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∗∗ LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
(e-mail: tarbour@laas.fr)

Abstract: This paper deals with a controlled beam equation for which the input is subject to
magnitude saturation. The partial differential equation describes the dynamics of the deflection
of the beam with respect to the rest position. The input is the voltage applied on an actuator
located in a given interval of the space domain. Two kinds of control are considered: a static
output feedback law and a dynamical output feedback control law. In both cases, the saturated
control is indeed applied to the beam equation. By closing the loop with such a nonlinear
control, it is thus obtained a nonlinear partial differential equation, which is the generalization
of the classical beam equation. The well-posedness is proven by using nonlinear semigroups
techniques. Considering a generalized sector condition to tackle the control nonlinearity, the
semi-global asymptotic stabilization system is proven by Lyapunov-based arguments.

Keywords: infinite-dimensional systems, saturation, well-posedness, semi-global asymptotic
stability, output feedback control, Lyapunov function

1. INTRODUCTION

Many mechanical systems should be modeled by partial
differential equation providing the possibility to measure
and to control all modes of the dynamic, e.g., all modes
for flexible structure (see e.g., Géradin and Rixen (2014)).
For many application, smart sensors and actuators equip
the flexible structures as for the control of vibration of ski
materials (Lind and Sanders (2013)) or of tennis rackets
(Moheimani and Fleming (2006)). Many of these devices
are equipped with piezoelectric sensors and actuators that
allow to measure and to control the vibration.

The goal of this paper is to consider the beam equation.
This is a partial differential differential equation describ-
ing the evolution of the deflection of a 1D beam that is
attached on one extremity and free at the other one. This
beam is assumed to be equipped with collocated piezo-
electric sensor and actuator, as considered in Halim and
Moheimani (2002); Meirovitch (1975). This kind of smart
inputs may be subject to amplitude saturations, so that,
when closing the loop with an output feedback law, it asks
to study a nonlinear infinite-dimensional system. Omitting
the saturation map in the study of the closed-loop system
properties may be very restrictive since it is known, even
for finite-dimensional systems, that the saturation maps
are nonlinearities that may introduce limit cycles, new
equilibrium points and performance degradations (see e.g.,
Tarbouriech et al. (2011); Zaccarian and Teel (2011) for
recent textbooks on this subject and how to improve the
performance of saturating finite-dimensional systems).

This paper studies the stabilization of the beam equa-
tion, in closed loop with two classes of output feedback
laws: static and dynamic ones. The tuning gains are de-

signed and the obtained controllers yield an asymptotic
stability property that differs for each class of controllers:
first a global asymptotic stability is obtained for the
system in closed loop with the saturating static con-
trollers, and then a semi-global asymptotic stabilization
can be reached when designing saturating dynamic con-
trollers. For both cases, the well-posedness of the infinite-
dimensional Cauchy problem is proven using abstract the-
ory of systems.

To the best of our knowledge this paper is the first
work dealing with saturating controllers for the beam
equation. Many works are related to this study, as Prieur
et al. (2016) where similar results are obtained for the
wave equation in presence of saturation nonlinearities
for bounded and unbounded control operators. See also
Alabau-Boussouira (2002); Haraux (1986); Marx et al.
(2018); Lasiecka and Seidman (2003) for close results
exploiting Lyapunov techniques and dissipative properties
mainly for the wave equation. Moreover, consider Marx
et al. (2017) for a study on the Korteweg-de Vries equation,
that is a nonlinear partial differential equation controlled
by a saturating controller.

In this paper, two approaches are developed for the well-
posedness and the stability proofs. First the abstract
theory of nonlinear semigroups is used for the closed-
loop systems (see in particular Miyadera (1992)), and then
Lyapunov techniques are used (as in Karafyllis and Krstic
(2019); Bastin and Coron (2016); Bribiesca Argomedo
et al. (2012) to cite just a few references). When designing
controllers, only weak Lyapunov functions are designed so
that it is necessary to apply a LaSalle invariance principe
in the considered infinite-dimensional setting (see Slemrod
(1989); Luo et al. (1999) for an introduction of this LaSalle



invariance principle for infinite dimensional dynamical
systems).

Due to space limitation, some proofs are omitted. They
will be in the journal version of this conference paper and
can be reached here:

http://www.gipsa-lab.grenoble-inp.fr/~christophe.
prieur/NOLCOS19_complete.pdf

This paper is organized as follows. First the partial differ-
ential equation of the beam is introduced and some prelim-
inary computations are done in Section 2. Then saturating
output feedback laws are introduced, and static controllers
are designed in Section 3. Dynamic controllers are then
considered in Section 4. In these two sections, the well-
posedness and the asymptotic stability are established (in
a different sense). Some concluding remarks are collected
in Section 5.

2. PRELIMINARIES

In this section, we recall some ingredients on the asymp-
totic stability of the beam equation through a linear static
output feedback law.

We are first interested in the following partial differential
equation, for all 0 < x < π and for all t ≥ 0

wtt(x, t) + wxxxx(x, t) = u(t)
d

dx
[δη(x)− δξ(x)] , (1)

w(0, t) = wx(0, t) = wxx(π, t) = wxxx(π, t) = 0 , (2)

w(x, 0) = w0(x), wt(x, 0) = w1(x) , (3)

where w(x, t) is the deflection of the beam with respect to
the rest position, at point x in [0, π] and at time t, u(t) is
the voltage applied on a actuator located on the interval
[η, ξ]. See Halim and Moheimani (2002); Meirovitch (1975)
for this model involving the two Dirac functions δη and δξ
respectively at η and δ. In (2) the boundary equations
come from the assumption that the beam is clamped at
the end x = 0 and free at the other extremity. In (3),
the initial conditions depend on the initial deflection and
initial speed deflection. See Figure 1 for an illustration of
the considered beam.

Assume that a collocated piezoelectric sensor is attached
to the beam, so that not all the deflection is known but
only the following output is measured, for all t ≥ 0,

y = wxt(η, t)− wxt(ξ, t) . (4)

x = 0 x = π

η

ξ
w(x, t)

Fig. 1. A clamped-free beam subject to a piezoelectric
actuator

The energy is defined as follows:

E(w) =
1

2

∫ π

0

(w2
xx + w2

t ) dx . (5)

An informal computation along the solutions to (1)-(3)
gives 1

Ė(w) =

∫ π

0

(wxxwxxt + wt(−wxxxx + u(t)
d

dx
[δη(x)

−δξ(x)])) dx

=

∫ π

0

(wxxwxxt − wxxtwxx) dx

−[wtwxxx]π0 + [wxtwxx]π0

−u(t)

∫ π

0

wxt[δη(x)− δξ(x)] dx

+u(t)[wt(δη(x)− δξ(x))]π0
= −u(t)(wxt(η)− wxt(ξ))

where the PDE (1) has been used to get the first equation
and two integrations by parts have been used for the
second equation with the boundary conditions (2) and the
definitions of the Dirac function δη and δξ have been used
for the third equation.

This computation leads to let

u(t) := k(wxt(η)− wxt(ξ))
where k > 0 is a tuning parameter. Recalling (4), the
previous controller is a linear output feedback law, so that
along the solutions to the closed-loop system

wtt(x, t) + wxxxx(x, t) =

k(wxt(η)− wxt(ξ))
d

dx
[δη(x)− δξ(x)], (6)

w(0, t) = wx(0, t) = wxx(π, t) = wxxx(π, t) = 0, (7)

w(x, 0) = w0(x), wt(x, 0) = w1(x), (8)

we have
Ė = −k(wxt(η)− wxt(ξ))2 .

Summing up, we have the stability property of the system
(6)-(8) for any non-critical points (η, ξ). To understand
what are critical points, it is necessary to recall some useful
facts about the free evolution of (1)-(3) (i.e., when k = 0),
as described in Crépeau and Prieur (2006). To do that we
consider the homogeneous Cauchy problem

φtt + φxxxx = 0, (9)

φ(0, t) = φx(0, t) = φxx(π, t) = φxxx(π, t) = 0, (10)

φ(., 0) = φ0, φt(., 0) = φ1. (11)

Let A0 : D(A) → L2(0, π) be the (open-loop, linear)
operator with domain

D(A0) := {φ ∈ H4(0, π); φ(0) = φx(0) =

φxx(π) = φxxx(π) = 0}
and defined by A0φ = φxxxx. Define the set V = {w ∈
H2(0, π), w(0) = w′(0) = 0} with the hermitian product

〈w1, w2〉V =
∫ π
0
w′′1w

′′
2dx and the set H = V × L2(0, π).

The operator A−10 is compact and symmetric on H, hence
there exists a countable orthonormal basis of H consisting
of eigenvectors of A−10 . The following result (Crépeau and
Prieur, 2006, Lemma 2.1) provides useful results about the
eigenvectors of A0.

Proposition 1. The L2(0, π)-normalized eigenfunctions
of A0 are the functions (ψn)n≥1, defined by

1 See Le Gall et al. (2007) for the proof that this computation makes
sense along appropriate solutions.



ψn(x) = γn
(

cos(αnx)− cosh(αnx)

+ µn(sinh(αnx)− sin(αnx))
)
, (12)

where αn is the n-th positive root of

1 + cos(αnπ) cosh(αnπ) = 0, (13)

and

µn =
cos(αnπ) + cosh(αnπ)

sin(αnπ) + sinh(αnπ)
,

γn =
1√
π
,

We are now in position to define the critical set. To do
that let L = ξ − π be the length of the actuator/sensor.
For any n ≥ 1 and any L ∈ (0, π], let

Sn(L) := {η ∈ [0, π − L], ψ′n(η)− ψ′n(η + L) = 0}, (14)

and set

S(L) := ∪n≥1Sn(L).

The asymptotic stability for the PDE (1) with the bound-
ary conditions (2) is proven in Le Gall et al. (2007) and is
recalled here:

Proposition 2. (Le Gall et al. (2007)) The system (1)-
(2) is asymptotically stable in H if and only if k > 0 and
η 6∈ S(L).

3. A SATURATING STATIC OUTPUT FEEDBACK
LAW

3.1 Problem statement and preliminary computations

In this section, we consider the case where the input in (1)
may be subject to saturations. To be specific, consider the
following output (4) and the controlled PDE

wtt(x, t) + wxxxx(x, t) = sat(u(t))
d

dx
[δη(x)− δξ(x)], (15)

with the boundary conditions (2) and the initial conditions
(3).

A formal computation along the solutions to (15), (2) and
(3) yields

Ė(w) = −sat(u(t))(wxt(η)− wxt(ξ)) .
Letting, as for the linear case, u(t) = k(wxt(η) − wxt(ξ))
for any positive tuning parameter k, we get

Ė(w) = −sat(k(wxt(η)− wxt(ξ)))(wxt(η)− wxt(ξ))
(16)

and since sat(s)s ≥ 0 for any s ∈ R, we have the stability
property.

The problem under consideration in this section is to prove
the asymptotic stability by being more formal (by stating
first a well-posedness result and then the asymptotic
stability of the closed-loop system). To do that we first
introduce the nonlinear operator defining the PDE (15)
with the boundary conditions (2).

To specify this operator, let us adapt some computations
of Le Gall et al. (2007) and we have to see for which
function w the right-hand side of (15) belongs to L2(0, π).
Let us recall some notations of Le Gall et al. (2007). If w

is any function in H1(0, η)∩H1(η, ξ)∩H1(ξ, π), we define
{wx} ∈ L2(0, π) by

{wx}(x) :=


wD

′(0,η)
x (x) if x ∈ (0, η),

wD
′(η,ξ)

x (x) if x ∈ (η, ξ),

wD
′(ξ,π)

x (x) if x ∈ (ξ, π).

We set also [w]η := w(η+) − w(η−), and [w]ξ := w(ξ+) −
w(ξ−). Then it follows that

wx = {wx}+ [w]ηδη + [w]ξδξ in D′(0, π).

Assume now that w ∈ H2(0, π) and that v ∈ H2(0, π),
and define $ ∈ D′(0, π) by $ := −wxxxx + sat(k(vx(η)−
vx(ξ))) d

dx (δη − δξ). If $ ∈ L2(0, π), then the restriction of
u to each of the intervals (0, η), (η, ξ) and (ξ, π) has also
to be a square integrable function. The same conclusion
holds for wxxxx, hence w ∈ H4(0, η)∩H4(η, ξ)∩H4(ξ, π).
We may then compute the first space-derivatives of w and
then $. We obtain

wx = {wx}+ [w]ηδη + [w]ξδξ = {wx}
wxx = {wxx}+ [wx]ηδη + [wx]ξδξ = {wxx},
wxxx = {wxxx}+ [wxx]ηδη + [wxx]ξδξ,

wxxxx = {wxxxx}+ [wxxx]ηδη + [wxxx]ξδξ + [wxx]η
d

dx
δη

+[wxx]ξ
d

dx
δξ, (17)

and

$ = −{wxxxx} − [wxxx]ηδη − [wxxx]ξδx − [wxx]η
d

dx
δη

−[wxx]ξ
d

dx
δξ + sat(k(vx(η)− vx(ξ)))

d

dx
(δη − δξ).

Then $ is in L2(0, π) provided that all the coefficients in
front of the Dirac masses vanish, i.e.

[wxx]η = sat(k(vx(η)− vx(ξ))) = −[wxx]ξ
and

[wxxx]η = [wxxx]ξ = 0.
We are now in a position to define the operator associated
to the PDE (15) with the boundary conditions (2). If we
introduce v := wt and define the operator A with domain

D(A) = { z = (w, v) , (w, v) ∈ H2(0, π)2,

w ∈ H4(0, η) ∩H4(η, ξ) ∩H4(ξ, π),

w(0) = wx(0) = wxx(π) = wxxx(π) = 0,

v(0) = vx(0) = 0,

[wxx]η = sat(k(vx(η)− vx(ξ))) = − [wxx]ξ ,

[wxxx]η = [wxxx]ξ = 0
}

and defined by

Az =

(
v,−wxxxx + sat(k(vx(η)− vx(ξ)))

d

dx
(δη − δξ)

)
= (v,−{wxxxx}) ,

then the PDE (15) with the boundary conditions (2) may
be seen as the initial value problem for the following
abstract first-order evolution equation in H{

dz

dt
= Az, t > 0

z(0) = z0.
(18)



First let us prove the well-posedness of this Cauchy prob-
lem, and then prove the asymptotic stability. This is done
successively in the next two subsections.

3.2 Well-posedness of (18)

To prove the well-posedness of the Cauchy Problem (18),
we follow the steps of Prieur et al. (2016) and we prove
successively that 1) A is closed; 2) A is dissipative; 3) A
satisfies a range condition.

Let us prove these properties successively.

Lemma 1. The operator A is closed.

Proof. To do that, let us pick a sequence (wn, vn)n∈N that
converges to (w, v) in D(A), and such that the sequence
(A(wn, vn)>)n∈N converges to (yw, yv) in H. Then we need
to prove that A(w, v)> = (yw, yv) in H. By definition of A,
the first line of A(wn, vn) is vn and it converges to v. Thus
v = yw in V. To prove that −{wxxxx} = yv in L2(0, π),
we prove that, for all f in C∞0 (0, π), 〈−{wxxxx}, f〉L2 =
〈yv, f〉L2 , in other words, we need to prove that∫ π

0

(
− wxxfxx + sat(k(vx(η)− vx(ξ)))(fx(η)− fx(ξ))

)
dx

=

∫ π

0

yvfdx .

(19)
Since (wn, vn)n∈N tends to (w, v) in H2(0, π)2, then
(wkxx)k∈N tends to w in L2(0, π) and (sat(k(vnx(η) −
vnx(ξ))n∈N tends to sat(k(vx(η) − vx(ξ)) in R. Therefore
(19) holds. This completes the proof of Lemma 1. 2

Lemma 2. For any z = (w, v) ∈ D(A) we have that

〈Az, z〉H = 2i Im(

∫ π

0

vxxwxx dx)

−sat(k(vx(η)− vx(ξ))(k(vx(η)− vx(ξ)).

In particular, if k ≥ 0 Re 〈Az, z〉H ≤ 0, i.e. A is
dissipative.

Proof. Pick any pair of functions (w, v) ∈ H. Then

〈A(w, v), (w, v)〉H =

∫ π

0

vxxwxx dx−
∫ π

0

{wxxxx}v dx.

After some integrations by parts on the intervals (0, η),
(η, ξ), (ξ, π), we obtain that

−
∫ π

0

{wxxxx}v

= −
∫ η

0

{wxxxx}v −
∫ ξ

η

{wxxxx}v −
∫ π

ξ

{wxxxx}v

= −
∫ π

0

wxxvxx dx+ [wxxvx]ηx=0 + [wxxvx]ξx=η

+[wxxvx]πx=ξ

= −
∫ π

0

wxxvxx dx− [wxx]ηvx(η)− [wxx]ξvx(ξ).

Hence

〈A(w, v), (w, v)〉H

=

∫ π

0

(vxxwxx−wxxvxx) dx−[wxx]ηvx(η)−[wxx]ξvx(ξ) .

Using the domain of A, this completes the proof of
Lemma 2. 2

Lemma 3. The following range condition holds

D(A) ⊂ Ran(I − λA)

for all λ > 0 sufficiently small, where Ran(I − λA) is the
range of the operator I − λA.

Proof. To prove this range condition, let us pick (w, v) in
D(A) and prove that there exists (w̃, ṽ) in D(A) such that

(I − λA)(w̃, ṽ) = (w, v) .

This latter equation is equivalent to ṽ = w and ṽ −
λ{w̃xxxx} = v, which is equivalent to find w̃ in H2(0, π)
such that w̃xxxx = 1

λ (w−v)+sat(k(wx(η)−wx(ξ))) d
dx (δη−

δξ) in the distribution sense. It is possible to find such a
function in H2(0, π) satisfying also the boundary condi-
tions so that (w̃, ṽ) is in D(A). This concludes the proof
of Lemma 3. 2

Since A is dissipative (due to Lemma 2), it follows,
from (Miyadera, 1992, Thm 4.2), that A generates a
semigroup of contractions T (t). Moreover, by (Miyadera,
1992, Thm 4.5), for all (w0, v0)> in D(A), T (t)(w0, v0)> is
differentiable for t > 0 and is a solution to the Cauchy
Problem (18). Moreover due to (Miyadera, 1992, Thm
4.10), it is the unique solution to this Cauchy problem.
This constitues the proof of the following theorem.

Theorem 1. If k ≥ 0, then, for all z0 in D(A), the
Cauchy Problem (18) is well-posed.

3.3 Asymptotic stability of (18)

In this section, we prove the global asymptotic stability.
First we consider a Lyapunov function candidate and then
we apply the LaSalle invariance principle.

Let us consider E defined by (5). Due to Theorem 1,
for all z0 in D(A), the formal computation (16) makes
sense, along the solutions to (18) and we have the stability
property. The global asymptotic stability is the aim of the
second main result of this paper:

Theorem 2. The system (18) is globally asymptotically
stable, that is, for all initial conditions z0 in D(A), the
solution to (18) satisfies, the following stability property
∀t ≥ 0,

‖w(., t)‖H2(0,π) + ‖v(., t)‖L2(0,π)

≤ ‖w0‖H2(0,π) + ‖w1‖L2(0,π) ,

together with the attractivity property

‖w(., t)‖H2(0,π) + ‖v(., t)‖L2(0,π) → 0, as t→∞ ,

if and only if k > 0 and η 6∈ S(L).

Proof. The proof of the only if part follows from the proof
of (Le Gall et al., 2007, Theorem 2), and is skipped from
this conference paper.

Let us focus on the sufficient part of the proof, that
is assume that k > 0 and η 6∈ S(L). To prove the
global asymptotic stability, we use the LaSalle invariance
principle. To do that we first note that the canonical
embedding from D(A) to H is compact.

The graph norm is defined as, for all (w, v) in D(A),

‖(w, v)‖2D(A) = ‖(w, v)‖2D(Al)

∫ 1

0

vxxvxxdx+

∫ 1

0

{wxxxx}2dx



Due to Le Gall et al. (2007), the inclusion of D(Al) is also
compact (where Al is the linear operator corresponding
to the dynamics without saturation), we get that the
canonical embedding from D(A) to H is also compact. We
obtain that the set orb(w0, w1) := {(w(t), v(t))| t ≥ 0}} is
precompact in H for any (w0, w1) ∈ D(A). Therefore, the
ω−limit set of (w0, w1), defined as

ω(w0, w1) = {z ∈ H,∃(tn)→∞,
lim
n→∞

S(tn)(w0, w1) = z},

is nonempty. On the other hand, according to LaSalle’s in-
variance principle (see Slemrod (1989)), for any (φ0, φ1) ∈
ω(w0, w1), we have that S(t)(φ0, φ1) = (φ(t), φt(t)) ∈
ω(w0, w1) and E(φ(t), φt(t)) = E(φ0, φ1). The above rela-
tion and (16) imply that φ is a solution of the homogeneous
Cauchy Problem (9)-(11) and fulfills

φxt(η, t)− φxt(ξ, t) = 0 ∀t ≥ 0.

The rest of the proof follows the proof of Theorem 2 in
Le Gall et al. (2007). Let us recall it, just for a seek of
completeness. It is easily seen that if φ0 =

∑
k≥1 φ

0
kψk,

and φ1 =
∑
k≥1 φ

1
kψk, then the solution φ = φ(x, t) to

(9)-(11) reads

φ(x, t) =

+∞∑
k=1

(
φ0k cos(α2

kt) +
φ1k
α2
k

sin(α2
kt)

)
ψk(x). (20)

Derivating w.r.t. x and t in (20), we obtain

0 ≡ φxt(η, t)− φxt(ξ, t) = −
+∞∑
k=1

(
α2
kφ

0
k sin(α2

kt)

−φ1k cos(α2
kt)
) (
ψ′k(η)− ψ′k(ξ)

)
.

Since α2
k+1 − α2

k → ∞, we infer from a generalization of
Ingham’s inequality that for any T > 0

0 =

∫ T

0

|φxt(η, t)− φxt(ξ, t)|2dt

≥ CT
+∞∑
k=1

(
|α2
kφ

0
k|2 + |φ1k|2

)
|ψ′k(η)− ψ′k(ξ)|2.

Therefore, if η 6∈ S(L), then φ0k = φ1k = 0 for all k ≥ 1
and S(t)(w0, w1) → (φ0, φ1) = (0, 0) in H. Conversely, if
η ∈ Sk(L) for some k ≥ 1, then any state of the form
(φ0, φ1) = (φ0kψk, φ

1
kψk) gives rise to a solution to (1)-(3)

(or (9)-(11)) whose energy does not tend to 0. Therefore
we have the proof of the asymptotic stability for positive
k and for non-critical locations of the actuator.

This concludes the proof of Theorem 2. 2

4. A SATURATING DYNAMIC OUTPUT FEEDBACK
LAW

4.1 Problem statement and preliminary computations

In this section, we consider the case where the input
may be subject to saturation and that it is a dynamical
controller. To be specific, consider again the PDE (15) with
the boundary conditions (2) and the initial conditions (3),
and assume that u(t) is a solution to the following scalar
linear ordinary differential equation:

τ u̇+ u = ue (21)

where ue is a to-be-computed control that should depend
on the output (4) only.

An informal computation along the solutions to (15), (2)
and (3) yields

Ė(w) = −sat(u)(wxt(η)− wxt(ξ)) (22)

Consider the Lyapunov function candidate

V = E +
1

2
(u− kσ)2, (23)

where σ = wxt(η) − wxt(ξ). Along the solutions to (15),
(2) and (21), it holds (at least formally)

V̇ = −sat(u)σ + (u− kσ)(u̇− kσ̇)

=
1

k
sat(u)(u− kσ)− 1

k
sat(u)u+ (u− kσ)(u̇− kσ̇)

= −1

k
sat(u)u+ (u− kσ)(

1

k
sat(u)− 1

τ
u+

1

τ
ue − kσ̇) .

This motivates the following definition for the control ue,
for any K > 0,

ue = −Kτ(u− kσ) + u+ kτσ̇ − τ

k
sat(u) (24)

which makes

V̇ = −1

k
sat(u)u−K(u− kσ)2 . (25)

To give a sense to the quantity σ̇, we note that, using (15),
at least formally:

σ̇ =wttx(η)− wttx(ξ)

=
(
wx5 − sat(u)

d2

dx2
[δη − δξ]

)
(η)

−
(
wx5 − sat(u)

d2

dx2
[δη − δξ]

)
(ξ) (26)

where wx5 denotes the 5-th derivative of w with respect to
x. To check that we prove that its space primitive, that is

wx4 − sat(u)
d

dx
[δη − δξ]

is in H1(0, π). To check this latter property, we come back
to (17), and using in particular d

dxsat(u) = 0, we compute

wx4 − sat(u)
d

dx
[δη − δξ] = {wx4}+ [wx3]ηδη + [wx3]ξδξ

+ [wxx]η
d

dx
δη + [wxx]ξ

d

dx
δξ

and

− sat(u)
d

dx
[δη − δξ]wx5 − sat(u)

d2

dx2
[δη − δξ]

= {wx5}+ [wx4]ηδη + [wx4]ξδξ

+ 2[wx3]η
d

dx
δη + 2[wx3]ξ

d

dx
δξ

+ [wxx]η
d2

dx2
δη + [wxx]ξ

d2

dx2
δξ

− sat(u)[
d2

dx2
δη −

d2

dx2
δξ]

Then wx5−sat(u) d2

dx2 [δη− δξ] is in L2(0, π) provided that
all the coefficients in front of the Dirac masses vanish, i.e.

[wx4]η = [wx4]ξ = 0 ,

[wxx]η = sat(u) = −[wxx]ξ ,

and



[wx3]η = [wx3]ξ = 0 .

Therefore we may rewrite the PDE (15) with the boundary
conditions (2) coupled with the ODE (21) in closed loop
with (24) by introducing an extension of the operator A
defined in Section 3.1, and by incorporating the dynamics
(21). More precisely the operator Ae is defined on the
following subset of the Hilbert space He=H× V × R:

D(Ae) = { ze = (w, v, u) (w, v, u) ∈ H2(0, π)2 × R,
w ∈ H4(0, η) ∩H4(η, ξ) ∩H4(ξ, π),

w(0) = wx(0) = wxx(π) = wxxx(π) = 0,

v(0) = vx(0) = 0, [wxx]η = sat(u) = − [wxx]η ,

[wx3]η = [wx3]ξ = 0, [wx4]η = [wx4]ξ = 0
}

and defined by

Aeze =

(
v,−wxxxx + sat(u)

d

dx
[δη − δξ] ,

−1

τ
u−Kτ(u− kσ) + u+ kτσ̇ − τ

k
sat(u)

)
.

where σ̇ is defined in (26). We rewrite the PDE (15) with
the boundary conditions (2) coupled with the ODE (21) in
closed loop with (24) as the abstract first-order evolution
equation in H {

dz

dt
= Aeze, t > 0

ze(0) = (w0, w1, u0).
(27)

We equip the Hilbert space He with not the usual scalar
product, but with the one adapted to the Lyapunov
function candidate V defined in (23), that is for all
(w1, v1, u1) and (w2, v2, u2) in He:

〈(w1, v1, u1), (w2, v2, u2)〉H×R
=

∫ π

0

w1xxw2xxdx+

∫ π

0

v1v2dx+ (u1 − kσ1)(u2 − kσ2)

where σi = vix(η)−vix(ξ) for i in {1, 2}. Note that, by the
trace theorem on H2(0, π), and since vi is in V , σi is well
defined.

4.2 Well-posedness of (27)

The well-posedness of (27) could be proven using similar
computations as for A. In particular the proof of the
dissipativity of Ae for k ≥ 0 and K ≥ 0 follows from
the proof of Lemma 2 and the informal computation done
to get (25). We get

Theorem 3. If k ≥ 0 and K ≥ 0, then, for all z0 in
D(Ae), the Cauchy Problem (27) is well posed.

4.3 Asymptotic stability of (27)

Let us come back to (25). To deduce an asymptotic
stability from this property, we introduce the notation
ϕ = sat(u) − u and we use the following local sector
condition (see Gomes da Silva Jr and Tarbouriech (2005)
for a proof of this sector condition, generalizing the global
sector condition of (Khalil, 2002, Chap. 10))

∀u, |(1− c)u| ≤ 1, ⇒ ϕ(ϕ+ cu) ≤ 0

where c is a new degree of freedom. This inequality implies
with (25) the following inequality

V̇ ≤−1

k
sat(u)u−K(u− kσ)2 − 2ϕ(ϕ+ cu)

≤−1

k
ϕu− 1

k
u2 −K(u− kσ)2 − 2ϕ(ϕ+ cu)

≤

(
u

u− kσ
ϕ

)>−1

k
0 − 1

2k
− c

? −K 0
? ? −2

( u
u− kσ
ϕ

)
. (28)

Given k > 0, and K > 0 one can show that there exists c
such that

M :=

−1

k
0 − 1

2k
− c

? −K 0
? ? −2

 ≤ 0 .

For example, pick c = − 1
2k so that M ≤ 0.

This later inequality is instrumental for the proof of the
following result.

Theorem 4. For all k > 0, and for all r > 0, there exists
K > 0, such that the system (27) is asymptotically stable
with a basin of attraction containing all initial conditions
in D(Ae) satisfying

‖Aeze(t = 0)‖He
≤ r .

More precisely, for all such initial conditions, we have the
following stability property

‖Aeze(t)‖He
≤ ‖Aeze(t = 0)‖He

,

together with the attractivity property

‖ze(t)‖He
→t→∞ 0 .

Before proving this result, let us note that it can be seen
as a semi-global asymptotic stabilization by a saturating
dynamic output feedback law for (1)-(3). Indeed, the
control gain K > 0 depends on the size of the set of initial
conditions.

Proof. We need to check the condition |(1 − c)u| ≤ 1 for
sufficiently small initial condition and for all positive time.
To do that let us first note that, using the dissipativity of
Ae, it holds

t 7→ ‖ze(t)‖He
, t 7→ ‖Aeze(t)‖He

(29)

are non-increasing along the (strong) solutions to (27).

Therefore

‖Aeze(t = 0‖2He
=

∫ π

0

{wxxxx(t = 0)}2dx

+

∫ π

0

wtxx(t = 0)2dx+ (u− σ)(t = 0)2

≥ (u− σ)(t = 0)2 (30)

and we have, for all t ≥ 0,

|(u− σ)(t)|2 ≤ ‖Aeze(t)‖2He
≤ ‖Aeze(t = 0)‖2He

. (31)

Pick r > 0 and consider an initial condition such that
‖Aeze(t = 0)‖2He

≤ r2.

Lemma 4. There exists C1 > 0 such that, for all t ≥ 0,

|σ(t)| ≤ C1‖Aeze(t)‖He
. (32)

Proof. Recall that σ(t) = wtx(η, t)−wtx(ξ, t). Due to (30),
it holds



‖Aeze(t = 0)‖He
≥
∫ π

0

w2
txxdx .

Moreover, using wx(0) = 0 and wx(π) = 0, we have

|wtx(η)− wtx(ξ)|2 = |
∫ η

0

wtxxdx+

∫ π

0

wtxxdx|2

≤ 2|
∫ η

0

wtxxdx|2 + 2|
∫ π

0

wtxxdx|2

≤ 2η2
∫ η

0

w2
txxdx

+2(π − ξ)2
∫ π

ξ

w2
txxdx

≤ 2 max{η2, (π − ξ)2}
∫ π

0

w2
txxdx

Therefore with (30) we get (32), with

C1 =
√

2 max{η2, (π − ξ)2}.
This concludes the proof of Lemma 4. 2

Since u2 ≤ 2(u− σ)2 + 2σ2, with (31) and (32) in Lemma
4, we get the existence of C2 > 0 such that, if

‖Aeze(t = 0)‖He
≤ r

then
|u|2 ≤ 2r2 + 2C2

1r
2 .

Therefore we have the following implication

‖Aeze(t = 0)‖He
≤ r

⇒ |(1− c)u| ≤ 1
(33)

with c = 1 − (r
√

2(C2
1 + 1))−1 where C1 is given in

Lemma 4. Note that
c < 1 . (34)

Moreover let us prove the following simple result

Lemma 5. Given K > 0, and c > 0, there exists k > 0
such that M ≤ 0.

Proof. To prove that, it is equivalent to check that−K 0 0

? −1

k
− 1

2k
− c

? ? −2

 ≤ 0

and, since K > 0 and k > 0, it is sufficient to check that
there exists k > 0 such that

2

k
− (

1

2k
+ c)2 > 0 .

This is true as soon as there exists X > 0 such that
1

4
X2 − (−c+ 2)X + c2 < 0 . (35)

The discriminant is ∆ = (−c + 2)2 − c2 = 4 − 4c > 0,
due to (34). There are two distincts zeros of the previous
polynomial, whose product and sum are positive (due to
(34)). Thus there exists X > 0 such that (35) holds. This
concludes the proof of Lemma 5. 2

With Lemma 5, the implication (33) and (28), we get that,

along the solutions to (27), it holds V̇ ≤ 0 for all initial
conditions in D(Ae) satisfying

‖Aeze‖He
≤ r .

We conclude with the asymptotic stability thanks to the
LaSalle invariance principle as in the proof of Theorem 2.
Since the asymptotic stability holds for all r > 0, we
deduce the semi-global asymptotic stability.

This concludes the proof of Theorem 4. 2

5. CONCLUSION

A beam equation has been considered in this paper. The
boundary conditions of the partial differential equation
modeling the dynamics of the deflection corresponded to
a beam that was attached to one extremity and free on
the other. The beam was assumed to be equipped with
collocated piezoelectric sensor and actuator. The actuator
may be saturated so that the input function may be
nonlinear, and the closed-loop system became a nonlinear
infinite-dimensional system. Both static and dynamic out-
put feedback laws have been designed yielding to different
closed-loop systems. Abstract theory was applied to state
the well-posedness of the nonlinear system, and to prove
both stability results (one global asymptotic stability and
one semi-global asymptotic stability).

This work lets some questions open. In particular the
design of a strict Lyapunov function may be fruitful to
state exponential convergence conditions.
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