N
N

N

HAL

open science

Formal architecture modeling for documenting and
assessing Aeronautics Maintenance: A case study

Olivier Poitou, Pierre Bieber, Joél Ferreira, Ludovic Simon

» To cite this version:

Olivier Poitou, Pierre Bieber, Joél Ferreira, Ludovic Simon. Formal architecture modeling for doc-
umenting and assessing Aeronautics Maintenance: A case study. ERTS 2018, Jan 2018, Toulouse,

France. hal-02156381

HAL Id: hal-02156381
https://hal.science/hal-02156381v1

Submitted on 14 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02156381v1
https://hal.archives-ouvertes.fr

Formal architecture modeling for documenting and assessing

Aeronautics Maintenance: A case study

Olivier Poitou and Pierre Bieber
ONERA, Département Traitement de I'Information et Modélisation
2, avenue Edouard Belin BP74025, 31055 TOULOUSE Cedex 4
firstname.lastname@onera.fr
Joél Ferreira, TAP Portugal, jtferreira@tap.pt
Ludovic Simon, Thales Avionics, ludovic.simon@fr.thalesgroup.com

JANUARY 31st to FEBRUARY 2nd 2018

Abstract

This paper presents a case study that will illustrate
what a dedicated formal specification can bring to a
socio-technical system description and how it can take
place. The illustration will use an ONERA speci-
fication language and tool and apply it on the do-
main of aeronautical maintenance that is being dealt
with in the Clean Sky 2 European project ADVANCE-
ATRMES. As opposed to informal modeling, formal
specification will offer: (1) to automatically assess some
high level properties or indicators and hence compare
candidate solutions, (2) to produce a standard docu-
mentation conforming for example to the NATO Archi-
tecture Framework (NAF), (3) to better support safety
and security analysis.

Keywords : formal specification, free modeling,
socio-technical systems, systems of systems, aeronau-
tical maintenance, safety assessment, security assess-
ment

1 Introduction

This paper introduces a case study from the AIRMES
European project about Aeronautical maintenance. It
describes how different modeling and analysis processes
of this socio-technical system took place: structural
and behavioural formal architecture modeling, high
level performance indicators computation, safety and
security assessment support. The following sections
reflect this order, section 2 introduces the AIRMES
project: section 3 is dedicated to the way formal mod-
eling of the whole system took place starting from het-
erogeneous input,4 introduces the standard documen-
tation production from the obtained model. Section 5
introduces some indicators computation and sections 6
and 7 explains how those analysis have been supported.
Then section 8 sums up some lessons learnt, introduces
some perspectives and concludes this paper.

2 Context
The ADVANCE-AIRMES!, AIRMES standing for Air-

line Maintenance Operations implementation of an
E2E Maintenance Service Architecture and its en-
ablers, is a H2020 CleanSky2 European Project. It
focusses on optimising end-to-end aeronautical main-
tenance activities within an operator’s environment.
Several participants bring some innovation to, so-
called, “technical enablers” such as: an integrated
health monitoring and management (IHMM) platform,
contextualized documentation, prognostics or struc-
ture health monitoring, but also a Virtual Reality
technology for improving documentation and training
of the maintenance technician or Augmented Reality
support to the maintenance technician in operation.
Hence, the integration of those technologies into a
whole end to end (lately abreviated in E2E) system
is really a key to fulfil the project high level objec-
tives. Among the project partners?, those contributing
to this paper are listed below. TAP company, the Por-
tuguese flag carrier, is both the coordinator as well as
the aircraft maintenance business expert. THALES is
a core partner having in charge, in particular, a criti-
cal component of the system: the IHMM platform, the
E2E security assessment as well as a coordination func-
tion and a high business expertise. ONERA is in charge
of modeling the global system architecture for docu-
mentation purposes as well as for evaluation purposes.
This evaluation is multiple, it encompasses computing

1This project has received funding from the Clean Sky 2 Joint
Undertaking under the European Union’s Horizon 2020 research
and innovation programme under grant agreement No 681858,
AIRMES project, http://www.airmes-project.eu project

2Full list of AIRMES partners is: AIS, ATOS Origin, Cran-
field University, ISQ, L-UP, MEGGIT, M2P Consulting, ON-
ERA, PTC, TAP, Technische Universiteit Delft, Tekever. Ad-
vance Level Core Partners also involved in AIRMES are Thales
and Airbus

some correctness features as well as some performance
aspects and to support safety and security assessments.
ONERA is also in charge of the safety evaluation.

3 Gathering the specification

At the first stages of the project, E2E system specifica-
tion/documentation encompassed a lot of documents,
each of them representing a piece of information about
the system. Each of those documents uses its own de-
scription language and adresses one or several concerns,
inside a given perimeter at a given level of detail. At
this moment, it is difficult to say exactly what is the
documentation of the whole E2E system, and hence
impossible to demonstrate that this documentation is
complete and consistent.

From this point, the approach has been to gather all
those pieces of information about the system, to iden-
tify their commonalities and eventually to have a way
to “query” and reason about the resulting information
base.

Querying and reasoning about the information
means that this information must be formally mod-
eled. Relying on a Domain Specific formal Modeling
Language (DSML) has become a standard in such sit-
uations. The most current approach is then to first
fully define the syntaxes and semantic of the DSML
and then to describe the architecture itself using the
defined DSML. However this approach does not ad-
dress the issue of the heterogeneity of the inputs, un-
less defining a very complex DSML which can be hard
to manage if monolytic.

The approach followed during this project differs
from the most standard ones by two ways:

e based on the available inputs, a co-construction
process has been used to build at the same time
both the model of the E2E system and its meta-
model. This approach has some strong similari-
ties with the so called free-modeling approach de-
scribed in the following work [3].

e instead of trying to build a unique DSML, a meta-
model for each different input has been built. The
commonalities being managed by using reference
to the first model or meta-model introducing the
corresponding item(s).

To support this approach, we relied on WEIRD, an
ONERA specification language for expert modeler (an-
terior version of the language has been introduced in
[1]). WEIRD provides some fundamental constructions
to define concepts, entities, relations between model
elements (with the special case of applications) and
functions (between model elements and primary types
as integer or boolean) as well as a rather rich expres-
sion language that will be used to describe some model

View/Partial
models

Operations ||| Structure] Exchanges

emr)

. User Languages
[Language A } Language B ‘

Weird
Basic arithmetics expression }—> card exp, +, —, %

Quantified Boolean Layer }—> v, 3

]<—>_',/\,V, :>7:f?é

}—> true/false, boolean vars

Boolean Layer

Pseudo-Boolean Layer

knowledge/constraints,

Y Yo Yo Yo P

Base Laye !
et solving methods
Propositional Logic Basic
Arithmetics

Fig. 1. Architecture of the modeling tooling

elements as well as to query the model for assessments
or simple observations. WEIRD typing is very flexi-
ble (encompassing subconcepts, multiply typed or un-
typed entities), in fact typing is considered (internally)
as a relation special case between entities and concepts
(some would say a metarelation). WEIRD also offers a
modularity mechanism, by the world and derives key-
words. When focusing on meta-modeling, this modu-
larity will be used to separate the different DSML as
well as to differentiate some abstraction levels inside
them. For now WEIRD semantics only have a prag-
matic definition (ONERA prototype being the refer-
ence implementation) but a denotational or at least
translational one could be produced in terms of propo-
sitional logic. WEIRD input concrete syntax is textual,
then it has two concrete rendering syntaxes a textual
one (the same as the input syntax) and a graphical one.
The graphical rendering syntax is customizable, offer-
ing the modeler to define full domain specific languages
and not only a dedicated meta-model [5].

Resulting WEIRD tool architecture and usage
overview is presented in figure 1. In this figure, the
proposition logic and basic arithmetics roots are re-
called, as well as the different language enrichment
layers that constitute the WEIRD language. Illustra-
tion of its usage is also represented with the example
of two user languages A and B built upon WEIRD as
well as two languages A’ and A” built upon A. On
the top of figure 1 , user partial models/views are also
represented, several views being associated with each
corresponding language. What does not appear in this
figure is the fact that each user language may be consti-
tuted of two parts one mandatory describing the meta-
model from which a textual concrete syntax will be di-
rectly cascaded; and one optional offering to customize
the graphical rendering of the diagrams associated to
the language.

AIRMES_Language

AIRMES_Language_Structure

e i

AIRMES_Language_Logical_Structure

E’N“\ AIRMES_Language_Behaviour

AIRMES_Language_Logical_Behaviour

BPMN_Sublanguage

()

J—A J

AIRMES_Languaaaéil??hysicaI_Structure

AIRMES_Lanuaggfﬁn%%loyment_Structure

()

\ J

Fig. 2. Graphical view of the links between the user languages that were produced or used in AIRMES

Sequence of Operations:

Techno

Seq. Number Operation Title Dperation Description

enabler
Alternative a: MAREP reporting
0PS-01a Defect reporting (MAREP) - During planned line maintenance
generating a non-routine work
- AMT reports the defect on his mo DR

- McCC, production leader and T/S & DR

Fig. 3. Operational scenario extract in Excel

Figure 2 presents the AIRMES produced languages
where three structural languages representing three ab-
straction levels were used, as well as a behavioural
language, itself based on a BPMN-inspired language
(BPMN standing for Business Process Model and No-
tation[7]).

To build a standard architecture description of the
E2E system studied in AIRMES project, relevant doc-
uments were chosen. They had different natures (dif-
ferent diagrams with different notations, full-text doc-
uments, tables) and were describing different aspects
of the system: behavioural as well as structural. Be-
cause written by business experts with a high practical
knowledge, this input mainly focus on physical level
items or even on deployed level items (as opposed to
logical ones). But anyway, those input elements were
first took as they were: a mix of information from those
different (and not yet formalized) abstraction levels.

For instance, behaviour description had the form of
Microsoft Excel tables (see Figure 3) describing oper-
ational scenarios as the most representative sequences
of operations taking place to deal with the major main-
tenance situation an MRO (Maintenance, Repair and
Overhaul) has to face. Some scenario items were deco-
rated with rationale formulated as business rule (that
would have taken place in a logical level description).
On the opposite, some indications on equipment or
human roles were sometimes refering to deployed el-
ements.

Applying the co-construction process, as much raw

marepStart

mayBeFotmeedBy

-aFlrdAMT * . SpeepEet -

i sequence
itOfPerformer

_v schdopOia activiyor ;(
= - - pefformer@f-

RwithiiskiobileDey

[sequence

OfPerformer

WR g -

—

Fig. 4. Graphical view of the Weird code describing
the same operation as figure 3

information as possible was extracted from every input
to the co-constructed formal specification languages
and models, as if building a knowledge database (and
its scheme at the same time) (see Figures 4 and 5).

Concretely every input has first been considered sep-
arately, producing a single model file. Each input in
a set of inputs having the same document nature was
using and contributing to the same user langage defi-
nition.

The second step has been to integrate those models
and languages. Here the tool was helping by pointing
at redundancy in entities, concepts or relation defini-
tion. Use of some known business rules or some log-
ically induced and abducted knowledge offered us to
both check the obtained model consistency as well as
to complete the model where possible. Of course, dis-
cussions with experts complemented this investigation
to correct or complete the resulting model.

The result of this first phase is a consistent model
and language set (see figure 2) , i.e. no knowledge item
couple is contradictory. Completeness is not reached
but in such contexts as systems of systems and socio-
technical systems this should not be considered as a

AIRMES Language Loaical Behaviour

HumanPerformer

|sPa|‘t©rWﬁ'§.f0| mer

Bp:ritlan Tash

—

opStepOf
MTNEvent
Event

o |

Fig. 5. Graphical view of the behaviour metamodel
produced to support AIRMES operational scenarios
(deriving from a classical BPMN, not shown here)

blocking property since this is a consequence of the
nature of those systems by itself (no stakeholder has
a complete full-detailed view of the whole and some
elements are not fully known).

Note that, at this point, the model contains too
much information to offer a suitable graphical view
that would offer a human the opportunity to efficiently
obtain information on the system.

The second phase is then to exploit this model. This
may take place in multiple directions and is supported
by WEIRD prototype with what could be called query
based diagramming. The idea is to build new diagram-
s/views of the same model following some user queries.
Those queries may be very basic as a concept break-
down into sub-concepts and related entities (leading to
a kind of taxonomy diagram), a relation instanciation
diagram (showing all entity linked by the selected rela-
tion) or an entity focused diagram (all knowledge about
a given entity). Each of those basic queries may be ad-
justed afterwards by some items deletion or addition
to build some more useful diagrams.

A first exploitation of the model via this technique is
the discussion with experts based on some focused ex-
tractions of the model to check and improve its correct-
ness with regards to the reality (one could talk about
soundness). This direction will not be developped any
further in this paper.

Logical

Capability
Taxonomy

Service
Taxonomy

Enterprise
Vision

Capability
Dependencies

Service
Interfaces

Standard
Processes

St
Functions

L
Node Types

L2

Logical
Scenario

L3

Interactions.

L4

Logical
AE!NIUES

Resource
Types

Resource
Structure

D1

D2

Resource
Connectivity

Resource
Functions

Effects

Service States

Logical States

Resource
States

Service
Interactions
Logical

sequence

Resource
Sequence

Performance
Parameters

Service I/F
Parameters

L7
Logical Data
Model

Physical Data
Model

Master Data || Deployed

REgRvEd Resources
g "o v

Fig. 6. NAF v4 viewpoints overview grid (partial)
with AIRMES relevant views emphasized

Another direction is to automatically produce an ar-
chitecture documentation of the system that conforms
to a standard as the NAF.

4 Standardizing the architecture docu-
mentation

Let’s first clarify some definitions, the architecture we
were aiming to document is defined in the ISO/IEC
42010[4] as

Fundamental concepts or properties of a sys-
tem [enterprise] in its environment embodied
in its elements, relationships, and in the prin-
ciples of its design and evolution

Following the same standard, the architecture descrip-
tion is made of architecture views, defined as:

Work product expressing the architecture of a
system from the perspective of specific system
concerns.

As a consequence, it is important to understand that
there is not a single “architecture diagram” (do not
look for it in this paper) but, on the opposite, that
the architecture documentation is a set of architecture
views documenting system concerns via a set of dia-
grams (some of which are introduced in the coming
chapters).

In this study, selection of the system concerns was
based on available specification documents. Organiza-
tion of those concerns and guidance for producing the
relevant views rely on an architecture framework: the
NAF6].

By organizing the documentation in standard view-
points and associated views, NAF offers to explicit the
intent of each documentation element (see [6]). NAF
introduces a lot of standard views, organized as a grid

HUMANROLE

HumanRole

ProductionLeader ~AMT

A A

Troubleshooting AC Englineer mcc

Fig. 7. Example of produced NAF-R1 diagram: sub-
types and instances of human roles introduced by dif-
ferent documents are here organized as a typology dia-
gram. Lacking or redundant roles are then more easily
identified by business experts.

mpc,- : ' FleetEngineer

v v

e "

0 1
] e
' '

with roughly the concern nature as the horizontal di-
mension and the abstraction level as the vertical di-
mension (see figure 6). Only the most relevant views
to AIRMES were retained for the study.

Then the way they may be extracted from the whole
model have been defined to be able to produce them
automatically using the query based diagramming abil-
ity of WEIRD.

For instance, the first column of the NAFv4 grid fo-
cuses on providing taxonomies of the items appearing
in the architecture description. This can be produced,
for any concept of the model chosen as root, by building
the tree of all its subconcepts and all instances of each
of those concepts. Depending of the chosen concept
as root, NAF-L1 (logical level), NAF-R1 (physical/re-
sources level) or NAF-D1 (deployed level) can be pro-
duced for documentation purposes. Those views being
updatable at any moment from the actual version of
the model (see Figure 7 for a partial example). Other
abstraction layers had not been developped during the
project but the mechanism would have been the same.
Others “columns” of the NAF are considered (see fig-
ures 8 and 9 for examples), and even for those that were
not selected, the principles would, again, have been the
same.

Having put in place this documentation production
chain then ensures that standard or customized dia-
grams may be automatically updated when any knowl-
edge is modified, added to or removed from the system
model.

In fact, producing NAF compliant diagrams is really
just a simple application of the query based diagram-
ming mechanism. More generally, this mechanism can
be seen as a relevance filter of a set of knowledges to-
wards the information need of a user. The idea is to

CcD

AC _Engineer AMT

U§E_S

-

usés

Troubleshooting *

Fig. 8. Example of produced NAF-R2 diagram: iden-
tification of all the users of a system

Fig. 9. Example of produced NAF-R2 diagram: data
exchanges of a system, here a knowledge base, with
other systems.

extract information that matches a user profile (role
played, skill/interest) and/or an information request.
For example “a network expert seeking information of
connectivity of the equipment E” or a “business stake-
holder asking for connectivity inside the system” will
correspond to different formal requests (each of them
corresponding to columns 3 of NAF-v4 grid) that will
be done to the model to first select relevant knowl-
edge and then organize it into a diagram (in our proto-
type tool that diagram may then be adjusted: layout
change, items removal, ...). Note that inputs are of-
ten very technical, and to give someone a high level
view, extracting information is not as simple as keep-
ing or dropping knowledge items but may require to
“abstract” some of them. A typical example would
obviously occur in the second request of the above ex-
ample: any wires, hubs or other technical communi-
cation equipments will not be considered as relevant
because of the high level view a business stakeholder
is expecting; but the path that these communication
equipments create between two relevant equipments or
platforms then has to be “abstracted” to fulfill the con-
nectivity aspect of the request.

Readability is also a key in the production of the
documentation, and for this purpose each produced di-
agram should contain a limited number of elements. As
a consequence the whole documentation is made of an

sequence

scenario04 first

sequence
deferOfRepair

. fernative ""'";ifférnntixg_
repair 7 defer

alternglti\re

alternitive
sequi: ce

scldo scldoplba

sequi ce

Fig. 10. Scenario extract: Operations contain oper-
ational steps, alternatives link a decision point to an
operation depending on some observable

important number of diagrams. That point leads to
the perhaps trivial but not yet fully accepted remark
that producing paper-based snapshots of the architec-
ture diagrams may not be the most effective way to
document an architecture as compared to interactive
exploration with a tool.

5 Evaluating indicators

Besides some boolean conformity checks, some other
indicators may be computable early in the architecture
definition process. Of course, they are mainly high level
ones but anyway they are useful to support decision
maker by comparing several candidate solution scores
with respect to these indicators. One example is the
worst scenario path durations.

Operational scenarios may contain several starting
events, several ending states, and, between them, dif-
ferent sequences of operations, of choices, of joins may
take place. In our case study, scenario are sets of linked
operations. Each operation is a sequence of Opera-
tional Step, and each operational step may contain sev-
eral actions (that can take place in any order and/or
concurrently). Finnest grain, Operational Step or Ac-
tion, is supported by function(s) allocated to so called
“Enablers”. Technology providers are able to provide
worst case execution times of all the functions allocated
on the enabler they are in charge. A rough worst case
duration time can then be calculated from the preceed-
ing knowledge? (see listing 1):

e each action is given a cost based on the sum of
each of its supporting function costs, sum of access
times to each enabler involved as well as an estima-
tion of the human working effort associated to the
operation (acquisition of the computation results
and/or human actions to realize consequently),

3the following description is not the exact way the computa-
tion occurs but illustrate the idea

|_sc04npm
|_sc04;:pﬂﬁ

defer(]f;;epair

-

" o
|sctdop0sb | | scosopoba

Fig. 11. Scenario path abstraction: Operational steps
are ignored, observable of alternatives is ignored to
link all elements with the abstract relation mayBeFol-
lowedBy. The decision point by itself is kept because
it may convey some associated cost.

this cost is then added to the costs correspond-
ing to the same computation on actions that are
grouped under the same operation step to produce
the operational step level cost.

e then operational step costs are sumed up into op-
eration level costs

e then every scenario path cost is computed by sum-
ming the operation cost of any operation being on
the path

Note that a scenario path is not a notion that is readily
available, since relation between the operations are not
always a sequence relation but may also be a decision
point—alternative couple or a join point (see 10).

An abstraction of those different kinds of relations
is hence first done into a single more abstract relation
that offers to easily compute paths (see 11).

To achieve this the facts system of our prototype
has been used: a fact is an expression of the form:
for (typed) variables such that “selection expression”
then add “knowledge” to the model. This system is
the same that is used to encode business rules that
complete the model without requiring that the user
explicitly provides some information. Even if it may
not be the best way to do so, a simple example is a fact
encoding that a binary relation r is symetric by adding
the symetrical case every time a couple is inserted in
the relation r by the user. That would be encoded fact
any (el,e2) in r | true ==> (e2,el) in r.

Listing 1: Listing of the cost computation expressed in
Weird (partial)

/* compute the associated to a
function inside an operation x/

fact any entities o:Operation,f::Function
| (o,f) in supportingFunction
—> costByFunction[o,f] =

cost

analysisTimeOf(f) +
processTimeOf (f, hostedBy (f))+
accessTimeOf (hostedBy (f))
/* compute the cost at operation level
based on function by function
fact any entities o:Operation |
=—> cost [o] =
sum of
costByFunction (o, f::Function) |
((o,f) in supportingFunction)

costs *x/
true

/+x Compute the total Cost of every path
from a start point to an end one x/
fact any entities s:StartEvent ,e:EndEvent

| true
=—> totalCost[s,e] =
sum of cost[o:Operation]
| ((s,o0) in "“mayBeFollowedBy and
(o,e) in "mayBeFollowedBy)

In addition to numeric indicators measuring for ex-
ample times, costs or number of items having some
properties, boolean and enumeration indicators may
also be computed. Here are some examples of indica-
tors envisaged or dealt with in the project: all func-
tions are allocated to at least one equipment (boolean
version), list of functions that are not allocated to any
equipment (enumeration value), list of moves between
location a technician has to make during a given sce-
nario, “undoable” operations (operation for which at
least one supporting function is either not allocated
or allocated to an equipment (or a human) that can
not execute it (having a role to which the function can
not be assigned — by lack of skill or accreditation for
instance)

6 Safety assessment support

The approach followed in this study is close to the one
described in [2]. Our first plan concerning improve-
ment of safety assessment support from the architec-
ture model lied in enforcing the link between the archi-
tecture model and the one AltaRica uses for its analy-
sis. More exactly to make the Altarica input format a
rendering format of our prototype.

After a further observation of the system behaviour
descriptions we had, we realised that, at the level of ab-
straction we were working, the AIRMES system under
study did not encompass any safety mecanism like re-
dudancy or voting. In fact only some operations could
fail and some others, involving checks, could act as bar-
rier to fault propagation. This specific context leads us
to change our plan and to deal with the fault propa-
gation computation directly in our prototype without
relying on AltaRica.

To put it simple, the safety assessment relevant to
this context needs three inputs: the operational paths,
identified operations that may fail or underperform and
identified operations that would detect and/or correct
a fault propagation *.

4In the context of this study, those subsets of operations are

Operational paths are in fact abstraction of differ-
ent links between operation, the sequence between the
operations of course, but also the choices/alternatives
and join/merge operations. Those paths are the same
as the ones computed for the cost indicator computa-
tion (see 5 for a full description).

Depending on their nature, operation may introduce
fault, or be considered as neutral (propagating faults
without introducing new ones nor modifying existing
ones), or they may be barrier (detecting or correcting
faults).

To define the safety input language, in addition to
the three notions just mentioned, the concept of Fail-
ureMode was also added along with four associated en-
tities: ok,miss, lta (less than adequate) and opposite.
Those failure modes are associated to operations via a
function hasFailureMode indicating when an operation
may introduce a fault of this nature. They may also
be associated with operation by the mitigates applica-
tion indicating that an operation will modify a given
fault info a different nature of fault (if the latter is ok,
then the operation is fully correcting the fault but it
may also only detect the fault and then a lta becomes
a miss for example).

The idea then is to check that, for any operation that
may become faulty, the fault can not propagate to a
critical operation (one for which the fault would not
be acceptable) — said differently to check that there is
a barrier (an operation that at least detects the fault or
even better repairs the fault) on the path between any
possibly faulty operation and a critical operation. In
WEIRD, it has been possible for us to write an expres-
sion building the list of all operations that may lead to
a given operation and failure mode couple (see listing
2). This occurs in two cases, either an operation may
introduce the unwanted failure and no barrier exists
between the operation and the observed end point, or
an operation introduces a different (worse) failure that
a barrier on the way reduces to the —still undesirable—
failure that reaches the end point (without being it-
self reduced again by another barrier). Note that the
expression in listing 2 does not take into account a “re-
duction” of the fault in more than two steps. In prac-
tice we could find no example of such reduction and we
strongly believe that this is representative enough of a
lot of contexts, taking into account the little number
of fault “levels” in presence. For example a first bar-
rier may be able to reduce both less than adequate and
opposite levels to a miss (detection barrier) and then
a second barrier may reduce a miss to ok (correction
barrier).

disjoints: barriers are safe and never fail

Listing 2: Building the list of operation that may cause
a miss at end of scenario 09

observe EndwithAMiss=
entities o:UnsafeOperation |
(0,sc09End) in “mayBeFollowedBy and (
(hasFailureMode (o, miss) and
not (exists entity b:Barrier|
isDefined (mitigates (b, miss))
((o,b) in "“mayBeFollowedBy) and
((b,sc09End) in “mayBeFollowedBy)))
or
(exists entity f:FailureMode |
hasFailureMode (o, f) and
(exists entity b:Barrier |
mitigates (b, f)==miss and
((o,b) in "“mayBeFollowedBy) and
((b,sc09End) in “mayBeFollowedBy)
not (exists entity c:Barrier|
isDefined (mitigates (¢, miss))
((b,c) in "“mayBeFollowedBy and
((c,sc09End) in “mayBeFollowedBy)))))

and

and

and

7 Security assessment support

A similar approach was initiated towards supporting
security assessment. Security experts identified some
primary assets: data with an associated security expec-
tation as availability, integrity or confidentiality. The
concept of PrimaryAsset has hence been added to a
security language inheriting from the architecture lan-
guage. In addition, three applications have been intro-
duced in the language to link data to security expec-
tations: (isAvailabilitySensible, isIntegritySensible and
isConfidential).

With those elements, knowledge is added to the ar-
chitecture model to describe the security expectations
with regards to data.

Then a supporting assets identification process may
be used to:

e enumerate the supporting assets of a given pri-

mary asset or

e to identify the security expectations (and hence

requirements) a given technology enabler has to
fulfil depending upon the primary asset it, or one
of its parts, may manipulate (considering or not
simple data transit via the enabler).

Listing 3: Building the list of supporting assets from
the primary ones

// fill —in a manipulateData relation

fact any entities (el,e2,d) in communicatesData
| true => (el,d) in manipulateData

fact any entities (el,e2,d) in communicatesData
| true => (e2,d) in manipulateData

// Append to any data having a security

// expectation the PrimaryAsset type

fact any entities d:Data |
isConfidentialitySensible (d) or
isAvailabilitySensible(d) or
isIntegritySensible(d) => d:PrimaryAsset

// use the previous elements to fill —in
the isSupportingAsset relation that identifies
g
// all primary to supporting assets links

fact any entities e:Enabler ,p:PrimaryAsset

| (e,p) in manipulateData
—> (e,p) in isSupportingAsset

// To be able to build an exploitable table
// of primary —> supporting assets
fact any entities (e,p) in isSupportingAsset

| true =—> (p,list ,e) in supportingAssetList

In listing 3, a relation is built that links primary as-
sets and their supporting assets. This relation is then
available to build more precise requests like the ones
suggested in the previous paragraphs. It is also used
to build a slightly reworked version of itself (last lines
of the listing) supportingAssetList from which our pro-
totype is able to produce a CSV file. That file may then
be opened with an Excel-like tool, for instance to con-
tinue the analysis in a dedicated Excel Template based
process (as it was the case in the AIRMES project).

Of course the security analysis is far from being com-
pleted with only those elements, but we did not have
the opportunity to experiment further in the context
of this specific project.

8 Conclusion and perspectives

In this paper, a case study of modeling a complex
socio-technical system was introduced. System com-
plexity leads to distribute its specification among sev-
eral contributors with hers own skills, focus and lan-
guages. In such context, consistency and completeness
are no more ensured and we believe that formal model-
ing is the best way to keep this deviation under control.
Choosing any formal language and using it to (try to)
model all aspects of all the system is no more an option
in this context considering the size of the final model
and the variety of concerns to be addressed. On the op-
posite we propose to use a minimal formal language to
build both submodels of the system and their accom-
panying dedicated languages — as close as possible to
the ones chosen by the specification contributors (or to
develop import/export tools between the contributor
favorite language and the formal one).

We also propose to use standard views promoted in
framework like the NAF as rendering views and not
automatically as input views. If a viewpoint definition
may guide one to produce its specification contribu-
tion, it should never be considered as a strict limita-
tion. Specification “pieces” with unavoidable overlap-
ping are a valuable input as soon as formally processed.
It helps in better identifying articulations between the
specification pieces, discussions to have when inconsis-
tency appears and finally bring a better system model.
In addition, as soon as the modeling is formal, then ren-
dering standard documentation becomes possible from
the whole set of inputs. From the experiment we led in
the ATIRMES project, a lesson learnt is that the level
of maturity required on specification inputs is hard to
define. With most partners, less architecture model-

ing aware, the process should have started earlier that
what we have done, to guide them and devise the lan-
guage and the information they may provide and give
them feedback on a very regular basis. With more ex-
perienced ones (from the architecture modeling point
of view), early integration may not be the best option
since they may “jump” from languages to languages to
model and discuss internally. Trying to reflect those
internal steps in the global process is time consuming
without showing a strong added value.

This work also strenghten our position that an agile
modeling approach is the most appropriate in that kind
of context. Making the language formality requirement
and the agility requirement compatible needs that the
tooling evolves and integrates a smarter support to the
architects. One issue lies in the verbosity of formal lan-
guages that makes it difficult to fully describe a large
system manually. Business rules, domain rules, project
rules... should be encoded and exploited to better sup-
port the architect modeling work. For example, know-
ing constraints put on an allocation relation may be ex-
ploited -by an underlying constraints solver- to suggest
a valid one to the architect during the modeling process
and to quickly react and adjust the proposition as the
architect continues to manually add knowledge until
she accept the tool proposition. Typing of elements in
the architecture may also be computed inspired from
what is done in some programming languages. Inputs
merging is another key point in modeling a complex
system, exploiting knowledge on the intent of the input
and/or the contributor itself may offer a tool to better
support the architect in its merging decision making.
For example, some reliability estimation on given topic-
s/elements may be associated to sources of information
and then taken into account in the merging process like
in the information fusion research domain. Detecting
items that are given different names in different inputs
but are in fact one single item, or, on the opposite, a
same name being used to designate to different things
are issues that have some solutions from research on
ontologies alignment that may benefit in the context
of architecture modeling. A constraint solver may also
be used in order to deal with lack of completeness of
the model. Indeed, incompleteness is almost inherent
to system of systems modeling where detailed informa-
tion about some elements may not be shared to every
partner by the owner of the elements, and/or where
the dynamicity of the whole system bring some incer-
titude upon the exact configuration in place at a given
evaluation time. In those cases, evaluation could be
made upon possible values computed by a constraint
solver where information is missing, leading to being
able to compute values (even if they are approxima-
tion, maximisation, ranges...) where no computation
at all could occur otherwise. It can also support model-

ing by informing the architect modeler when the model
can no longer satisfy some rules whatever the comple-
ment of the model is and/or suggests some modeling
action (like the introduction of some additional enti-
ties). All of these perspectives are currently envisaged,
in addition to some syntax improvement of our proto-
type tool.

By the effort that had to be paid by manually doing
some clearly automatable tasks, the AIRMES project
emphasized the work that still needs to be done in im-
proving the modeling process support by a tool. But
it also conforted us in the position that formal mod-
eling is required to detect consistency issues and lack
of information and consequently guide discussions and
specification work in a large project, to eventually get
a highly valuable (formal) system model from which to
obtain accurate and reliable documentation and eval-
uations.

References

[1] Pierre Bieber et al. “MIMOSA: Towards a model
driven certification process”. In: 8th Furopean
Congress on Embedded Real Time Software and
Systems (ERTS 2016). TOULOUSE, France, Jan.
2016. URL: https://hal.archives-ouvertes.
fr/hal-01289704.

[2] Pierre Bieber et al. “Model Based Safety Assess-
ment of Concept of Operations for Drones”. In:
2F-FEtudes probabilistes de sireté 2 (2016).

[3] Fahad R Golra et al. “Using free modeling as
an Agile method for developing domain spe-
cific modeling languages”. In: Proceedings of the
ACM/IEEE 19th International Conference on
Model Driven Engineering Languages and Sys-
tems. ACM. 2016, pp. 24-34.

[4] ISO/IEC/(IEEE). ISO/IEC 42010 (IEEE Std)
1471-2000 : Systems and Software engineering -
Recomended practice for architectural description
of software-intensive systems. July 2007.

[6) Anneke Kleppe. “A Language Description is
More than a Metamodel”. In: Fourth Interna-
tional Workshop on Software Language Engineer-
ing. Grenoble, France: megaplanet.org, Oct. 2007.

[6) NATO. NATO Architecture Framework version 4.
URL: http://nafdocs.org/viewpoints/ (visited
on 2017).

[7] Object Management Group. Business Process

Model and Notation. URL: http://www . bpmn .
org/ (visited on 2017).

