6d

346

347
348

From the following Lemma 20 we derive:

|w| ≤ 1
2‖y− x‖(3dm)(d+1)2d+4

We deduce Theorem 2.349

I Lemma 20. We have:
(3dλddm)6d ≤ (3dm)(d+1)2d+4

Proof. Assume first that d = 1. In that case, the definiton of λn+1 with n = 0 provides350

λ1 = 3m2 and the lemma is immediate. So, let us assume that d ≥ 2. Notice that λjj ≤ λnn351

for every j ∈ {1, . . . , n} for every n ∈ {0, . . . , d− 1}. It follows that we have:352

λn+1 ≤ 2dλ3n
n m(3dλnnm)d353

≤ (3dλnm)(d+1)2−4
354
355

By induction, we deduce that for every n ∈ {0, . . . , d}, we have:

λn ≤ (3dm)n((d+1)2−4)n

In particular:
3dλddm ≤ (3dm)d

2(d+1)2d

Hence
(3dλddm)6d ≤ (3dm)6d3(d+1)2d

≤ (3dm)(d+1)2d+4

where we use the inequality 6d3 ≤ (d+ 1)4. J356

8 Conclusion357

In this paper we proved that the distance in the reachability graph between two mutually358

reachable configurations is linear with respect to the Euclidian distance between those two359

configurations. As a future work, we would like to apply that result to provide lower bounds360

on the number of states of population protocols computing some predicates [3].361

The author thanks Alain Finkel, Igor Khmelnitsky, and Serge Haddad for promoting him362

a Karp and Miller problem that motivated this work, and Matthias Englert and Ranko Lazic363

for pointing out the Steinitz constant lemma [9].364
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A Proof of Lemma 14415

Proof. The proof of this lemma in inspired by [16]. We prove the lemma by induction over d.416

Naturally, if d = 0 the lemma is immediate. Assume the lemma proved for every dimension417

strictly smaller than d ≥ 1 and let us consider an m-adapted extractor λ = (λ0 ≤ · · · ≤418

λd+1) and an A∗-execution e = c0 . . . ck for a PN A ⊆ {0, . . . ,m}d × Nd. We introduce419

Jn
def= extractλ,c0...cn−1({1, . . . , d}) for every n ∈ {0, . . . , k + 1}. Since J0 = {1, . . . , d}, there420

exists a maximal h ∈ {0, . . . , k + 1} such that Jh = {1, . . . , d}. For every 0 ≤ n < h,421

since Jn = {1, . . . , d}, we deduce that cn ∈ {0, . . . , λd − 1}d. It follows that the cardinal of422

{cn | 0 ≤ n < h} is bounded by λdd. Without loss of generality, by removing cycles from the423

A∗-execution e, we can assume that c0, . . . , ch−1 are distinct. It follows that h ≤ λdd. Notice424

that if h = k + 1 we are done. So, we can assume that h ≤ k.425

Let us introduce J def= Jh+1. By maximality of h, it follows that J is strictly included in426

{1, . . . , d}. We introduce d′ = |J |. Thanks to a permutation of the components, we can assume427

without loss of generality that J = {1, . . . , d′}. Lemma 12 shows that ch(i) ≥ λd′+1 for every428

i ∈ {d′ + 1, . . . , d}. We let f : Nd 7→ Nd′ be the function defined by f(z) = (z(1), . . . , z(d′))429

for every z ∈ Nd. We also introduce the d′-dimensional extractor λ′ = (λ0 ≤ · · · ≤ λd′+1)430

and the PN A′ = {(f(a−), f(a+)) | (a−,a+) ∈ A}. Let us introduce the (A′)∗-execution431

e′ = c′h+1 . . . c′k where c′n
def= f(cn), and let us introduce the sequence J ′h, . . . , J ′k+1 defined432

by J ′n
def= extractλ′,c′

h
...c′

n−1
({1, . . . , d′}) for every n ∈ {h+ 1, . . . , k + 1}.433

Let us first prove that J ′n = Jn for every n ∈ {h + 1, . . . , k + 1}. First of all notice434

that J ′h+1 ⊆ Jh+1. Moreover, for every i ∈ Jh+1 we have c′h(i) < λ′|Jh+1|. Hence Jh+1 is a435

(λ′, J ′h+1)-small set of {c′h}. By maximality of J ′h+1 we get Jh+1 ⊆ J ′h+1. Hence J ′h+1 = Jh+1.436

Assume by induction the property true for some n ∈ {h+ 1, . . . , k}. Since J ′n+1 is a (λ′, J ′n)-437

small set of {c′n}, we deduce that J ′n+1 ⊆ J ′n and c′n(j) < λ′|J′n|
for every j ∈ J ′n. As J ′n = Jn,438

and c′n(j) = cn(j) for every j ∈ {1, . . . , d′}, we deduce that J ′n is a (λ, Jn)-small set of cn.439

By maximality of Jn+1, we get J ′n+1 ⊆ Jn+1. Symmetrically, since Jn+1 is a (λ, Jn)-small set440

of cn, we deduce that Jn+1 ⊆ Jn and cn(j) < λ|Jn| for every j ∈ Jn. A J ′n = Jn, we deduce441

that Jn is a (λ′, J ′n)-small set of c′n. By maximality of J ′n+1, we get Jn+1 ⊆ J ′n+1. We have442

proved that J ′n = Jn for every n ∈ {h+ 1, . . . , k + 1}.443

It follows that J ′k+1 = Jk+1 = I. By induction, there exists a word σ′ that can be
obtained from e′ by removing I-cycles such that

|σ′| ≤
d′∑
j=1

λjj

and such that c′h
σ′−→ c′ for some configuration c′ ∈ Nd′ satisfying c′(i) = c′k(i) for every

i ∈ I and such that for every i ∈ {1, . . . , d′}\I we have:

c′(i) ≥ λ|I|+1 −m
|I|∑
j=0

λjj

Since σ′ can be obtained from e′ by removing I-cycles, it follow that there exists a word444

w that can be obtained from ch . . . ck by removing I-cycles, and such that σ′ is the word445

obtained from w by applying the function f on each action. Notice that for every prefix u of446
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w and for every i ∈ {d′ + 1, . . . , d} we have:447

ch(i) + ∆(u)(i) ≥ λd′+1 −m|w|448

≥ λd′+1 −m
d′∑
j=1

λjj449

≥ λ|I|+1 −m
|I|∑
j=0

λjj450

451

The last inequality is obtained by induction by observing that λ ism-adapted. We deduce that
ch(i) + ∆(u)(i) ≥ λ0 with the same kind of induction. In particular the configuration c ∈ Nd
defined by c(i) def= c′(i) if i ∈ {1, . . . , d′} and c(i) def= ch+1(i) + ∆(w)(i) if i ∈ {d′ + 1, . . . , d}
satisfies ch

w−→ c. Notice that c(i) = ck(i) for every i ∈ I, and for every i 6∈ I, we have:

c(i) ≥ λ|I|+1 −m
|I|∑
j=0

λjj

Let us introduce σ def= a1 . . .ahw where an
def= cn − cn−1 for every n ∈ {1, . . . , h}. Observe

that c0
σ−→ c and moreover we have:

|σ| ≤ h+
d′∑
j=1

λjj ≤
d∑
j=1

λjj

We have proved the induction. J452
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