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Abstract

Let T be a tree on n vertices and with maximum degree ∆. We show that for k ≥ ∆ + 1
the Glauber dynamics for k-edge-colourings of T mixes in polynomial time in n. The bound
on the number of colours is best possible as the chain is not even ergodic for k ≤ ∆. Our
proof uses a recursive decomposition of the tree into subtrees; we bound the relaxation time of
the original tree in terms of the relaxation time of its subtrees using block dynamics and chain
comparison techniques. Of independent interest, we also introduce a monotonicity result for
Glauber dynamics that simplifies our proof.

The Glauber dynamics is a Markov chain over the set of configuration of spin systems in the
vertices of a graph. In this paper we consider the discrete-time Metropolis Glauber dynamics and
study the particular case of sampling k-colourings of graphs. The Glauber dynamics has attracted
interest from many different areas. In statistical physics for example, this dynamics gives a single-
update sampler for the Gibbs distribution, with the particular case of k-colourings corresponding
to the antiferromagnetic Potts model at zero temperature. In computer science, rapid convergence
of the Glauber dynamics gives a fully polynomial-time randomised approximation scheme for the
number of k-colourings of a graph, a counting problem that is ♯P -complete. Finally, this dynamics
is a popular Monte Carlo method for simulating physical systems as it is both relatively simple and
easy to implement. The efficiency of these algorithms depends on the time the chain takes to reach
equilibrium, known as the mixing time. This is the main object of study in this paper.

A well-known conjecture in this area states that the Glauber dynamics for k-colourings of graphs
with n vertices and maximum degree ∆ mixes in polynomial time in n for every k ≥ ∆+ 2. This
bound on the number of colours is best possible as the chain might not be ergodic for k = ∆+ 1.
Jerrum [16], and independently, Salas and Sokal [25], proved that polynomial mixing happens for
k ≥ 2∆. Vigoda [30] improved the bound to k ≥ 11∆/6 by analysing the flip chain. Recently,
Chen and Moitra [3], and independently, Delcourt, Perarnau and Postle [4] showed that polynomial
mixing holds for k ≥ (11/6 − ǫ)∆, for some small ǫ > 0. This is the best known bound for general
graphs. The conjecture has also been studied for several classes of graphs such as graphs with large
girth [8, 14], random graphs [10, 23], planar graphs [13] and graphs with bounded tree-width [29].

One of the central topics in the area is the study of Glauber dynamics on trees. Although it is
quite simple to sample a uniformly random k-colouring of a tree, Glauber dynamics on trees often
shows an extremal behaviour that helps in the understanding of its performance on general graphs.
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In this context, two important thresholds appear: the uniqueness threshold at k = ∆+ 2 [17] that
corresponds to the existence of an infinite-volume Gibbs distribution under any boundary condition
and the reconstruction threshold at k = (1 + o(1))∆/ log ∆ [27], which marks the existence of an
infinite Gibbs distribution under free boundary conditions and has connections to algorithmic
barriers for local algorithms on trees and sparse random graphs [1].

Most of the existing results study the complete b-ary tree, (where ∆ = b + 1). Martinelli,
Sinclair and Weitz [22] proved that the Glauber dynamics for k-colourings on b-ary trees with n
vertices mixes in time O(n log n) for every k ≥ ∆ + 2 and for any boundary condition. Hayes,
Vera and Vigoda [13] showed that this dynamic mixes in polynomial time (even for planar graphs)
provided that k ≥ C∆/ log ∆ for some constant C and that it takes superpolynomial time to mix
for k = o(∆/ log ∆). Tetali et al. [28] refined this result showing that the threshold for polynomial
mixing coincides with the reconstruction threshold. The mixing time has also been studied beyond
the reconstruction threshold. Berger et al. [2] proved that the mixing time in a complete tree of
maximum degree ∆ is polynomial for k ≥ 3 and constant ∆. Lucier et al. [20, 19] obtained the
explicit polynomial bound nO(1+∆/k log∆) for every k ≥ 3. This result extends to any tree with
maximum degree ∆ and it is best possible up to the constant in the exponent [11, 19].

In this paper we initiate the study of Glauber dynamics for edge colourings of graphs by bound-
ing the mixing time for the dynamics on edge-colourings of trees with maximum degree ∆. To our
knowledge, there are no previous results specific to edge-colourings, although the results for vertex-
colourings of general graphs can be transferred as the set of edge-colourings of a graph corresponds
to the set of vertex-colourings of its line graph. Note that if a graph has maximum degree ∆, then
its line graph has maximum degree at most 2∆ − 2. Thus, the results in [3, 4] imply that the
Glauber dynamics on edge-colourings on any graph with maximum degree ∆ mixes in polynomial
time for every k ≥ (11/3 − ǫ)∆.

Edge-colourings behave quite differently to vertex-colourings. Vizing’s theorem states that an
edge-colouring exists if k ≥ ∆ + 1, although the line graph can have maximum degree 2∆ − 2.
Following the corresponding argument for vertex-colourings, we see that the Glauber dynamics
for k-edge-colourings is ergodic for every k ≥ 2∆. However, it is not known what is the smallest
k = k(∆) such that the chain is ergodic on every graph with maximum degree ∆.

The analysis for trees is simpler. The edges of a tree with maximum degree ∆ can be coloured
with k = ∆ colours, but no k-colouring exists for k ≤ ∆ − 1. However, at k = ∆, the Glauber
dynamics has multiple stationary distributions, as the colours on the edges incident to a vertex of
degree ∆ are frozen. It is not difficult to see that the Glauber dynamics on edge-colourings of a
tree with maximum degree ∆ is ergodic if k ≥ ∆ + 1. Note that this bound on k is roughly half
the bound for ergodicity of vertex-colourings in general graphs, as the maximum degree of the line
graph is at most 2∆− 2.

This paper shows that this dynamics has polynomial mixing as soon as it becomes ergodic.

Theorem 1. Let T be a tree on n vertices and maximum degree ∆ ≥ 3. For k ≥ ∆+1 the Glauber
dynamics for k-edge-colourings on T mixes in time nO(1).

The constant in the exponent obtained in the proof can be bounded by 60; we make no effort to
optimise it. Note that for a complete tree of constant degree ∆ rooted at v and k ∈ [∆+1, 2∆− 1]
we can find a k-edge-colouring such that the ball of radius R = ⌊log∆ n⌋ around v is frozen. Using
Lemma 4.2 in [12] for the discrete-time dynamics, this shows that the mixing time of the Glauber
dynamics for k-edge-colourings is Ω(n log n).
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Our theorem proves polynomial mixing when ∆ ≥ 3 and k ≥ ∆+ 1. If ∆ = 2, then the graph
is a path, so vertex-colourings and edge-colourings are essentially the same. Dyer, Goldberg and
Jerrum [9] proved that Glauber dynamics for k = 3 mixes in time Θ(n3 log n).

Part of our motivation for analysing edge-colourings of trees comes from the study of Glauber
dynamics in sparse random graphs. Hayes and Vigoda [14] proved that if a graph has girth at least
9, then Glauber dynamics on vertex-colourings using at least (1+ ǫ)∆ colours is rapidly mixing, for
any ǫ > 0. As sparse random graphs are locally tree-like, this result can be transferred to vertex-
colourings of random ∆-regular graphs, giving an asymptotic tight bound. It is an interesting open
problem to determine the smallest k = k(∆) such that Glauber dynamics mixes in polynomial time
for k-edge-colourings of a random ∆-regular graph.

The problem of sampling uniformly random edge-colourings of some particular graph is closely
related to some fundamental questions in combinatorics. For instance, 2n-edge-colourings of the
complete graph K2n correspond to 1-factorisations, and n-edge-colourings of the complete bipartite
graph Kn,n are in bijection with Latin squares. Markov Chain Monte Carlo methods have been
introduced to sample such combinatorial objects (see e.g. [6, 15]), but it is not known if they
rapidly mix. A promising approach to the problem is to find the smallest k = k(n) for which
Glauber dynamics mixes in polynomial time for k-edge-colourings of K2n or Kn,n.

Outline of the proof

We now give a brief overview of the strategy used to prove Theorem 1. The bound on the mixing
time of the Glauber dynamics will follow from bounding its relaxation time. We first show that it
suffices to bound the relaxation time of d-regular trees where d = k−1, which notably simplifies the
proof. To this end, we prove a monotonicity result on the relaxation time of the Glauber dynamics
that can be of independent interest (see Section 2.3).

The main idea of the proof is to recursively decompose the tree into subtrees, and study the
process restricted to each one. The decomposition approach has already been used in the literature
to bound the mixing time of the Glauber dynamics for vertex-colourings of trees [2, 19, 20]. To
analyse the decomposition procedure we need to study the associated block dynamics, which can
be informally described as follows: given a partition of the tree into subtrees, at each step we select
one subtree and update its colouring by choosing a uniformly random colouring that is compatible
with the boundary condition. We then use a result of Martinelli [21] on block dynamics to upper
bound the relaxation time of the whole process in terms of the relaxation time of each block, and
the relaxation time of the block dynamics. Our decomposition procedure will satisfy two properties,

i) the Glauber dynamics on each subtree is ergodic for every possible boundary condition;

ii) the number of recursive decompositions is small (i.e., logarithmic in the size of the tree).

Condition i) is necessary to apply Martinelli’s result on block dynamics. Moreover, if ii) holds,
the upper bound we obtain on the relaxation time is polynomial in n, with an exponent that is
independent from ∆ and k.

The splitting strategy is described precisely in Section 4.2. Informally speaking, to ensure that
ii) holds, at every step we split into several trees of at most half the size of the original one.
To ensure that i) holds, we make sure that every subtree has at most two edges incident to the
boundary, and that these two edges are non-adjacent. The latter condition is not necessary for
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k ≥ ∆ + 2 but it is crucial for the case k = ∆ + 1. The strategy is implemented by splitting the
tree so that all subtrees pend from a vertex, or an edge.

The second ingredient of the proof is a bound on the relaxation time of the block dynamics,
where each block corresponds to a subtree hanging from a root vertex. This dynamics is very
similar to the Glauber dynamics on the star spanned by the edges incident to the root, constrained
to a boundary condition. In Section 4.1 we reduce the block dynamics to an analogous problem:
bounding the relaxation time of list-vertex-colourings of a clique (the line graph of a star), where
the lists are given by the boundary constraints and each vertex is updated at a different rate. In
Sections 3.1 and 3.2, we use the weighted canonical paths method of Lucier and Molloy [19] and a
multi-commodity flow argument to bound the relaxation time of the list-colourings of the clique.

To conclude the proof in the case k = ∆+1, we need to obtain a bound on the relaxation time
of the block dynamics where the blocks correspond to trees hanging from a root edge instead of a
vertex. In this case, it suffices to study the list-vertex-colouring dynamics on the graph formed by
two cliques intersecting at a vertex, which we do in Section 3.3.

1 Preliminaries

Let G = (V,E) be a finite graph. The line graph Gℓ of G is the graph with vertex set E where
two edges are adjacent in Gℓ if and only if they are incident in G. We define some notions for
vertex-colourings of graphs, but these can be naturally transferred to the setting of edge-colourings
by considering line graphs.

For v ∈ V , the neighbourhood of v, denoted by N(v), is the set of vertices in G adjacent to v.
For k ∈ N, denote [k] = {1, . . . , k}. A (proper) k-vertex-colouring is a function µ : V → [k] such
that µ(v) 6= µ(u) for every u ∈ N(v). All colourings in this paper are proper. Let ΩV denote the
set of k-vertex-colourings of G. The set of k-edge-colourings (i.e., k-vertex-colourings of Gℓ) will
be denoted by ΩE. Throughout the paper, we use similar notation to distinguish the vertex and
the edge-version of each set or parameter.

For µ ∈ ΩV and U ⊆ V , we denote the restriction of µ to U by µ|U . We denote by µ(U) the set
of colours in U . We write Ωµ

U to denote the set of σ ∈ ΩV which agree with µ on V \ U , i.e., with
σ|V \U = µ|V \U . Informally, we think of Ωµ

U as colourings of U which are compatible with µ in the
boundary of U .

A list assignment of V is a function L : V → 2[k]. An L-colouring of G is a k-colouring µ ∈ ΩV

satisfying µ(v) ∈ L(v) for all v ∈ V . We denote by ΩL
V the set of all L-colourings of G. Note that

if U ⊆ V and H is the subgraph of G induced by U , then any µ ∈ ΩV yields a list assignment for
U where Lµ(u) = [k] \ µ(N(u) \ U). This gives a natural bijection between Ωµ

U and ΩLµ

U .
In this paper we will focus on k-edge-colourings of a tree G on n vertices with maximum degree

at most ∆. Note that Gℓ is a union of cliques of size at most ∆ such that two cliques intersect in
at most one vertex and every cycle is contained in some clique.

The vertices of G with degree 1 are called leaves and the vertices with degree at least 2, internal
vertices. If T is a subtree of G, we define the exterior and interior (edge) boundary of T respectively
as

∂GT = {e ∈ E \ E(T ) : N(e) ∩E(T ) 6= ∅} ,

∂GT = {e ∈ E(T ) : N(e) ∩ ∂GT 6= ∅} ,
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where N(e) is the set of edges in G incident to e. If G is clear from the context, we will denote
them by ∂T and ∂T . We said that T has a fringe boundary if all edges in ∂T have an endpoint
that was a leaf of T . We will use t to denote the size of ∂T .

In this paper, we will always consider t to be a constant with respect to n,∆, k. In this sense,
for functions f and g we use f = Ot(g) if there exists c = c(t) such that lim sup f/g ≤ c(t). We
also use f = Θt(g) if f = Ot(g) and g = Ot(f).

1.1 Markov chains and Glauber dynamics

Let Xt be a discrete-time Markov chain with state space Ω. It is often convenient to consider
a continuous-time analogue of (Xt). For that, consider the continuous-time Markov chain with
state space Ω and transitions given by non-diagonal entries of the generator matrix L (the diagonal
entries are such that each row of L adds to 0). In a slight abuse of notation, we denote the chain
by L. Here L[x → y] represents the rate at which x jumps to y 6= x. For a dynamics L we write
(x, y) ∈ L if and only if L[x → y] > 0.

Given probability distributions ν, π on Ω, we define their total variation distance as

dTV (ν, π) =
1

2

∑

x∈Ω

|ν(x)− π(x)| .

Let L be an ergodic Markov chain with stationary distribution π. The mixing time of L is defined
as

tmix(L) = inf

{

t : max
x∈Ω

dTV (ν
t
x, π) < 1/4

}

,

where νtx is the probability distribution on Ω obtained by running L for time t starting at x. The
spectral gap of L, denoted by Gap(L), is the second smallest eigenvalue of −L. The relaxation time
of L is defined as

τ(L) =
1

Gap(L)
,

and it satisfies (see, e.g. Theorem 12.3 in [18]),

tmix(L) ≤ (n log k)τ(L) . (1)

For a graph G = (V,E) with V = {v1, . . . , vn} and a positive integer k, the Glauber dynamics
for k-vertex-colourings of G is a discrete-time Markov chain Xt on ΩV , where Xt+1 is obtained
from Xt by choosing a v ∈ V and c ∈ [k] uniformly at random, and updating v with c if this colour
does not appear in N(v).

The continuous-time Glauber dynamics for k-vertex-colourings of G with parameters (p1, . . . , pn)
is a continuous-time Markov chain on ΩV with generator matrix given by

LV [σ → η] =

{

pi if σ, η differ at vi,

0 otherwise.

One can imagine this stochastic process as every vertex vi having an independent rate kpi Poisson
clock. When the clock at v rings, one chooses a colour c ∈ [k] uniformly at random and recolours
v with c if possible. We call LV uniform if pi = 1/k for every i ∈ [n]. As LV is symmetric for any
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set of parameters (i.e. LV [σ → η] = LV [η → σ]), if LV is ergodic then its stationary distribution π
is uniform on ΩV .

Note that the continuous version updates vertices faster than the discrete one. In particular,
we have LV = n(P − I), where P is the transition matrix of Xt and I is the identity matrix. It
follows from standard Markov chain comparison results (see e.g. [24]) that

tmix(Xt) = O(n tmix(LV )) . (2)

If G = (V,E) is a tree with maximum degree ∆ its line graph Gℓ is (∆ − 1)-degenerate (i.e.
every subgraph has a vertex of degree at most ∆− 1). It is known [7] that in this case the Glauber
dynamics LE for k-edge-colourings of G is ergodic provided k ≥ ∆+ 1.

For U ⊆ V and µ ∈ ΩV , denote by Lµ
U the dynamics defined by LV restricted to the set Ωµ

U .
Similarly, for a list assignment L of U , let LL

U be the dynamics defined on the state space ΩL
U . All

these chains are symmetric but their ergodicity will depend on the size of the boundary of µ in
U , and the size of the lists L(u) for u ∈ U . If ergodic, then their stationary distribution will be
uniform in the corresponding state space.

2 Comparison of Markov chains

This section introduces the methods in the analysis of the relaxation time of reversible Markov
chains that we will use later in the proofs. The first result is a unified framework of two well-known
chain comparison techniques. We then define the (reduced) block dynamics and present known
results on how this can be used to bound the original chain. Finally, we provide a result on the
monotonicity of the Glauber dynamics that will allow us to notably simplify the proof.

2.1 The weighted multi-commodity flow method

In this subsection we present a unified framework for two similar techniques for comparing the
relaxation time of two different Markov chains L and L′ on the same state space. These two
techniques are (1) the fractional paths (or multi-commodity flows) method [26] and (2) the weighted
canonical paths method [19]. Both methods are generalisations of the canonical paths method (see
e.g. [5]). The main idea of this method is to simulate the transitions of L′ using transitions of L in
such a way that no transition of L is used too often, to obtain an upper bound on the ratio between
τ(L) and τ(L′).

Consider two continuous-time ergodic reversible Markov chains L and L′ on Ω with stationary
distributions π and π′, respectively. In the following, we denote by ω : Ω×Ω → R a weight function
on the transitions of L. To each α, β ∈ Ω with (α, β) ∈ L′, we associate a set of paths Γα,β where
every γ ∈ Γα,β is a sequence α = ξ0, . . . , ξm = β, for some m ≥ 1 with (ξi−1, ξi) ∈ L for every
i ∈ [m]. We define a flow to be a function g : Γα,β → [0, 1] such that

∑

γ∈Γα,β
g(γ) = 1. The weight

of γ with respect to ω is defined as

|γ|ω :=

m
∑

i=1

ω(ξi−1, ξi) .

If the weight function ω is a constant equal to 1, then the weight of γ is simply denoted by |γ|, and
corresponds to the length of the transformation sequence.
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Let b := maxα∈Ω
π(α)
π′(α) . For every (σ, η) ∈ L we define its congestion as

ρσ,η :=
1

π(σ)L[σ → η]ω(σ, η)

∑

(α,β)∈L′

∑

γ∈Γα,β
γ∋(σ,η)

g(γ)π′(α)L′[α → β]|γ|ω .

Let ρmax = max{ρσ,η : (σ, η) ∈ L} be the maximum congestion over all transitions of L. We are
now ready to state the main lemma.

Proposition 2 (Weighted multi-commodity flows method). We have τ(L) ≤ b2ρmax τ(L
′) .

The proof of this result is based on the same ideas as the proofs of both the weighted canonical
paths method and the fractional paths method, providing a common framework for them. It is
included in the Appendix for sake of completeness, and follows from standard computations using
the variational characterisation of Gap(L) that involves the variance and the Dirichlet form. We
will not need this result in full generality in our proofs, but we believe it is interesting in its own
right and will use it in two particular cases.

The first case is when the stationary distribution of the two chains is uniform over Ω, and for
every pair (α, β) ∈ L′ the set of paths Γα,β consists of a single path γα,β, with g(γα,β) = 1. In this
case, Proposition 2 implies the result in [19].

Proposition 3 (Weighted canonical paths method). If π and π′ are uniform, then

τ(L) ≤ τ(L′) · max
(σ,η)∈L









1

L[σ → η]ω(σ, η)

∑

(α,β)∈L′

γα,β∋(σ,η)

L′[α → β]|γα,β |ω









.

In the second case, all transitions have weight ω(σ, η) = 1, and again both chains have uniform
stationary distributions. In this case, we obtain the following.

Proposition 4 (Fractional paths method). If π and π′ are uniform, then

τ(L) ≤ τ(L′) · max
(σ,η)∈L









1

L[σ → η]

∑

(α,β)∈L′

∑

γ∈Γα,β
γ∋(σ,η)

g(γ)L′[α → β]|γ|









.

Finally, we state a very simple corollary of Proposition 2.

Corollary 5. Suppose there exists a constant c > 1 such that for every α, β ∈ Ω it holds that

- 1
cπ

′(α) ≤ π(α) ≤ cπ′(α);

- 1
cL

′[α → β] ≤ L[α → β] ≤ cL′[α → β] .

Then, there is a constant K > 0 such that

1

K
τ(L′) ≤ τ(L) ≤ Kτ(L′) .

This result simply states that if two Markov chains have the same transitions with similar
transition rates, and similar stationary distributions, then their mixing time is also the same up to
a constant factor.
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2.2 Weighted and Reduced Block Dynamics

This subsection describes block dynamics and its reduced version. Informally speaking, block
dynamics is a generalisation of Glauber dynamics where one splits the set of vertices into “blocks”
(usually with few intersections/interactions between them), and updates each block at a time,
according to some probabilities (see [21]). In this paper we will only consider disjoint blocks that
partition the vertex set. Note that if all blocks are singletons, we recover Glauber dynamics. The
method is presented for vertex-colourings, but it works the same for edge-colourings by taking an
edge partition instead. We will present some known results for bounding the relaxation time of
Glauber dynamics in terms of the relaxation time of its (reduced) block dynamics.

Let G = (VG, EG) be a graph, T = (V,E) be an induced subgraph and let V = {V1, . . . , Vr} be
a partition of V . Let µ ∈ ΩVG

. Suppose Lσ
s is ergodic for every i ∈ [r] and every σ ∈ Ωµ

V and let
πσ
Vi

denote its stationary distribution, which is also the uniform distribution on Ωσ
Vi
. The weighted

block dynamics on V with boundary condition µ is a continuous-time Markov chain with state space
Ωµ
V and generator matrix Bµ

V given for any σ 6= η by

Bµ
V [σ → η] =

{

giπ
σ
Vi
(η) if there exists i ∈ [r] such that η ∈ Ωσ

Vi
,

0 otherwise,

where gi = minσ∈Ωµ
V
Gap(Lσ

Vi
) is the minimum gap for the Glauber dynamics on the block Vi, where

the minimum is taken over all possible boundary conditions. Note that Bµ
V can be understood as the

dynamics where each block Vi updates its entire colouring at times given by an independent Poisson
clock of rate gi. The new colouring of Vi is chosen uniformly among all the possible colourings which
are compatible with the current boundary conditions. It is clear that the block dynamics is ergodic
if the Glauber dynamics is, since each transition of the Glauber dynamics is a valid transition of
the block dynamics. Moreover, both dynamics have the same stationary distribution.

An unweighted version of the block dynamics, corresponding to gi = 1, was used by Martinelli
in [21]. Lucier and Molloy generalised this result for weighted block dynamics:

Proposition 6 (Proposition 3.2 in [19]). For every µ ∈ ΩVG
and partition V of V , we have

τ(Lµ
V ) ≤ τ(Bµ

V) .

Given a block partition V, let H = (U,F ) be the subgraph of T composed of the vertices
adjacent to vertices in other blocks. Let ΩR be the set of colourings of U induced by the colourings
in Ωµ

V ; we will use σ̂, η̂, . . . to denote the elements of ΩR. It is convenient to see ΩR as a set of
colouring classes of Ωµ

V where two colourings are equivalent if and only if they coincide on U . More
precisely, for σ̂ ∈ ΩR, let Ωσ̂

∗ be the set of colourings σ ∈ Ωµ
V with σ|U = σ̂. In a slight abuse of

notation, we write Ωσ̂
Vi

to denote the set {η ∈ Ωσ
Vi

: σ ∈ Ωσ̂
∗}, and we write πσ̂

Vi
for πσ

Vi
where σ is an

arbitrary colouring in Ωσ̂
∗ . Note that the projection of πσ̂

Vi
onto U is well-defined and independent

of the choice of σ ∈ Ωσ̂
∗ .

The reduced version of Bµ
V , is a dynamics with state space ΩR and generator matrix Rµ

V given
for any σ̂ 6= η̂ by

Rµ
V [σ̂ → η̂] =

{

giπ
i,σ̂
proj(η) if there exists i ∈ [r] such that η̂ = η|U for some η ∈ Ωσ̂

Vi
,

0 otherwise.
(3)
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where πi,σ̂
proj is the projection of πσ̂

Vi
onto U ; that is, for an arbitrary σ ∈ Ωσ̂

∗ , the probability
distribution on the colourings of U defined for any η̂ ∈ ΩR by

πi,σ̂
proj(η̂) = πσ

Vi
({η ∈ Ωσ

Vi
, η|U = η̂}) . (4)

In the particular case where each block contains only one vertex in H, only one vertex of H
changes colour during a transition of Rµ

V . In this case, the reduced block dynamic is very similar
to the Glauber dynamics on H with some parameters pi determined by the Glauber dynamics on
Vi, only with slightly different transition rates.

We will use another result of Lucier and Molloy that shows that the weighted block dynamics
and the reduced block dynamics have the same relaxation time.

Proposition 7 (Proposition 3.3 in [19]). For every µ ∈ ΩVG
and partition V of V , we have

τ(Bµ
V) = τ(Rµ

V) .

Finally, we will use the following property. If the reduced block dynamics is ergodic, then the
projection of πµ

V onto U is its stationary distribution.

Lemma 8. The reduced block dynamics Rµ
V is reversible for the projection of πµ

V onto U .

Proof. Recall that H = (U,F ) is the subgraph of T induced by the vertices adjacent to vertices
in other blocks. Let πproj be projection of πµ

V onto U ; that is, the probability distribution on the
colourings of U defined for any σ̂ ∈ ΩR by

πproj(σ̂) = πµ
V ({σ ∈ Ωµ

V , σ|U = σ̂}) . (5)

First observe that, since H consists of all the vertices in each block which are adjacent to vertices
of other blocks, for any σ̂ ∈ ΩR, any extension of σ̂ to V is obtained by computing an extension on
each of the blocks separately. As πµ

V is uniform, we have

πproj(σ̂) =
|{σ ∈ Ωµ

V , σ|U = σ̂}|

|Ωµ
V |

=

∏r
j=1 |{σ ∈ Ωσ̂

Vj
, σ|U = σ̂}|

|Ωµ
V |

.

Thus, it follows that, for any two colourings σ̂, η̂ ∈ ΩR which differ only on the block Vi, we have

πproj(σ̂)R
µ
V [σ̂ → η̂] =

∏r
j=1 |{σ ∈ Ωσ̂

Vj
, σ|U = σ̂}|

|Ωµ
V |

· gi
|{η ∈ Ωσ̂

Vi
, η|U = η̂}|

|Ωσ̂
Vi
|

=
gi · |{σ ∈ Ωσ̂

Vi
, σ|U = σ̂}| · |{η ∈ Ωσ̂

Vi
, η|U = η̂}|

|Ωµ
V ||Ω

σ̂
Vi
|

·
∏

j 6=i

|{σ ∈ Ωσ̂
Vj
, σ|U = σ̂}| .

This quantity is symmetric in σ̂ and η̂. Indeed, since σ̂ and η̂ only differ on Vi, we have Ωσ̂
Vi

= Ωη̂
Vi
.

Moreover, for every j 6= i, σ̂ and η̂ agree on Vj ∩ U . As a consequence, we have

|{σ ∈ Ωσ̂
Vj
, σ|U = σ̂}| = |{η ∈ Ωη̂

Vj
, η|U = η̂}| .

Thus, it follows that πproj(σ̂)R
µ
V [σ̂ → η̂] = πproj(η̂)R

µ
V [η̂ → σ̂], and Rµ

V is reversible for πproj.
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2.3 Monotonicity of Glauber dynamics

Finally, we introduce a monotonicity statement that will allow us to simplify some of our proofs.
The previous subsections gave tools to compare the relaxation time of two Markov chains with the
same state space but different transitions. Here we are interested in comparing Markov chains with
similar transitions but different state spaces. A natural example is comparing the relaxation time
of the Glauber dynamics on G and H, where H is a subgraph of G. In general, it is not clear which
of the two relaxation times should be smaller, however, if H and G have a particular structure, we
will be able to derive a monotonicity bound.

Proposition 9. Let G = (V,E) be a graph on n vertices, and k be a positive integer. Let v ∈ V
such that N(v) induces a clique of size at most k − 2. For any choice of parameters (p1, . . . , pn),
the Glauber dynamics LV and LV \{v} for k-colourings of V and V \ {v} respectively and defined
with the same parameters satisfy,

τ
(

LV \{v}

)

≤ τ(LV ) .

The proof follows from standard computations and is included in the Appendix.

3 Glauber dynamics for list-colourings of a clique

In this section we analyse the relaxation time of the Glauber dynamics for list-vertex-colourings of
a clique. This will be used later in the proof of our main result for edge-colourings of trees.

Consider the clique with vertex set U = {u1, . . . , ud} with d ≥ 1. Throughout this section we
fix the number of colours to k = d+ 1. Recall that given a list assignment of U , we can define ΩL

U

and the dynamics LL
U , governed by the parameters (p1, . . . , pd), where pi is the rate at which vertex

ui changes to c ∈ [k].
For a positive integer t, a list assignment L is t-feasible if it satisfies

- |L(ui)| ≥ t+ 1 for every i ∈ [t];

- |L(ui)| = d+ 1 for every i ∈ [d] \ [t].

We say u ∈ U is free if |L(u)| = d + 1, and constrained otherwise. We should stress here that all
the lists are subsets of [d + 1], although the results in this section can be generalised to arbitrary
lists of size k ≥ d+ 1 using a variant of Proposition 9 for list colouring. If L is t-feasible, we have

(

t
∏

i=1

|L(ui)| − i+ 1

)

(d+ 1− t)! ≤ |ΩL
U | ≤

(

t
∏

i=1

|L(ui)|

)

(d+ 1− t)! . (6)

The chain LL
U is symmetric and it will follow from the results below that, if L is t-feasible, for

some t, then the chain is also ergodic. So its stationary distribution is uniform on ΩL
U . The main

goal of this section is to prove the following bound on its relaxation time.

Lemma 10. If L is t-feasible and k = d+ 1, then we have

τ(LL
U ) = Ot

(

t
∑

i=1

d

pi
+

d
∑

i=t+1

1

pi

)

.
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In order to prove the lemma we will use the comparison techniques introduced in Section 2.1.
Consider the dynamics LL

unif on ΩL
U with generator matrix given for any σ 6= η by

LL
unif[σ → η] =

1

|ΩL
U |

. (7)

Clearly τ(LL
unif) = 1. The main idea will be to compare τ(LL

U ) with τ(LL
unif). For technical

reasons, it will be easier to introduce an intermediate chain and compare both to it. Define LL
int to

be the dynamics on ΩL
U with generator matrix given for any σ 6= η by

LL
int[σ → η] =

{

1
|ΩL

U
|

if (σ, η) is a good pair,

0 otherwise.
(8)

Speaking informally, the dynamics LL
int can be seen as LL

unif where only moves between “good” pairs
of colourings are allowed. We defer the formal definition of a good pair to later in the section.

Lemma 10 follows from the combining these two lemmas (proved in the next two subsections)
with the fact that τ(LL

unif) = 1.

Lemma 11. If k = d+ 1, then we have

τ(LL
U )

τ(LL
int)

= Ot

(

t
∑

i=1

d

pi
+

d
∑

i=t+1

1

pi

)

.

Lemma 12. If L is t-feasible and k = d+ 1, then we have

τ(LL
int)

τ(LL
unif)

= Ot(1) .

3.1 Comparing LL
U with LL

int
: the proof of Lemma 11

Let w be an additional vertex with L(w) = [k], so w is free. Consider an order on U ∪ {w} where
w is the smallest vertex. We can extend α ∈ ΩL

U to U ∪ {w}, by letting α(w) be the unique colour
not in α(U). To every pair α, β ∈ ΩL

U , we can assign a permutation f = f(α, β) on U ∪ {w} such
that f(x) = y if and only if α(x) = β(y). In particular, if α = β then f is the identity permutation.
One can see the permutation f as a blocking permutation: if v = f(u) ∈ U for some u ∈ U , then u
blocks v from being directly recoloured from α(v) to β(v). However, if v = f(w) ∈ U , then v can
be directly changed to β(v) in the colouring α.

It is useful to think about f using its representation as a union of directed cycles. Throughout
this section, by cycle in the permutation we mean a cycle of order at least 2. If a cycle in f
contains w, we will be able to recolour every vertex in the cycle by successively recolouring the
vertices whose preimage is w. The main difficulty will arise from handling the other cycles that
do not contain w, which correspond to circular blockings of vertices in U (e.g. u, v ∈ U , u blocks
v and v blocks u). In this case, we will need to insert w into this cycle, and then process it. The
merging operation corresponds to recolouring a vertex in α with the only available colour, which
must be in its list. This motivates the following classification: a cycle in f is a 1-cycle if it contains
w, a 2-cycle if it does not contain w but has at least one free vertex and a 3-cycle if it does not
contain w and all its vertices are constrained.
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Recolouring a 3-cycle C might be hard because the only colours available in L(C) might al-
ready be taken by other vertices in the clique. This motivates the definition of good pairs which
governs LL

int.

Definition 13. A pair of colourings (α, β) is good if f(α, β) contains no 3-cycles.

Let (α, β) be a good pair and f = f(α, β). A v-swap is an operation on f that gives the
permutation f̂ obtained from f by reassigning f̂(w) = f(v) and f̂(v) = f(w). These operations are
in bijection with the valid transitions of LL

U .
One can define recolouring sequences between α and β using swaps. The order on U ∪ {w}

gives a canonical way to deal with the cycles in f(α, β), processing the cycle with the smallest free
vertex, at a time. Precisely, while there is a free vertex in a cycle of length at least 2 of f , let v be
the smallest one and

- if v is in a 1-cycle, then v = w. While f(w) 6= w, update f by performing an f(w)-swap.

- if v is in a 2-cycle, then v ∈ U . Update f by performing a v-swap. Then, while f(w) 6= w,
update f by performing an f(w)-swap.

As there are no 3-cycles, after termination the procedure produces the identity permutation. As
swaps correspond to valid recolouring moves, it gives a recolouring path γα,β from α to β that uses
transitions from LL

U . Note that any vertex in U is recoloured at most twice. In fact, a vertex is
only recoloured twice if it is the smallest free vertex in a 2-cycle.

For every transition (σ, η) ∈ LL
U , define

Λσ,η = {(α, β) ∈ LL
int : (σ, η) ∈ γα,β} .

Our goal is to prove Lemma 11 using the weighted canonical paths method from Section 2.1.
To this end, the two following lemmas will help us analyse the congestion resulting from this
construction.

Lemma 14. Given a transition (σ, η) ∈ LL
U and a permutation f , there are at most two good pairs

(α, β) such that f = f(α, β) and (α, β) ∈ Λσ,η.

Proof. Let v be the vertex at which σ and η differ. The order in which we recolour the vertices
is fixed by the permutation f . Let v1, . . . , vℓ be the vertices in the order they are recoloured with
repetitions, where vi is the vertex recoloured at the i-th step. Given this sequence, at every step
the only valid transition is to perform a vi-swap. If the recolouring done by the transition (σ, η)
corresponds to the i∗-th step in the sequence, then α and β are fully determined. Indeed, β can
be recovered from η by sequentially performing vi-swaps for every i > i∗. Symmetrically, α can be
recovered from σ by performing vi-swaps for every i < i∗ (recall that the u-swap operation is an
involution).

Since every vertex is recoloured at most twice in a recolouring path, v appears at most twice
in the sequence v1, . . . , vℓ. So there are at most 2 choices for i∗ ∈ [ℓ] with vi∗ = v, and by the
argument above, there are at most two pairs (α, β), with f(α, β) = f , and (α, β) ∈ Λσ,η.

Using the previous lemma, we can bound the size of Λσ,η

Lemma 15. Suppose that σ and η differ at v ∈ U . If v is free, then |Λσ,η| = Ot

(

|ΩL
U |
)

. If v is
constrained, then |Λσ,η | = Ot(d|Ω

L
U |).
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Proof. By Lemma 14, it suffices to bound the number of permutations f which are compatible
with (σ, η). The key idea is the following claim that not all candidates for f are compatible, as
constrained vertices can only block and be blocked by vertices with colours in their lists.

Claim 16. Let (α, β) ∈ Λσ,η with f(α, β) = f . For every constrained vertex u ∈ U with u 6= v,
one of the following holds:

i) η(f(u)) = β(f(u));

ii) σ(f−1(u)) = α(f−1(u));

Moreover, i) holds if and only if u is recoloured in γα,β before the transition (σ, η).

Proof. By construction of the recolouring paths, constrained vertices are only recoloured once. Let
C be the cycle containing u. If v 6∈ V (C), then the vertices in C are recoloured either all before
v, or all after v. In particular we have σ|V (C) = η|V (C), and it is equal to β|V (C) if u is recoloured
before (σ, η) and to α|V (C) otherwise. Since f(u), f−1(u) ∈ V (C), either i) or ii) holds.

If v ∈ V (C), then

- If f(u) is not the smallest free vertex in C, then assume that i) does not hold. Since f(u) is
recoloured only once, this means that η(f(u)) = α(f(u)). Consequently, f(u) is recoloured
after the transition (σ, η), and since u 6= v, this is also the case for u. This means that f−1(u)
is recoloured either during or after the transition (σ, η), and in both cases ii) holds.

- Symmetrically, if f−1(u) is not the smallest free vertex in C, then assuming that ii) does not
hold we conclude that u has been coloured before the transition (σ, η) and that i) holds.

- Finally, if f(u) = f−1(u) is the smallest free vertex in C, then v = f(u). In this case, either
this is the first time v is recoloured, so u is recoloured after (σ, η) and σ(v) = α(v), and ii)
holds, or it is the second time v is recoloured, so u is recoloured before (σ, η) and η(v) = β(v)
and i) holds.

Suppose that v is free. As there are at most t constrained vertices, there are at most 2t choices
to decide which of items i) or ii) holds for them. For s ∈ [t], let x1, . . . , xs be the constraint vertices
that satisfy i) and y1, . . . , yt−s be the ones that satisfy ii). For every i ∈ [s], by definition of f we
have η(f(xi)) = β(f(xi)) = α(xi) ∈ L(xi) and there are at most |L(xi))| choices z ∈ U ∪ {w} for
f(xi) = z, namely the ones with η(z) ∈ L(xi). Analogously, for i ∈ [t − s], by definition of f we
have σ(f−1(yi)) = α(f−1(yi)) = β(yi) ∈ L(yi) and there are at most |L(yi)| choices z ∈ U ∪ {w}
for f(z) = yi. Thus, there are at most

∏s
i=1 |L(xi)|

∏t−s
i=1 |L(yi)| =

∏t
i=1 |L(ui)| choices for the

images of xi and the preimages of yi. Note that f(xi) 6= yj for every i, j as i) holds if and only
if u is recoloured before (σ, η) and v is a free vertex. So these choices fix exactly t images in f .
Finally, there are at most (d+1− t)! ways to complete f by choosing successively the image of the
remaining elements. Using Lemma 14 and (6), we have

|Λσ,η | ≤ 2 · 2t(d+ 1− t)!
t
∏

i=1

(|L(ui)|) ≤ 2t+1

(

t
∏

i=1

|L(ui)|

|L(ui)| − i+ 1

)

|ΩL
U | = Ot(|Ω

L
U |) .
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Assume now that v is constrained. There are at most 2t−1 ways to choose a configuration of i)
and ii) for the remaining constrained vertices. In comparison to the case where v is free, as neither
i) nor ii) holds for u = v, there is an extra factor |L(v)| ≤ d + 1 to choose either the image or the
preimage of v in f . Similarly as before, it follows that

|Λσ,η | = Ot(d|Ω
L
U |) .

We are now in a good situation to prove Lemma 11.

Proof of Lemma 11. In order to apply the weighted canonical paths theorem to LL
U and LL

int, we
need to choose a weight function ω for all (σ, η) ∈ LL

U . Let v be the vertex where σ and η differ.
We define ω as follows

ω(σ, η) :=

{

d/pi if v = ui for i ∈ [t],

1/pi if v = ui for i ∈ [d] \ [t].
(9)

As for every recolouring path γ, each element of U is recoloured at most twice, it follows that

|γ|ω ≤ 2

(

t
∑

i=1

d

pi
+

d
∑

i=t+1

1

pi

)

. (10)

Both stationary distributions of LL
U and LL

int are uniform on ΩL
U . Also recall that LL

int[α → β] =
1/|ΩL

U | for any good pair (α, β).
Using Lemma 15, regardless of whether the vertex where σ and η differ is free or constrained,

we can bound the congestion of the transition (σ, η) as follows

ρσ,η =
1

LL
U [σ → η]ω(σ, η)

∑

(α,β)∈Λσ,η

|γα,β |ω
|ΩL

U |

≤
|Λσ,η |

LL
U [σ → η]ω(σ, η)|ΩL

U |
·max

α,β
|γα,β|ω

= Ot(max
α,β

|γα,β|ω) = Ot

(

t
∑

i=1

d

pi
+

d
∑

i=t+1

1

pi

)

.

The desired result follows from Proposition 3.

3.2 Comparing LL
int

with LL
unif

: the proof of Lemma 12

The proof of this lemma uses the fractional paths method with uniform weights. To define the
paths, we first split the set of constrained vertices into two subsets. Let A be the set of constrained
vertices u satisfying |L(u)| ≤ 2(3t + 2), and let B be the remaining ones. Before we define the
paths, we will need the following result.

Lemma 17. Let α, β ∈ ΩL
U and let ξA be an L-colouring of the vertices in A. Assume that α|A

and ξA differ on at most one vertex, and similarly for ξA and β|A. There exists a constant c(t) > 0
such that there are at least c(t)|ΩL

U | colourings ξ ∈ ΩL
U satisfying that ξ|A = ξA, and both (α, ξ) and

(ξ, β) are good pairs.
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Proof. Assume that A = {u1, . . . , ua}, so |B| = t−a. Construct the colouring ξ by setting ξ|A = ξA
and then choosing the colours in U \A one by one, starting from the vertices in B, as follows:

- for each v ∈ B, choose ξ(v) /∈ ξ(A) ∪ α(A ∪B) ∪ β(A ∪B) that has not been used already;

- for each free vertex, choose a colour not used by the vertices already coloured in ξ.

When we choose the colour for v ∈ B, there are at most 3t+2 forbidden colours. Indeed, there are
at most a+ 2(t− a) + 2 colours in ξ(A) ∪ α(A ∪B)∪ β(A ∪B), and at most t− a colours used by
the previous vertices in B that have already been coloured by ξ. Thus, for v ∈ B there are at least
|L(v)| − (3t + 2) ≥ |L(v)|/2 choices for ξ(v). Using (6), the total number of colourings extending
ξA is at least

∏

v∈B

(|L(v)| − (3t+ 2)) · (d+ 1− t)! ≥
(d+ 1− t)!

2t−a

∏

v∈B

|L(v)|

≥
(d+ 1− t)!

2t(3t+ 2)a

t
∏

i=1

|L(ui)|

≥
|ΩL

U |

(2(3t+ 2))t
.

It suffices to show that for any such extension ξ of ξA, (α, ξ) and (ξ, β) are good pairs. We only
prove it for (α, ξ) as the other case is symmetric. Assume by contradiction that f(α, ξ) contains a
3-cycle, and let C be this cycle. Then V (C) ∩ B = ∅. Indeed, if v ∈ V (C) ∩ B, then there exists
a vertex u ∈ A ∪ B with α(u) = ξ(v), but this contradicts the fact that ξ(v) /∈ α(A ∪ B). Thus,
V (C) ⊆ A, but this is not possible since α|A and ξ|A differ by at most one vertex.

We can now compare the relaxation times of LL
int and LL

unif.

Proof of Lemma 12. We use the fractional paths method. Note that both LL
int and LL

unif are ergodic,
reversible and symmetric and that their stationary distributions are uniform on ΩL

U .
It suffices to define a collection of fractional paths Γα,β between any two colourings α and β

in ΩL
U . Since there are at most t constrained vertices and their lists have size at least t+1, we can

find a sequence of L-colourings of A, α|A = ξ0A, ξ
1
A, . . . , ξ

m
A = β|A, such that any two consecutive

colourings differ by one vertex. Let M be an upper bound on the length of these paths for every
α, β, which only depends on t.

For m ∈ [M ], let Γm
α,β be the collection of all the paths of the form α = ξ0, ξ1, . . . , ξm = β where

ξi|A = ξiA, and (ξi−1, ξi) is a good pair for i ∈ [m]. By Lemma 17, for each i ∈ [m− 1] there are at
least c(t)|ΩL

U | choices for ξi, independently of the choices of the other ξj for j 6= i. Thus, |Γm
α,β | ≥

(c(t)|ΩL
U |)

m−1, and if g is the uniform flow, then each γ ∈ Γm
α,β satisfies g(γ) ≤ (c(t)|ΩL

U |)
−(m−1).

Let Γm = {Γm
α,β : α, β ∈ ΩL

U} and Γ = ∪M
m=1Γ

m.
We need to bound the congestion of any good pair (σ, η). We fix m ∈ [M ] and will bound

the contribution of Γm to it. Let γ = ξ0, ξ1, . . . , ξm ∈ Γm containing (σ, η). There are at most m
choices for i ∈ [m] such that σ = ξi−1 and η = ξi. Then, there are at most |ΩL

U |
m−1 choices for ξj

with j /∈ {i− 1, i}. Each such path satisfies g(γ) ≤ (c(t)|ΩL
U |)

−(m−1). Thus,

∑

γ∈Γm

γ∋(σ,η)

g(γ)|γ| ≤ mc(t)−(m−1) .
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Hence,

ρσ,η ≤
M
∑

m=1

mc(t)−(m−1) = Ot(1) ,

and, by Proposition 4, we obtain the desired result.

3.3 Dynamics of two cliques intersecting at a vertex

In this section we study a similar dynamics, that we will also use in the main proof. Let z be a
vertex. For d ≥ 1, let X = {z, x1, . . . , xd−1} and Y = {z, y1, . . . , yd−1} two sets of vertices and
consider the graph with vertex set Z = X ∪ Y where each set X and Y induces a clique. As
before, we fix the number of colours k = d+ 1. For a list assignment L of Z, recall the definition
of ΩL

Z and the dynamics LL
Z , where we denote by pz, p1, . . . , pd−1, q1, . . . , qd−1 the parameters for

z, x1, . . . , xd−1, y1, . . . , yd−1, respectively.
Let t, tX , tY be non-negative integers with t ≥ tX + tY and 1 ≤ tX , tY ≤ d − 1. Without loss

of generality, we will assume that d is sufficiently large with respect to t. If this is not the case,
then |ΩL

Z | is a constant depending on t, and the relaxation time is Ot(1). A list assignment L is
(t, tX , tY )-feasible if

- |L(z)| = d+ 1;

- |L(xi)|, |L(yj)| ≥ t for every i ∈ [tX ] and j ∈ [tY ];

- |L(xi)|, |L(yj)| = d+ 1 for every i ∈ [d− 1] \ [tX ] and j ∈ [d− 1] \ [tY ];

We define free and constrained vertices as before, with the exception of z which is considered a
constrained vertex. If L is (t, tX , tY )-feasible, then

|ΩL
Z | ≥

(

tX
∏

i=1

|L(xi)| − i+ 1
)(

tY
∏

j=1

|L(yj)| − j + 1
)

· (d+ 1− t)(d− tX)!(d − tY )! (11)

|ΩL
Z | ≤

(

tX
∏

i=1

|L(xi)|
)(

tY
∏

j=1

|L(yj)|
)

· d(d− tX)!(d− tY )! . (12)

As before, the chain is symmetric and, if L is (t, tX , tY )-feasible for some t, tX , tY satisfying the
conditions stated above, it follows from results below that it is ergodic, so its stationary distribution
is uniform.

We will prove a bound analogous to the one in Lemma 10 on the relaxation time of LL
Z .

Lemma 18. If L is (t, tX , tY )-feasible and k = d+ 1, then we have

τ(LL
Z) = Ot





d2

pz
+

tX
∑

i=1

d

pi
+

d−1
∑

i=tX+1

1

pi
+

tY
∑

j=1

d

qj
+

d−1
∑

j=tY +1

1

qj



 .

The proof follows the same lines as the proof of Lemma 10, so we will only sketch it, stressing
the parts where the two differ. For α ∈ ΩL

Z , denote by αX and αY the restrictions of α onto X
and Y , respectively. As we did for the clique, we extend α by adding two artificial vertices: wX
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in X and wY in Y , and by assigning to them the only available colour in each set. Define the
permutations fX and fY as before.

We say that (α, β) is good if and only if both (αX , βX) and (αY , βY ) are good (i.e., there is
no 3-cycle in the permutations fX and fY ). Remember that z is a constrained vertex, and as a
consequence if (α, β) are good, every cycle in the permutations contains a free vertex different from
z. Redefine the dynamics LL

unif on ΩL
Z as in (7), and, using the new definition of good pairs, redefine

LL
int on ΩL

Z as in (8). We proceed in two steps by bounding the ratios of the relaxation times of LL
Z

and LL
int and of LL

int and LL
unif .

Lemma 19. If k = d+ 1, then we have

τ(LL
Z)

τ(LL
unif)

= Ot





d2

pz
+

tX
∑

i=0

d

pi
+

d−1
∑

i=tX+1

1

pi
+

tY
∑

j=0

d

qj
+

d−1
∑

j=tY +1

1

qj



 .

Sketch of the proof. We reuse the recolouring paths defined in Lemma 11 for the clique. Given two
colourings α and β, denote by γXαX ,βX

and γYαY ,βY
the recolouring paths constructed for each of

the two sets X and Y independently. Observe that for each path in these sets, each constrained
vertex is recoloured at most once. In particular, z changes its colour at most once. Construct the
recolouring path γα,β in the following way:

- apply the recolourings in γXαX ,βX
until z needs to be recoloured;

- apply the recolourings in γYαY ,βY
;

- apply the remaining recolourings in γXαX ,βX
.

Note that in the second step, z can be safely recoloured with β(z) because its target colour is
available in X, since the next move according to γXαX ,βX

would be to recolour z with colour β(z).
We need to bound the congestion of each transition for this collection of paths.

For a transition (σ, η), let Λσ,η be the set of good pairs α, β such that γα,β contains (σ, η). The
analogues of Lemmas 14 and 15 hold in this setting. In particular, for every (σ, η) differing at a
vertex v, if v is free then |Λσ,η | = Ot

(

|ΩL
Z |
)

, if v 6= z is constrained then |Λσ,η | = Ot(d|Ω
L
Z |), and if

v = z then |Λσ,η| = Ot(d
2|ΩL

Z |) as we get an extra factor d for each permutation. This allows us to
bound the congestion of a transition as in the previous section, and so Lemma 19 follows.

Lemma 20. If L is (t, tX , tY )-feasible and k = d+ 1, then we have

τ(LL
int)

τ(LL
unif)

= Ot(1) .

Sketch of the proof. The lemma can be proved using the same steps as in the proof of Lemma 12.
Let AX and AY be the set of constrained vertices with lists of size at most 2(3t + 2) in X and Y ,
respectively. Let A = AX ∪AY and let B be the set of constrained vertices that are not in A. As z
is a constrained vertex with |L(z)| = d+1 > 2(3t+2), we have z ∈ B. The analogous of Lemma 17
still holds in this setting.

For any α, β ∈ ΩL
Z , we would like to find a sequence α|A = ξ0A, . . . , ξ

m
A = β|A of colourings of A

such that each consecutive pair differs only at one vertex. As z 6∈ A and as all constrained vertices
in A have a list of size at least t+ 1, this sequence can be found by independently recolouring AX
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and AY . Arguing as in the proof of Lemma 12, we can construct many recolouring paths between
α and β with transitions that correspond to good pairs. Then, Proposition 4 implies the desired
result.

4 Glauber dynamics on edge-colourings of trees

In this section we prove our main theorem. We follow a similar approach to the one of Lucier and
Molloy in [19] for vertex-colourings, by recursively splitting the tree into smaller subtrees using
block dynamics. However, there are several points where our strategies differ.

4.1 Relaxation time of block dynamics

In all this section, we will assume that G = (VG, EG) is a d-regular tree, that is every internal
vertex has degree exactly d. We also assume that k = d+ 1.

Definition 21. A subtree T of G is splitting if one of the following holds.

- T is a single edge,

- T has fringe interior boundary |∂T | ≤ 2. If ∂T = {e, f}, then e and f are not incident.

Fix µ ∈ ΩEG
, and fix T = (V,E) a splitting subtree of G. Note that since T has fringe

boundary, it is also d-regular. The central point of our proof is to study Lµ
E by decomposing it into

the dynamics of its subtrees using the block dynamics defined in Section 2.2. We will assume that
T is rooted in one of the two following ways.

Vertex-rooted trees: The root of T is r ∈ V , an internal vertex of T . Let e1, . . . , ed be the
edges incident to r. For each i ∈ [d], we consider the block formed by the edges of the subtree
hanging from ei.

Edge-rooted trees: The root of T is an edge e = xy where x and y are internal vertices of T
(so, e /∈ ∂T ). Let e1, . . . , e2d−2 be the edges incident to e. We let {e} be a block, and for every
i ∈ [2d − 2], we consider the block formed by the edges of the subtree hanging from ei.

In both cases, we denote by E = {E1, . . . , Er} the block partition described above. Note that
each block in E contains at most one edge incident to edges in other blocks. Let H = (U,F ) be the
subgraph induced by these edges. Note that in the case of a vertex rooted tree, H is a star, and in
the case of an edge rooted tree, H is a bi-star: two stars joined by an edge. For each i ∈ [r], let Ti

be the subtree with edge set Ei.
Throughout this section we will make the following two assumptions on E .

(A1) Ti is splitting for every i ∈ [r];

(A2) Lσ
Ei

is ergodic for every i ∈ [r] and every σ ∈ Ωµ
E.

Thus, we can define the reduced block dynamics on E with boundary condition µ. Recall from
Section 2.2 that its state space is ΩR, the restriction to H of the colourings in Ωµ

E. Moreover, its
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transition matrix is given for any σ̂ 6= η̂:

Rµ
E [σ̂ → η̂] =

{

giπ
i,σ̂
proj(η̂) if there exists i ∈ [r] such that η̂ = η|U for some η ∈ Ωσ̂

Ei
,

0 otherwise.
(13)

where πi,σ̂
proj is the projection of πσ̂

Ei
onto F (see (4)). To bound the relaxation time on T , we will

proceed in two steps. First we compare the original dynamics Lµ
E to the reduced block dynamics on

E using Propositions 6 and 7 from Section 2.2. Then, we bound the relaxation time for the reduced
block dynamics using the results from Section 3. The three following lemmas will help us for the
second step. They show that the transitions rates and the stationary distribution of the reduced
block dynamics are close to uniform. We will first prove bounds on the stationary distribution for
the reduced block dynamics, and then proceed to bound the relaxation time for the reduced block
dynamics.

Lemma 22. Assuming (A1)–(A2), the reduced block dynamics Rµ
E is ergodic and reversible, and

its stationary distribution πR is the projection of πµ
E onto F .

Proof. Let Hℓ be the line graph with vertex set F , the set of edges of H. Consider the Glauber
dynamics LL

F with the following list constraints on e ∈ F

• L(e) = [k] \ µ(N(e) ∩ ∂T ) if e ∈ ∂T ,

• L(e) = [k] for every other edge.

Then, since each block Ei contains only one edge in H, the reduced block dynamics Rµ
E has exactly

the same transitions as LL
F , but with possibly different probability transitions. Thus, Rµ

E is ergodic
if and only if LL

F is.
If T is vertex-rooted, then H is a star, and Hℓ is a clique. Additionally, since T is splitting,

the two edges in ∂T are not adjacent, and in particular only one is in H. This edge, if it exists,
is assigned a list of length 2, so L is 1-feasible. The ergodicity of LL

F follows from Lemma 10 with
t ≤ 1.

If T is edge-rooted, then H is a bi-star, and Hℓ is composed of two cliques intersecting at one
vertex. Moreover, the two edges in ∂T cannot be in the same side of the bi-clique, and each has
a list of length at least 2. So L is (2, 1, 1)-feasible. The ergodicity of LL

F follows from Lemma 18
with tX , tY ≤ 1 and t ≤ 2.

Lemma 8 implies that the reduced block dynamics is reversible for the projection of πµ
E onto

F , concluding the proof.

Before giving a bound on the relaxation time of the reduced block dynamics, we will prove some
bounds on its stationary distribution πR to show that it deviates from a uniform distribution by at
most a constant factor. To this end, the following lemma is a technical tool that we will reuse later.
It shows that, given a boundary configuration, under the uniform distribution the probability that
an edge ei is assigned an available colour is close to uniform.

Lemma 23. For any subtrees Ti with edge-set Ei, any ei ∈ ∂Ti and any σ ∈ Ωµ
E, let C =

σ(N(ei) ∩ ∂Ti). Assuming (A1)–(A2), for every c ∈ [k] \ C, we have

πσ
Ei
({ξ ∈ Ωσ

Ei
: ξ(ei) = c}) =

1

2
(1 +O(1/d)) .
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Moreover, if |∂Ti| = 1, then

πσ
Ei
({ξ ∈ Ωσ

Ei
: ξ(ei) = c}) = 1/2 .

Proof. First assume that ∂Ti = {ei, fi}. As G is d-regular, and Ti is splitting, in particular its
boundary is fringe. Since k = d+ 1, this implies that there are exactly two colours available for ei
and two colours for fi.

We will bound |Ωσ
Ei
| and |Ωσ

Ei
(c)|, the number of colourings in Ωσ

Ei
that assign c to ei. Let

P = (VP , EP ) be the unique path in Ti that connects ei and fi and let s = |VP |. As T is splitting
and |∂Ti| = 2, we have s ≥ 4. If we fix a colouring ξP of EP , observe that the number of colourings
of ξ ∈ Ωσ

Ei
, such that ξ|P = ξP is independent of ξP . Indeed, if we remove EP , we obtain a collection

of rooted subtrees T ′
1, . . . , T

′
s with root vi ∈ VP . Given ξP , there are exactly (d− 1)! ways to colour

the edges of T ′
i incident to vi, and for each internal vertex, there are exactly d! ways to choose a

colouring of the edges hanging from it.
Therefore, in order to bound the ratio |Ωσ

Ei
(c)|/|Ωσ

Ei
|, we only need to compute |Ωσ

EP
|, and

|Ωσ
EP

(c)|, respectively the number of colourings of P compatible with σ, and the number of these
colourings ξP for which ξP (ei) = c. We can obtain a colouring of P by first colouring ei and fi, and
then choosing the colour of the other edges in P in the order they appear on the path from ei to
fi. As s ≥ 4, there is at least one edge in EP \ {ei, fi}. For each of these edges except for the last
one, there are d choices of colours. For the last edge there are either d or d− 1 choices. It follows
that

4ds−1(d− 1) ≤ |Ωσ
EP

| ≤ 4ds ,

2ds−1(d− 1) ≤ |Ωσ
EP

(c)| ≤ 2ds .

We conclude that

πσ
Ei
({ξ ∈ Ωσ

Ei
: ξ(e) = c}) =

|Ωσ
Ei
(c)|

|Ωσ
Ei
|

=
|Ωσ

EP
(c)|

|Ωσ
EP

|
=

1

2
(1 +O(1/d)) .

The second statement follows by a simple symmetry argument.

Lemma 24. Assuming (A1)–(A2), for every σ̂ ∈ ΩR, we have

πR(σ̂) =
1 +O(1/d)

|ΩR|
.

Proof. Recall that H = (U,F ) and that ei ∈ F ∩Ei is unique edge of Ei in H. Let σ̂ ∈ ΩR, we will
compute πR(σ̂) by using Lemma 22 and by bounding the number of σ ∈ Ωµ

E such that σ|F = σ̂. If
ti = 1, then ei is the only boundary edge and, by symmetry, the number of extensions of σ̂ in Ei

does not depend on σ̂(ei). If ti = 2, then there exists f ∈ Ei with f 6= ei such that f ∈ ∂Ti. As
in the proof of Lemma 23, in this case the number of extensions is the same, up to a 1 + O(1/d)
multiplicative factor. Since Ti is splitting, there are at most two values of i ∈ [r] with ti = 2. It
follows that, up to a 1 + O(1/d) multiplicative factor, each σ̂ has the same number of extensions.
This concludes the proof.

We will also need the following simple bound on the gap of the dynamics of a single edge.
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Lemma 25. Let e ∈ EG be an edge of G. Then,

min
µ∈ΩEG

Gap(Lµ
{e}) ≥

2

d+ 1
.

Proof. Observe that Ωµ
{e} is the set of colourings of a single edge with k0 ≥ 1 colours, where each

transition happens at rate 1/(d+1). If k0 = 1, then the relaxation time is 1. If k0 ≥ 2, all positive
eigenvalues of −Lµ

{e} are equal to k0/(d + 1), so Gap(Lµ
{e}) ≥ 2/(d + 1).

We can finally obtain a bound on the relaxation time of Lµ
E.

Lemma 26. Assuming (A1)–(A2), the following holds,

τ(Lµ
E) = O

(

d3 +
r
∑

i=1

τi

)

,

where τi := maxσ∈Ωµ
E
τ(Lσ

Ei
).

Proof. Using Propositions 6 and 7, we know that the relaxation time of Lµ
E satisfies

τ(Lµ
E) ≤ τ(Rµ

E ) . (14)

Thus, to get the result, we only need to bound the relaxation time of the reduced block dynamics
with partition E . We define an alternative dynamics. Let Rconst be the continuous-time Markov
chain with state space ΩR and generator matrix given for any σ̂ 6= η̂ by

Rconst[σ̂ → η̂] =

{

gi if σ̂ and η̂ differ only at ei,

0 otherwise,

where gi = 1/τi. Observe that Rµ
E and Rconst have the same state space and transitions (but differ-

ent transition probabilities). For every σ̂, η̂ ∈ ΩR, Lemma 23 implies that πσ̂,i
proj(η̂) = πσ

Ei
({ξ ∈ Ωσ

Ei
:

ξ(ei) = η̂(ei)}) = Θ(1), where σ is an arbitrary colouring in Ωσ̂
∗ . So Rµ

E [σ̂ → η̂] = Θ(Rconst[σ̂ → η̂]).
Moreover, the stationary distribution πconst of Rconst is uniform on ΩR, and by Lemma 24 we have
πR(σ̂) = Θ(πconst(σ̂)) for every σ̂ ∈ ΩR. Thus, it follows from Corollary 5 that

τ(Rµ
E) = Θ(τ(Rconst)) (15)

We will bound the relaxation time of Rconst using the results in Section 3, and conclude us-
ing (14) and (15).

Suppose first that T is vertex-rooted. This implies that H induces a star with edges e1, . . . , ed.
Consider the clique with vertex-set U = {u1, . . . , ud}, where ui is identified with the edge ei, and
the list assignment L of U defined by L(ui) = [k]\µ(N(ei)∩∂T ). Up to relabelling of the edges, as
k = d+1, the list assignment L is 1-feasible. Consider the dynamics LL

U with probabilities pi := gi.
We can identify ΩR and Rconst with ΩL

U and LL
U . By applying Lemma 10 with t ≤ 1 we have,

τ(Rconst) = τ(LL
U ) = O

(

t
∑

i=1

d

gi
+

d
∑

i=t+1

1

gi

)

= O

(

d2 +

d
∑

i=1

1

gi

)

,

where we used Lemma 25 in the last equality.
If T is edge rooted, then H is a bi-star. We can do the same proof replacing Lemma 10 by

Lemma 18 obtaining a similar bound with an additive factor of order d3.
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4.2 Proof of Theorem 1

Let k ≥ ∆+1 and G = (VG, EG) be a tree on n vertices with maximum degree at most ∆. From (1)
and (2) to prove Theorem 1 it suffices to bound τ(LEG

).
Let d := k − 1 ≥ ∆. Construct the d-regularisation Gd = (V d

G, E
d
G) of G by adding d − |N(u)|

leaves adjacent to each internal vertex u ∈ VG. Note that Gd is d-regular as a tree and it has at
most dn vertices. By Proposition 9, we have τ(LEG

) ≤ τ(LEd
G
). So, to prove Theorem 1 it suffices

to bound the relaxation time of d-regular trees with at most dn vertices, and in the following we
assume that G is d-regular.

We will prove the following result by induction on the size of the subtree T :

Claim 27. There is a constant C such that, for every splitting subtree T = (V,E) of G with m
edges, and every edge colouring µ ∈ ΩEG

, the Glauber dynamics Lµ
E with parameters pi = 1/k is

ergodic and
τ(Lµ

E) ≤ d3mC .

From this claim, the theorem is obtained immediately by taking T = G. If T is composed of a
single edge, the Claim 27 follows from Lemma 25. Let m be the number of edges in T and assume
m > 1. Let v ∈ V be the vertex such that each subtree Ti hanging from T rooted at v has at
most ⌈m2 ⌉ edges; this vertex always exists and it is internal. Let ei be the edge from Ti incident
to v. We are going to split T into several subtrees by applying Lemma 26, possibly several times.
Note that in order to apply this lemma, we must ensure that each of the subtrees is splitting. This
gives constraints on how we can split T . Precisely, while splitting the tree into subtrees, none of
the subtrees can have an internal boundary of size at least 3, and for the subtrees with an internal
boundary of size 2, the two edges in the boundary must be non-incident.

The splitting procedure is done according to different cases:

1. If all the Ti are splitting, then simply root T at v, and apply Lemma 26. In the following we
will assume that not all the Ti are splitting.

2. If |∂T | = 1, then there is exactly one subtree, say T1, which is not splitting. All other subtrees
Ti for i 6= 1 are splitting and have fringe boundary of size 1. Root T at e1. Now, all subtrees
pending from e1 are splitting and have at most ⌈m2 ⌉ edges, and we can apply Lemma 26.

3. If |∂T | = 2, with e and f the two edges on the internal boundary, and v is on the path between
e and f . Without loss of generality, assume that T1 and T2 contain e and f respectively.

- If exactly one of T1 or T2 is not splitting, w.l.o.g. we can assume that it is T1. By rooting
T at e1, all subtrees pending from e1 are splitting and contain at most ⌈m2 ⌉ edges, and
we can apply Lemma 26.

- If both T1 and T2 are not splitting, write e1 = (v1, v). Since T1 is not splitting, v1 must
be incident to e. Moreover, since T2 is not splitting, e1 and f are not incident, and all
the subtrees pending at v1 are splitting. We apply Lemma 26 a first time by rooting T
at v1. Let T ′ be the subtree hanging from v1 that contains v and root T ′ at e2. Then,
all subtrees pending from e2 are splitting, and we can apply Lemma 26 a second time.
The resulting subtrees all have at most ⌈m2 ⌉ edges.
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4. Finally, if v is not on the path between e and f , let v′ be the vertex on this path which
is closest to v. We can first split at v′ by applying the procedure from the case 3. After
this splitting, all the resulting subtrees have at most ⌈m2 ⌉ edges except maybe the subtree T ′

containing v. However T ′ has a fringe boundary of size 1, and by splitting one more time
according to either case 1 or case 2, all resulting subtrees are splitting, and have at most ⌈m2 ⌉
edges. In the worst case, we needed to use Lemma 26 three times in this case.

Let T ′
1, . . . , T

′
s be the subtrees into which T is split by applying the procedure above, and let E′

i be
the set of edges of T ′

i . Since T ′
i is splitting, by the induction hypothesis, Lσ

E′
i
is ergodic for every

σ ∈ Ωµ
E , so Lµ

E is also ergodic. Recall that τi := maxσ∈Ωµ
E
τ(Lσ

E′
i
). Lemma 26 shows that there exists

K such that if T is split at a vertex/edge into r subtrees T ′
1, . . . , T

′
r, then τ(Lµ

E) ≤ K(d3+
∑r

i=1 τi).
As we use Lemma 26 at most three times in each step of the splitting procedure described above,
we have

τ(Lµ
E) ≤ K3

(

3d3 +

s
∑

i=1

τi

)

,

Using the induction hypothesis on T ′
i , if we denote by mi ≤ ⌈m2 ⌉ the number of edges in T ′

i , we
have:

τ(Lµ
E) ≤ K3

(

3d3 +
s
∑

i=1

d3mC
i

)

≤ K3
(

3d3 + d3
⌈m

2

⌉C−1
s
∑

i=1

mi

)

≤ K3d3
(

3 +
mC

2C−2

)

≤ d3mC ·
K3

2C−3
.

So letting C ≥ 3(1 + logK) gives the desired inequality, and we conclude the proof of Claim 27.
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A Missing proofs from Section 2.1

For any function f : Ω → R, the variance and the Dirichlet form of L are defined respectively as

VarL(f) =
1

2

∑

α,β∈Ω

π(α)π(β)(f(α) − f(β))2 ,

ξL(f, f) =
1

2

∑

α,β∈Ω

π(α)L[α → β](f(α) − f(β))2 .

Let FL = {f : VarL(f) > 0} and note that FL = FL′ are the set of non-constant functions, as π
and π′ are positive on Ω. It is well-known (see e.g. Remark 13.13 in [18]) that the spectral gap of
L satisfies

Gap(L) = min
f∈FL

ξL(f, f)

VarL(f)
. (16)

A.1 Proof of Propostion 2

We will compare the Dirichlet form and the variance of L and L′. We have

ξL′(f, f) =
1

2

∑

α,β∈Ω

π′(α)L′[α → β](f(α) − f(β))2

=
1

2

∑

α,β∈Ω

∑

γ∈Γα,β

g(γ)π′(α)L′[α → β](f(α)− f(β))2

=
1

2

∑

α,β∈Ω

∑

γ∈Γα,β

g(γ)π′(α)L′[α → β]





∑

(σ,η)∈γ

√

ω(σ, η)
f(σ)− f(η)
√

ω(σ, η)





2

≤
1

2

∑

α,β∈Ω

∑

γ∈Γα,β

g(γ)π′(α)L′[α → β] · |γ|ω
∑

(σ,η)∈γ

(f(σ)− f(η))2

ω(σ, η)

=
1

2

∑

(σ,η)∈L

(f(σ)− f(η))2 ·
1

ω(σ, η)

∑

(α,β)∈L′

∑

γ∈Γα,β
γ∋(σ,η)

g(γ)|γ|ωπ
′(α)L′[α → β]

≤ ρmax ξL(f, f) ,

where we used the Cauchy-Schwartz inequality in the first inequality. Additionally, we have

VarL′(f) =
1

2

∑

α,β∈Ω

π′(α)π′(β)(f(α) − f(β))2

≥
1

2b2

∑

α,β∈Ω

π(α)π(β)(f(α) − f(β))2

=
1

b2
VarL(f) .

Combining the previous two inequalities and using (16), the desired result follows,

Gap(L′) = min
f∈FL′

ξL′(f, f)

VarL′(f)
≤ b2ρmax min

f∈FL

ξL(f, f)

VarL(f)
= b2ρmax Gap(L) .
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A.2 Proof of Proposition 9

Let U = {u1, . . . , um} = V \{v}. Let p1, . . . , pm, pv be the parameters for u1, . . . , um, v, respectively.
Let ΩV and ΩU be the set of L-colourings of G and G[U ] respectively. Let d = |N(v)| the degree
of v. Since N(v) is a clique, we have:

|ΩV | = |ΩU |(k − d) .

Indeed, for every colouring αU of U , there are exactly (k − d) possibilities to extend it into a
colouring of V . Let πV and πU be the stationary distributions of LV and LU , which are uniform as
the transitions are symmetric. Recall that FLV

is the set of non-constant functions from ΩV to R.
Let Fv

LV
be the subset of these functions which are independent of v, i.e. which satisfy f(α) = f(β)

whenever α and β agree on U .
Using (16), we have

Gap(LV ) = min
f∈FLV

ELV
(f)

VarLV
(f)

≤ min
f∈Fv

LV

ELV
(f)

VarLV
(f)

. (17)

Let f ∈ FV , then we have the following

VarLV
(f) =

1

2

∑

α,β∈ΩV

πV (α)πV (β)(f(α) − f(β))2

=
1

2

∑

α,β∈ΩV

1

|ΩV |2
(f(α)− f(β))2

=
1

2

∑

αU ,βU∈ΩU

∑

c∈[k]
c 6∈α(N(v))

∑

c′∈[k]

c′ 6∈β(N(v))

1

|ΩV |2
(f(αU )− f(βU ))

2

=
1

2

∑

αU ,βU∈ΩU

(k − d)2

|ΩV |2
(f(αU )− f(βU ))

2

= VarLU
(f) (18)

Additionally, if f ∈ Fv
V , then we have

ELV
(f) =

1

2

∑

ui∈U

∑

α,β∈ΩV
differ at ui

1

|ΩV |
pi(f(α)− f(β))2 +

∑

α,β∈ΩV
differ at v

1

|ΩV |
pv(f(α)− f(β))2

=
1

2

∑

ui∈U

∑

αU ,βU∈ΩU
differ at ui

∑

c∈[k]
c 6∈α(N(v))
c 6∈β(N(v))

1

|ΩV |
pi(f(αU )− f(βU ))

2

≤
1

2

∑

ui∈U

∑

αU ,βU∈ΩU
differ at ui

k − d

|ΩV |
pi(f(αU )− f(βU ))

2

= ELU
(f) . (19)

where we used that N(v) is a clique in the inequality. Putting together (17)–(19), gives as required

Gap(LV ) ≤ Gap(LU ) .
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