
HAL Id: hal-02156501
https://hal.science/hal-02156501v1

Submitted on 14 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Development and Verification of UML Architectures by
Refinement and Extension Techniques

Thomas Lambolais, Anne-Lise Courbis

To cite this version:
Thomas Lambolais, Anne-Lise Courbis. Development and Verification of UML Architectures by Re-
finement and Extension Techniques. ERTS 2018, Jan 2018, Toulouse, France. �hal-02156501�

https://hal.science/hal-02156501v1
https://hal.archives-ouvertes.fr

Development and Verification of UML Architectures
by Refinement and Extension Techniques

Thomas Lambolais and Anne-Lise Courbis,
LGI2P, IMT Mines Ales, Univ Montpellier, Ales, France

thomas.lambolais@mines-ales.fr, anne-lise.courbis@mines-ales.fr

Abstract—We have developed an incremental development
framework which supports progressive constructions of UML
state machines. This framework includes behavioral refinement
and extension verifications. In this paper, we extend this frame-
work to UML composite components in order to guide architec-
ture modeling and verification. It consists of a set of construction
techniques which assist the designer in two complementary
ways: concerning behavioral aspects, the techniques are based
on formal relations which determine if the new architectures are
true refinements and/or extensions of the former ones; concerning
structural aspects, the techniques contribute to the software
engineering design principles separation of concerns, information
hiding and hierarchical modeling. The paper presents some of
these techniques and illustrates them through a case study.

I. INTRODUCTION

Our goal is to assist designers during modeling tasks of
reactive systems. We consider two aspects: describing the
history of an architectural model construction by a sequence
of modeling steps; offering assistance during this history,
by providing evaluation and construction techniques based
on formal relations. In previous works, we have defined an
incremental development framework (IDF) for UML state
machines [21] and developed the IDCM tool (Incremental
Development of Compliant Models) [16]. The main benefits
of this framework are to early consider abstract models and
to add formal refinement and extension relations into agile
modeling processes [17]. Now, we consider UML architectures
described by UML composite components.

In this paper, we propose a set of architectural construction
techniques. On the one hand, these techniques have to con-
tribute to well-known design principles in software engineer-
ing [31] (separation of concerns, hierarchy and information
hiding), whose goal is to achieve architectural model qualities.
On the other hand, these construction techniques have to
include formal verifications for early detection of behavioral
issues, i.e. safety and liveness problems.

The article is structured as follows. Section 2 presents the
main incremental paradigms, safety and liveness concerns and
incremental relations. This section also presents a semantics of
UML architectures. Section 3 presents architectural modeling
techniques and formally defines two of them. The use of
these techniques is illustrated in a case study in section 4. A
discussion about the validation of this work and related works
is opened in section 5. We conclude in section 6.

II. FUNDAMENTALS OF INCREMENTAL MODELING AND
UML COMPOSITE COMPONENT SEMANTICS

By incremental modeling, we mean that models are pro-
gressively developed. They may be refined or abstracted,
and extended or restricted. At each step, the new model is
compared to the previous one through a relation, which focuses
on behavioral and temporal aspects. As shown by Alpern
and Schneider [29], all temporal properties can be seen as
a conjunction of safety and liveness properties. The relation
used to compare models is chosen among a set of relations
which can be interpreted with respect to the way they preserve
safety and/or liveness properties. We say that a property φ is
preserved by a relationR if, for any two models P and Q such
that P R Q, P |= φ ⇒ Q |= φ. An interesting advantage of
the use of such relations is that properties are implicitly and
not explicitly described by the designer. Let us first precise
the way we understand safety and liveness properties.

A. Safety and liveness properties

We observe safety and liveness properties by means of the
interactions of the system with its environment: accept an
event (signal or operation reception), or perform an action
requiring a signal send or operation call. A trace is a partial
sequence of observable interactions starting from the initial
state. The following informal definitions are in accordance
with the more general definitions and topological character-
ization given in [2], [3].

MUST MAY MUST NOT
liveness safety

Possible ForbiddenMandatory
behaviors behaviorsbehaviors

Fig. 1. Liveness and safety properties through ‘must’, ‘may’ and ‘must not’
behaviors.

a) Safety properties: A safety property states that some
interactions are forbidden for the system after some given
traces. This specifies that some traces must not be included in
the set of system traces, e.g. “the automated light system must
not automatically switch low beams off if ambient luminance

is low”. Safety properties are satisfied by systems whose
behaviors are inside the ‘may behaviors’ in Figure 1.

b) Liveness properties: A liveness property states that
the system will eventually react as it should after some given
traces. This specifies that some traces are included in the
system trace set, and that after these traces, expected actions
will eventually be offered, possibly after an unbound delay,
e.g. “the AFLS will switch high beams on and off every
time the driver uses the flash command”. Liveness properties
correspond to the ‘must behavior’ set in Figure 1. We consider
that deadlock freedom is a liveness property [26], [13] since
a system is deadlocked when it rejects any input event.

The LTS (Labeled Transition Systems) semantics we give
to UML primitive components behavior state machines is not
recalled here, see [17], [21]. Let us briefly recall that an LTS
P is a tuple 〈P, A,→, P 〉 where P is a set of state names
(also called processes and agents), A is a set of actions, →⊆
P × A × P is a set of labeled transitions between states and
P is the initial state. For instance, in Fig. 2, P and Q are two
LTS described on the action set A = {a, b, c}.

a a

b cb

P

a a

cb

Q

Acc(P, a) = {{b}, {b, c}} Acc(Q, a) = {{b}, {c}}

Fig. 2. Two LTS and their acceptance sets after action a: P and Q have the
same safety properties but not the same liveness properties.

Initially, P and Q must both accept action a and must refuse
b and c actions. After a, P must accept b, may accept and may
refuse c, and must refuse a, while Q after a may refuse and
may accept b, may refuse and may accept c and must refuse a.
P and Q have the same safety properties, but P has a liveness
property that Q does not have: P must accept b after a. Even
if P and Q are both non-deterministic processes, P is more
deterministic than Q. This is formally written by acceptance
sets which are the sets of action sets that may be accepted after
given traces. The set of set inclusion relation ⊂⊂ expresses the
fact that a set is ‘less non-deterministic’ than another. For two
acceptance sets A and B, A is less non-deterministic than B
(A ⊂⊂ B) if for all A ∈ A, there exists B ∈ B such that
B ⊆ A. Again, for formal definitions, please refer to [21].
Here, Acc(P, a) ⊂⊂ Acc(Q, a) and Acc(Q, a) 6⊂⊂ Acc(P, a).

Hence, in order to compare two processes P and Q,
we compare their acceptance graphs. Acceptance graphs are
deterministic graphs whose nodes are associated to acceptance
sets. Here follows an intuitive presentation of incremental
relations, and a proposal for the UML composite component
semantics.

B. Incremental relations between UML primitive components.

Based on classical trace inclusion vMAY and conformance
relation conf [22], we consider four incremental relations:

increments, refines, extends and safely substitutes respectively
written vINC, vREF, vEXT and vSUB. The first three relations are
formally defined in [17], [21]; vSUB is defined in [27]. We only
give an intuitive presentation here. Given two models M1 and
M2, where M2 is ‘supposed to be an improvement’ of M1:

M2 vMAY M1 means that M2 traces are included into M1

traces. It ensures that M2 satisfies any safety property of
M1: indeed, M2 must refuse all what M1 must refuse.

M2 conf M1, or M2 conforms to M1, if after any trace of
M1, M2 must accept every action that M1 must accept.
It ensures that M2 is more deterministic than M1. This
relation guarantees that any liveness property of M1 is
satisfied by M2. The conformance relation is seen as
an implementation relation. However, this relation is not
transitive and cannot be used as such for incremental
developments.

M1 vINC M2, or M2 increments M1, if any model which
conforms to M2 also conforms to M1. In particular,
M1 vINC M2 ⇒ M2 conf M1, and vINC is a transitive
relation.

M1 vREF M2, or M2 refines M1, if M1 vINC M2 and M2 vMAY

M1. Hence, M1 vREF M2 guarantees that liveness and
safety properties of M1 are also satisfied by M2.

M1 vEXT M2, or M2 extends M1, if M1 vINC M2 and
M1 vMAY M2. It ensures that M2 may do all what
M1 can do, and that that liveness properties of M1

are also satisfied by M2. The vEXT relation is useful
for incremental constructions, in order to consider new
behaviors in the new development model.

M1 vSUB M2 means that M2 can safely substitute M1. vSUB

is the largest congruence preorder stronger than vREF and
vEXT: the architecture into which M2 replaces M1 is a
correct refinement and extension of the initial architecture
containing M1. Architectures of LTS are described by
composition of processes, as described in the following.

The verification algorithms to check these relations have
been implemented within the IDCM tool.

C. UML composite components semantics.

UML composite components are architectures of UML
component instances, linked between themselves by assembly
connectors and connected to the outside environment by
delegation connectors. We give a semantics of UML composite
component behaviors on parallel compositions of processes in
the EXPOPEN process algebra [19]. EXPOPEN shares the same
concepts as basic LOTOS process algebra [22]. Secondly,
EXPOPEN models are translated into LTS by the CADP tool.

Fig. 3 presents a UML architecture (A0) and its translation
into process algebra. We only focus on the structure. A0

details, given in section IV, are not required here. Detailed
EXPOPEN code is not required either. In the architecture A0,
there are two component instances linked by the assembly
connector con1 on two ports which share the same UML
interface. Outside ports are linked by delegation connectors
on two other ports.

In the algebraic notation, this is represented by two parallel
processes, synchronized on the action con1:

A0 := hide con1 in LightControl0 ||con1
DriverProtocol0.

The external interfaces of A0 correspond to actions exchanged
on delegation connectors. All the synchronized actions (con1)
are hidden, which is done by the hide . . . in operator. We will
say that A0 is described by a configuration f such that:

A0 := f(LightControl0,DriverProtocol0).

Configurations are functions which take components as pa-
rameters and return a component.

Abbreviated algebraic notation:

A0 := hide con1 in LightControl0 ||con1
DriverProtocol0

Fig. 3. A UML composite component (A0) and its succinct algebraic notation

III. REFINEMENT SOLVING AND COMPONENT ADDING
CONSTRUCTION TECHNIQUES

We classify incremental architectural construction tech-
niques along two orthogonal axes: the vertical axis corresponds
to the abstraction level, from abstract to concrete models;
the horizontal axis corresponds to the level of requirement
coverage, from partial specifications to complete behavior
descriptions. Hence, vertical techniques include refinement
and abstraction techniques while horizontal techniques include
extension and restriction techniques. We have developed a
comprehensive framework of incremental techniques which
covers these different approaches (Fig. 4). The interest of
this framework is to include most modelling approaches and
to point out the formal relations that have to be verified
between models. Note that some ‘reverse engineering’ or
‘refactoring’ techniques are also included under abstraction
and restriction techniques, even if they are not detailed here.
In the following, we present one refinement technique and one
extension technique.

Refinement solving. Let A be an architecture defined
by a configuration f on components C1, ..., Cn such that
A := f(C1, ..., Ci, ..., Cn). Given components Ci1 , ..., Cil

and a configuration g, refinement solving consists in finding
a component X such that Ci vREF g(Ci1 , ..., Cil , X) and
A vREF A

′, where A′ := f(C1, ..., g(Ci1 , ..., Cil , X), ..., Cn).

The idea of this technique is to be close to an equation
solving: in A′, everything is known apart X . In order to
reduce the set of possible components X , one may want to
use the equivalence relation =REF instead of vREF. For instance,
if the architecture A is a single component, given a known
component C1, refinement solving consists in looking for a
component X such that:

Incremental Construction Technique

Vertical Technique Horizontal Technique

Refinement Abstraction

refinement

Flattening

Primitive
component

Refinement
solving

Extension Restriction

Primitive
component
extension

Extension
solving

Splitting Refinement
substitution

substitution
Extensive

Subcomponent
refinement

Component
extension

adding
Component Extensive

composition

. . .
. . .

Fig. 4. Incremental construction techniques

A =REF hide con1 in X ||con1 C1. (1)

In most cases, such an equation has many different solu-
tions: finding one of them automatically is outside of the scope
of this article. Nevertheless, X interfaces are automatically
determined by equation (1), and verdicts provided by the
verification within the IDCM tool help us find an admissible
solution.

This technique contributes to hierarchy, separation of con-
cerns and information hiding.

Component adding. Let A be an architecture defined by a
configuration f , A := f(C1, ..., Cn). Given a component C,
given a set Ts of some unwanted traces, component adding
consists in finding a configuration g and a set of components
C ′

1, ..., C
′
n which adapt existing components such that C1 vEXT

C ′
1, . . . , Cn vEXT C

′
n, A vEXT A

′ and ∀ts ∈ Ts . ts 6vMAY A
′,

where A′ := g(C ′
1, ..., C

′
n, C).

A vEXT A
′ entails that A′ preserves liveness properties of

A, but A′ does not preserve safety properties of A. In order
to verify some safety properties that A′ should still satisfy, we
use the set Ts of ‘unwanted’ traces.

IV. ILLUSTRATION: ADAPTIVE FRONT-LIGHTING SYSTEM

We consider a car Adaptive Front-lighting System (AFLS)
implemented by several car manufacturers [30]. Among the
five models (S0, A0, . . . , A3) incrementally defined, we
present here S0, A0 and A1 which fit the following require-
ments:

S0, A0: the front-lighting system comprises side lamps, low
and high beams that the driver chooses according to
a precise protocol. There are two driver commands: a
manual lighting control position switch (Fig. 5.1) and a
low and high beam lever (Fig. 5.3). The lighting control
switch offers “off” (A), “side lights” (B) and “headlamps”

(C) positions. It is only when this switch is in the C

position that the driver can change between the low and
high beams with the lever. In any position, the low and
high beam lever also offers a flash command.

A1: an automatic mode is provided (Fig. 5.2, position D),
which switches headlamps on and off, depending on the
ambient light. High beams are still manually activated.

(1) (2) (3)
Fig. 5. Driver commands: (1) manual lighting control, (2) lighting control
with auto mode, (3) low and high beam lever.

A. Refinement solving: S0 component and its refinement into
A0

The first primitive component S0 (Fig. 6) provides two inter-
faces (Driver Light Switch and Driver High Beam corresponding
to Fig. 5.1 and Fig. 5.3) and commands the lighting device
through a required interface.

Fig. 6. Component S0 and its interfaces

The behavioral specification of S0 (Fig. 7) has two roles:
(1) it defines when operations are provided to the driver:
in particular, driverHBon and driverHBoff are only possible
when the switch is in LowBeam mode; (2) it translates the
driver commands into the lamp device operations: for instance
driverLow switches low beams on, but keeps side lights on,
driverPark switches side lights on or switches low beams off,
and driverFlash effect is described by an activity of two se-
quenced operations: highBeamOn followed by highBeamOff.

Fig. 7. State machine S0

The goal is to define a first architecture A0 which fulfills
S0 behavioral specification with respect to the refinement
equivalence:

S0 =REF A0. (2)

We apply the refinement solving technique. By separation of
concerns, we extract the two roles of S0 into two compo-
nents: DriverProtocol0 and LightControl0. External interfaces
of A0 are the same as S0, and a new interface named
Light Controller is provided by DriverProtocol0 and required
by LightControl0. The interface Light Controller is an exact
relabeling of the six driver commands. All operations of Light
Controller are driven by con1 connector. By applying the
refinement solving technique, the designer proposes the state
machine DriverProtocol0 and seeks for LightControl0 such
that:

A0 := hide con1 in LightControl0 ||con1 DriverProtocol0 (3)

and A0 satisfies equation (2).

UML A0 definition is shown in Fig. 8. As shown in the re-
finement solving definition and equation (1), the only unknown
component state machine of equation (3) is LightControl0. The
state machine DriverProtocol0 (Fig. 9) is given by the designer:
it is manually derived from S0, where all transition triggers
are accepted after the same sequences, but transition effects
strictly correspond to call events. DriverProtocol0 state names
(A, B, CE, CF) correspond to driver command positions (Fig. 5).

Fig. 8. Architecture A0

Fig. 9. State machine DriverProtocol0

Fig. 10. State machine LightControl0beta

There is no full automatic procedure to find a compo-
nent state machine LightControl0 which satisfies equation
(2). However, the architecture A0 determines LightControl0
interfaces, and the IDCM tool can automatically check whether
the refinement relation (=REF) is verified or not. The designer
first “tries” with the naive state machine LightControl0beta

(Fig. 10) which corresponds to a simple translation table of
driver commands into the device orders.

Verification within IDCM. Equation (2) is not satisfied. The
tool exhibits: (i) a safety issue: A0 may accept lowBeamOff
after driverPark, which S0 cannot accept; (ii) a liveness issue:
A0 may refuse sideLight after driverPark, which S0 must
accept.

More precisely, IDCM finds a trace, σ = driverPark, after
which two acceptance sets are not related by the desired set
of set inclusion, although they should:

Acc(A0, σ) 6⊂⊂ Acc(S0, σ),

where
Acc(A0, σ) = {{sideLight}, {lowBeamOff}, {sideLight, lowBeamOff}}
Acc(S0, σ) = {{sideLight}}.

This shows that A0 may accept lowBeamOff and may refuse
sideLight after driverPark.

Hence, we modify LightControl0beta into LightControl0
(Fig. 11). Equation (2) is now satisfied. Note that this equa-
tion could have other solutions. In particular, LightControl0
has transitions (in blue) that will never be triggered by
DriverProtocol0: these are the transitions on state Off triggered
by clb, chbon, chboff and coff.

Fig. 11. State machine LightControl0, such that S0 =REF A0.

Here, the refinement solving technique remains at the same
abstraction level as S0, but it clarifies the two main roles of
S0. Compared to S0, the two resulting components are slightly
simpler: DriverProtocol0 only controls when commands are
enabled or disabled to the driver, and LightControl0 translates
driver commands into the proper light calls.

B. Component adding: construction of A1

We want to include a known component LightSensor which
evaluates the ambient light intensity. The component adding
technique is used for this purpose. It consists here in propos-
ing architecture A1 (Fig. 12) including DriverProtocol1 and

LightControl1 and identifying a set Ts of unwanted traces,
such that:

DriverProtocol0 vEXT DriverProtocol1, (4)
LightControl0 vEXT LightControl1, (5)

A0 vEXT A1 (6)
∀ts ∈ Ts . ts 6vMAY A1 (7)

A1 := hide con1, con2 in (LightControl1 ||con1,con2

(LightSensor ||| DriverProtocol1))

Fig. 12. Architecture A1

Fig. 13. State machine DriverProtocol1

The state machine DriverProtocol1 is first defined (Fig. 13),
including a new operation: driverAutoMode. The state ma-
chine LightControl1beta is then defined (Fig. 14). It includes
the new events cauto, highLuminance and lowLuminance.

Verification within IDCM. Properties (4)–(6) (with the beta
version) are satisfied. In unwanted traces Ts, we define the
trace σ1 which says that when autolamps has switched the
low beams off, the driver switches the high beams on (the
driver should not be able to switch the high beams on):
σ1 := driverPark; sideLight; driverLow; lowBeamOn; driverAutoMode;

〈internal sensor high luminance〉; lowBeamOff; driverHBon; highBeamOn.
The LTS t1 is built upon trace σ1. We observe with IDCM

that t1 vMAY A1 (property (7) is not satisfied).
Under IDCM, this trace inclusion is verified by an observa-

tional simulation relation between t1 and the acceptance graph
obtained from A1 (let us recall that an acceptance graph is a
deterministic automaton where each state is associated with
acceptance sets). Hence, IDCM detailed verdict is the set of
tuples belonging to the simulation relation found:
A1 simulates t1.
If the designer wants to understand this simulation, the

IDCM tool can give the state numbers that are related by the
simulation relation:

the simulation relation contains 16 pairs:

{(9, 16), (68, 15), (67, 14), . . . , (224, 1)}.

Fig. 14. State machine LightControl1beta

Fig. 15. State machine LightControl1

The state machine LightControl1 (Fig.15) fixes it: af-
ter highLuminance/lowBeamOff transition, state machine
LightControl1 now refuses the trigger event chbon.

Within IDCM, we observe that A1 does not simulate t1. In
this case, IDCM recalls the trace σ1, which is included in t1
and not in A1.

The state machine DriverProtocol1 is unchanged. Of course,
this verification process requires other safety traces not de-
tailed here. We should define other traces, not detailed here,
until we consider property (7) as satisfied.

Such verifications ensure liveness property preservation,
which guarantee that the driver can still use the light com-
mands as he/she was using them manually, and examine on
particular traces safety properties.

V. DISCUSSION: VALIDATION AND RELATED WORKS

Although the informal AFLS specifications are simple,
UML state machines quickly become intricate. Concurrent
behaviors and communications are complex to model and
to analyze. Proposed construction techniques provide some
assistance: in A0, the refinement solving technique shows
that a component can be deduced from a first naive trial
and in A1 the component adding technique shows that an
extended component also has to be checked on previous safety
properties. We therefore consider the questions of incremental
relation validity and construction technique validity.

A. Validation

Relation validation. As stated in [21], UML state machine
transformation into LTS is sound: any linear temporal logic
property satisfied by a generated LTS is also satisfied by the
originating state machine. Nevertheless, if we compare two
state machines by comparing their LTS, some state machine
mistakes may by forgotten and some false alarms may appear.
Again, refer to [21] for relation validation details.

Construction technique validation. Refinement and ex-
tension techniques preserve liveness properties. Refinement
techniques also preserve safety properties. Extension tech-
niques include a complementary verification of a set of safety
properties. One of the main advantages of such incremental
techniques is to offer some verification means without asking
the designer to use other specification languages such as
temporal logic. However, these techniques have some limits:
for refinement and extension techniques, new desired liveness
properties are not analyzed; for refinement techniques, new
safety properties are not verified. The designer has to know
the scope of such implicit verification techniques and has
to use complementary means if required. For such purposes,
refinement and extension techniques have to be completed by
a separate verification of a set Tl of liveness properties for
new detailed or extended behaviors.

Scalability. For a UML primitive component with n states, k
transitions and m operation occurrences (number of operation
calls which appear on transition effects), the generated LTS
has at most nLTS states and kLTS transitions where nLTS =
n+ 2k +m and kLTS = 2(k +m).

The factor 2 is explained by the following transformation
rule: for each transition triggered by a call event and each
synchronous operation call, there are two LTS transitions

representing operation call and reception, and consequently,
new intermediate added states.

Parallel compositions of LTS generate interleaved sequen-
tial LTS, whose sizes are in worst case equal to the prod-
uct of composed LTS sizes. Hence, for manually designed
UML composite components, generated LTS sizes range from
medium to large sizes. For instance, for a composition of
five UML components, each of them described by a state
machine of n = 5 states, k = 10 transitions, m = 5
operation occurrences (i.e. 30 LTS states), the generated LTS
of the composition has in the worst case 305 ' 24.106 states
and around 200000 states if half of the transitions of the
composite components are synchronized with one transition
of another component. Such large LTS can still be handled
by simulation relations. For conformance relations, LTS up to
1 million states can be supported. We have to keep in mind
that proposed verification techniques are performed during the
model construction, when model sizes are still reasonable.

B. Related Work

Within the increasing number of works dealing with ar-
chitecture based analysis [10], they mainly address liveness
analysis using bisimulation techniques or dead-lock detection
and do not ensure extension, refinement or substitutability
of models [21]. They only focus on safety analysis using
explicit property checking. To the best of our knowledge,
no work has defined relations for incremental development
of architectural models, defined in UML. Table I gives the
synthesis of the analyzed approaches along liveness, safety,
substitution, extension and refinement aspects.

Liv. Saf. Sub. Ext. Ref.
UML/Wright [20] X X X
UML/B [28] ∼ X X X
SysML/Interface automata [15] ∼
UML/omega2 [23] ∼ X

AADL/FIACRE [8] X X
AADL/BIP[14] X

Archware (LOTOS) [24] X X
PADL-Æmilia [1] X X
SafArchie [4] X ∼
FIESTA [32] ∼

X: supported; ∼: partially supported; ‘ ’: not supported;
TABLE I

EVALUATION OF ARCHITECTURAL AND VERIFICATION TOOLS.

[20] proposes a UML profile and translates UML models
into Wright for using the model checker FDR. FDR focuses
on safety and liveness analyses without fairness assumption. It
does not analyze any extension nor substitution relation. Some
work such as [28] focus on translating UML into B or Z. They
include refinement techniques but do not address extension
techniques. [15] considers SysML models in order to verify
components assemblies. They perform behavioral compatibil-
ity verifications, but do not analyze any liveness property other
than dead-lock detection and do not address extension and
refinement problems. [23] has extended the analysis techniques
proposed by [18] which defined OMEGA2, a UML profile.
Architectures are translated into IF/IFx models [11], [12] in
order to be analyzed by the CADP toolbox [19] for safety

property analysis. However, model substitutability, extension
and refinement are not supported.

[8] considers AADL descriptions and transforms them into
FIACRE in order to apply the model checker TINA [9]. TINA
analyzes safety, liveness and deadlocks under the fairness
hypothesis, but it does not address extension, refinement and
substitutability. [14] has a similar approach by translating
AADL into the BIP language [5]. BIP focuses on safety
properties and does not address liveness, extension, refinement,
nor substitutability. Archware [25], [24] is a framework based
on the LOTOS language allowing the use of the CADP model
checker [19]. Safety and liveness properties are analyzed under
fairness assumption. Compatibility between components is
verified, but no extension nor substitution relations is con-
sidered. PADL and Æmilia [7], [1] are languages based on a
stochastic process algebra. They are associated with the model
checker TwoTowers [6]. Analyses can be conducted according
to several bisimulation relations. It appears that these relations
are too strong for incremental developments.

SafArchie and TranSAT framework [4] deal with the evo-
lution of architectures using safe patterns. The compatibility
between components is addressed from different points of
view: structural, functional and behavioral. Substitutability of
components is studied from a syntactical point of view by
considering interfaces. This does not guarantee the behavioral
conformance of the architecture in which the component is
substituted. FIESTA [32] defines a generic framework where
new components are introduced into architectural models. It is
based on a pattern approach and focus on adding or modifying
connections in order to ensure the compatibility between
components. This work addresses a part of the incremental
development in so far as the structural compatibility does not
guarantee the behavioral one.

VI. CONCLUSION

We propose architectural modeling techniques for reactive
systems, which combine two main points: assisting the design
of composite components and state machines; early detecting
and fixing safety and liveness issues. These techniques cover
refinement and extension approaches. The proposed techniques
assist the designer in setting up models which satisfy desired
constraints, as well as finding and reusing formerly defined
components, by verifying if a new architecture is actually
an increment or not of the previous one. All the verification
relations used are implemented in the IDCM tool.

Further work consists in enriching refinement and extension
techniques by the verification of a set of new liveness prop-
erties. In contrast with safety properties, which are traces that
can be modeled in UML by sequence diagrams, we plan to
model liveness properties by separate UML state machines.
A UML profile for incremental construction, taking into ac-
count component increments but also operation increments, is
currently being developed.

REFERENCES

[1] A. Aldini and M. Bernardo. On the usability of process algebra: An
architectural view. Theoretical Computer Science, 335(2-3):281–329,
May 2005.

[2] B. Alpern and F. Schneider. Defining liveness. Information processing
letters, 21(October):181–185, 1985.

[3] B. Alpern and F. B. Schneider. Recognizing safety and liveness.
Distributed computing, 2(3):117–126, 1987.

[4] O. Barais, E. Cariou, L. Duchien, N. Pessemier, and L. Seinturier.
Transat: A framework for the specification of software architecture
evolution. Issues on Coordination and Adaptation Techniques, pages
31–38, 2004.

[5] A. Basu, M. Bozga, and J. Sifakis. Modeling Heterogeneous Real-time
Components in BIP. In Proceedings of the Fourth IEEE International
Conference on Software Engineering and Formal Methods (SEFM 2006),
pages 3–12, Washington, DC, USA, 2006. IEEE Computer Society
Washington.

[6] M. Bernardo. TwoTowers 5.1 User Manual, 2006.
[7] M. Bernardo, P. Ciancarini, and L. Donatiello. Architecting families

of software systems with process algebras. ACM Trans. Softw. Eng.
Methodol., 11(4):386–426, Oct. 2002.

[8] B. Berthomieu and J.-P. Bodeveix. Formal Verification of AADL models
with Fiacre and Tina. In Embedded Real-Time Software and Systems
(ERTS 2010), 2010.

[9] B. Berthomieu, P.-O. Ribet, and F. Vernadat. The tool TINA: Con-
struction of abstract state spaces for Petri nets and time Petri nets.
International Journal of Production Research, 42(14):2741–2756, 2004.

[10] A. Bertolino, P. Inverardi, and H. Muccini. Software architecture-based
analysis and testing: a look into achievements and future challenges.
Computing, 95(8):633–648, 2013.

[11] M. Bozga, S. Graf, and L. Mounier. IF-2.0: A Validation Environment
for Component-Based Real-Time Systems. In International Conference
on Computer Aided Verification, pages 343–348. Springer, 2002.

[12] M. Bozga, S. Graf, I. Ober, I. Ober, and J. Sifakis. The IF Toolset. In
Formal Methods for the Design of Real-Time Systems, volume 3185 of
LNCS, pages 237–267. Springer Berlin Heidelberg, 2004.

[13] E. Brinksma and G. Scollo. Formal Notions of Implementation and
Conformance in LOTOS. Technical report, Twente University of
technology, Enschede, Dec. 1986.

[14] M. Y. Chkouri and M. Bozga. Prototyping of distributed embedded
systems using AADL. ACESMB 2009, pages 65–79, 2009.

[15] S. Chouali and A. Hammad. Formal verification of components assem-
bly based on SysML and interface automata. Innovations in Systems
and Software Engineering, 7(4):265–274, Oct. 2011.

[16] A.-L. Courbis and T. Lambolais. IDCM. http://idcm.wp.mines-telecom.
fr. Accessed: 2017-04-01.

[17] A.-L. Courbis, T. Lambolais, H.-V. Luong, T.-L. Phan, C. Urtado, and
S. Vauttier. A formal support for incremental behavior specification in
agile development. In The 24th International Conference on Software
Engineering and Knowledge Engineering (SEKE), pages 694–699, 2012.

[18] A. Cuccuru. Meaningful composite structures. In K. Czarnecki, I. Ober,
J.-M. Bruel, A. Uhl, and M. Völter, editors, Model Driven Engineering
Languages and Systems (MODELS 2008), volume 5301 of LNCS, pages
828–842. Springer Berlin Heidelberg, 2008.

[19] H. Garavel, F. Lang, R. Mateescu, and W. Serwe. CADP 2010: A
Toolbox for the Construction and Analysis of Distributed Processes. In
P. A. Abdulla and K. R. M. Leino, editors, Tools and Algorithms for
the Construction and Analysis of Systems, volume 6605 of LNCS, pages
372–387. Springer Berlin Heidelberg, Saarbrücken, 2011.

[20] M. Graiet, M. T. Bhiri, F. Dammak, and J.-P. Giraudin. Adaptation
d’UML2.0 à l’ADL Wright. In CAL, pages 83–100, 2006.

[21] T. Lambolais, A.-L. Courbis, H.-V. Luong, and C. Percebois. IDF: A
framework for the incremental development and conformance verifi-
cation of UML active primitive components. Journal of Systems and
Software, 113:275–295, 2016.

[22] G. Leduc. Conformance relation, associated equivalence, and minimum
canonical tester in LOTOS. PSTV XI. North-Holland, pages 249–264,
1991.

[23] I. Ober and I. Dragomir. Unambiguous UML composite structures: the
OMEGA2 experience. SOFSEM 2011: Theory and Practice of Computer
Science, pages 418–430, 2011.

[24] F. Oquendo. π-Method: A Model-Driven Formal Method for
Architecture-Centric Software Engineering. ACM SIGSOFT Software
Engineering Notes, 31(3):1–13, 2006.

[25] F. Oquendo, B. Warboys, R. Morrison, R. Dindeleux, F. Gallo, H. Gar-
avel, and C. Occhipinti. ArchWare: Architecting Evolvable Software. In
Software Architectures, volume 3047 of LNCS, pages 257–271. Springer
Berlin Heidelberg, 2004.

[26] Oracle-Corporation. The Java Tutorials — Trial Essential Classes:
Concurrency. Liveness, 2013.

[27] T.-L. Phan. Développement Incrémental de Spécifications
d’Architectures en UML Intégrant des Procédures de Vérification.
PhD thesis, Montpellier 2, France, 2013.

[28] M. Y. Said, M. Butler, and C. Snook. A method of refinement in UML-
B. Software & Systems Modeling, 14(4):1557–1580, 2015.

[29] F. B. Schneider. Decomposing Properties into Safety and Liveness using
Predicate Logic. Technical report, Cornell Univ. Ithaca, NY, Dept. of
Computer Science, 1987.

[30] Texas-Instruments. Automotive Adaptive Front-lighting System Refer-
ence Design. Technical Report SPRUHP3, Texas Instruments, System
Application Engineering, July 2013.

[31] O. Vogel, I. Arnold, A. Chughtai, and T. Kehrer. Software Architecture:
a Comprehensive Framework and Guide for Practitioners. Springer
Science & Business Media, 2011.

[32] G. Waignier, A.-F. Le Meur, and L. Duchien. FIESTA: A Generic Frame-
work for Integrating New Functionalities into Software Architectures. In
F. Oquendo, editor, Software Architecture, volume 4758 of LNCS, pages
76–91. Springer Berlin Heidelberg, 2007.

