Henrik Kaijser

Henrik Lönn

Peter Thorngren

Johan Ekberg

Maria Henningsson

Mats Larsson

Towards Simulation-Based Verification for Continuous Integration and Delivery

Keywords: Automotive, Embedded Systems, Continuous Integration, Virtual Integration, Model Based Engineering I

The criticality, complexity and authority of automotive embedded systems have major implications on the engineering activities: Development need to be fast and efficient but always result in correct and safe products. These competing needs are both served by using model based continuous integration. In this paper, we discuss a workflow and system representation approach investigated in a Swedish research project, HeavyRoad. The approach entails a component based representation of both software and systems, subject to a systematic variability representation. The simulation methods allow different fidelity for the software-based content as well as for the multi-physics simulations of non-software. The approach is illustrated by an example.

INTRODUCTION

The ability to develop competitive vehicles is increasingly dependent on the appropriate development of the embedded systems. As the authority, criticality and influence of software-based systems increase, vehicle qualities are totally dependent on correct and efficient development of software. The most critical of the software based systems are those interacting with the physical world outside the vehicle. The interaction with mechatronics and multi-physics is therefore a natural part of automotive software development.

Iterative and incremental development is a way to reduce risk and improve productivity. Continuous integration means that changes are introduced in small increments but only accepted after successful verification. Feedback to engineers is provided instantly, avoiding long loop times that otherwise impair lead time and quality. For mechatronic systems, one of the challenges lies in appropriately verifying software together with its controlled physical systems. For each software change, it must be secured that the overall behavior of the vehicle is safe and correct. In a continuous integration setting, this can only be achieved with simulations of the physical systems together with its controlling software. To eliminate manual mistakes and secure confidence in results, a fully automatic approach is required. This paper describes results in this area from the HeavyRoad research project 1 . Models representing the embedded system product line and its physical environment are resolved for variability and transformed to simulable components. Depending on fidelity needs and the character of the simulated components, different integration methods are used for the simulation-based system verification. By automating these steps, verification can be done with correctness and efficiency, sustaining continuous integration also for the cyber physical systems. We will address results in 3 areas: i) System representation and variability, ii) Simulation fidelity and iii) Validation and verification aspects.

II. RELATED WORK AND CONTRIBUTION

Continuous integration and deployment is widely accepted as an efficient software development method [START_REF] Duvall | Continuous Integration:Improving Software Quality and Reducing Risk[END_REF]. It promises a set of advantages such as short lead time, reduced development risks, higher product quality and better fit to market needs. The advantages all come from the iterative workflow, sometimes captured as buildmeasure-learn, where small changes to the product is introduced and assessed rather than large changes with long lead time and uncertain outcome. The continuous integration concepts stem from a software engineering community, where the software itself is the product. It is then possible to automate build and test process without extensive surrounding systems. Our work is in the automotive domain, and therefore requires models of the parts of the product that are not software.

A core technology of this work is simulation with focus on software based systems. Hardware, software and model-in-the-loop are different simulation setups where software is simulated on target, on simulation platform or as a model respectively. An example of these technologies deployed in an automotive context can be found in [START_REF] Drenth | Consistent Simulation Environment with FMI based Tool Chain[END_REF]. Compared to the work represented in this paper, they focus more on control software development and calibration and need to use a variety of tools and environments to cover each of the required activities.

Model based systems and software engineering is a mature area, with many notations and tools. Model based software engineering is often synonymous to behavioral modeling and code generation in notations such as SCADE, Simulink or UML. Model based systems engineering relies on architecture representations, to allow properties and requirements to be formulated and assessed in the context of the system description. SysML [START_REF]Object Modelling Group: OMG Systems Modeling Language[END_REF], AADL [START_REF]Architecture Analysis & Design Language[END_REF] and EAST-ADL [START_REF] East | ADL Association: EAST-ADL 2.1.12[END_REF] are established architecture description languages with some variations in scope and generality. AUTOSAR [START_REF]Autosar Development Partnership: AUTOSAR 4.2[END_REF] provides description mechanisms for software architecture. By using AUTOSAR together with EAST-ADL, system representation from abstract feature content down to software components and its constituents can be represented with semantic and syntactical alignment. In order to support model based integration of model-, software-and hardware-in-the-loop simulations based on the same model, the core architecture descriptions need to be complemented with modeling patterns and model transformations. These aspects, i), were addressed in the HeavyRoad project, resulting in representation concepts that were implemented in a prototype tool chain and applied to examples.

Virtual integration is often performed with the purpose to simulate a representation of the system. Behavioral modeling tools typically provide simulation capabilities of components, but there is limited support for system aspects such as execution and communication coordination beyond component level. In such simulations, concurrency, contention and interaction among components are typically not represented. To include these aspects, architecture models can provide system descriptions and a general execution framework can provide for simulations that respect timing, triggering and concurrency aspects.

There are several such off-the-shelf integration frameworks for the automotive domain such as Silver [START_REF]QTronic Silver -Product Information[END_REF], CANoE [START_REF]Vector CANoe product information[END_REF] and Scalexio [START_REF]DSpace Scalexio product information[END_REF]. However, such tools are mainly intended for interactive, desktop use rather than large scale engineering automation. Further, they are difficult to tailor for company specific needs or refine towards new capabilities concerning work flow, representation, test execution, etc. These issues, corresponding to ii) and iii), were investigated in the HeavyRoad project, resulting in a flexible and efficient simulation environment.

Below we will elaborate on the HeavyRoad contributions, starting with the workflow and structuring pattern and then continuing with configuration and variability, software simulation aspects and system simulation aspects. The concepts are illustrated by an example and then closed with summary and conclusions.

III. WORKFLOW

The workflow is part of a continuous integration cycle, with the purpose to automatically verify the (virtually) integrated system in each iteration. There are 4 steps involved:

Edit System

The system is captured as a variable-rich system model where software and models of physical components are integrated.

Simulate and verify

The simulation components are simulated according to the experiment definitions and verification is performed by checking that stimuli/response is according to stated requirements. The choice of which product to instantiate and which requirements to verify is part of the (automated) experiment planning and not further discussed in this paper.

Fig. 2 puts the simulation activities into context. Development activities are illustrated with a series of V:s, the left part of the V corresponding to development activities and the right corresponding to integration, validation and verification activities. The upper part of the V corresponds to vehicle level activities, such as setting the feature content, while lower parts relate to design and implementation. In a continuous integration workflow, the feature set, fundamental solutions and logic design does not change as frequently as the implementation.

Thus, verification of fundamental algorithms, safety mechanisms and other design strategies will occur less frequently than verification due to implementation changes. There will be a set of different cadences, where ... ii) iii) iv)

Fig. 3. Modelling Pattern for Embedded System, with interfaces at appropriate locations

integration and verification of the software implementation will require most efficiency and automation, as it is likely to be done on an hourly or daily basis.

In order to verify mechatronic systems, simulation of the physical entities together with the application software is necessary, as much of the functionality is dependent on the response of the controlled entities. Important requirements are formulated on the external system boundary, and thus needs a complete physical or virtual integration to be verified.

The next section will discuss how the system entities can be modeled in a composable and reusable manner.

IV. REPRESENTATION PATTERN

The chosen pattern for the information model is based on the SimArch simulation architecture [START_REF] Modelon | FMI Composer tooling[END_REF] and extended based on EAST-ADL [START_REF] East | ADL Association: EAST-ADL 2.1.12[END_REF], [START_REF] Kaijser | Virtual Integration on the Basis of a Structured System Modelling Approach[END_REF] concepts. The pattern represents one of several views [START_REF]IEEE: Standard 42010, Systems and software engineering -Architecture description[END_REF] on the architecture description model captured in EAST-ADL and AUTOSAR. We have contributed with a refined representation of structure and behavior and added concepts for plant interfacing, see Fig. 3. The pattern distinguishes between five parts: i) an application part that is typically realized by software but in some cases by models, ii) an I/O part representing sensors, actuators and electrical interfacing, iii) a plant that represents the invehicle physical elements, iv) an environment that represents elements outside the subject vehicle and finally v) the stimuli and expected response for the purpose of specification and verification.

By applying this pattern and maintaining the corresponding interfaces, it is possible to reuse the model parts for different verification use cases. The unidirectional arrows in Fig. 3 show suitable interfaces for such experiments. The leftmost arrow (1) represents the boundary of application software corresponding to an engineering units interface for application software-in the loop and model-in-the loop. The boundary may be extended to the electrical interface (2) and thus include the sensor/actuator abstraction. The software boundary (3) includes the platform and is aligned with processor-in-theloop or virtual targets for target-compiled binaries. The control unit boundary (4) is the electrical interface to sensors and actuators and corresponds to hardware-in-theloop. The sensor or actuator boundary [START_REF] Blochwitz | Functional Mockup Interface 2.0: The Standard for Tool independent Exchange of Simulation Models[END_REF] is the physical interface between the complete embedded system and corresponds to e.g. rapid control prototyping, i.e. where preliminary control systems are used in a mule truck. Finally the vehicle boundary [START_REF] Drenth | Consistent Simulation Environment with FMI based Tool Chain[END_REF] is the external interface of the vehicle, i.e. "tires-to-road". Fig. 4 illustrates how the model pattern can be applied to a model with software, sensors/actuators, mechanical plant and an environment.

Examples of how modeling elements are reused in different use cases include running a real control unit together with models of the sensors, plant and environment, or executing binaries on a virtual processor together with models of electronics, and the same models for sensors/actuators, plant and environment. Similarly, models of the embedded system can be connected to sensors and actuators in a real truck and tested in the field.

It should be noted that the granularity can vary depending on the purpose of the experiment. For example, sometimes the I/O part is simplified and not decomposed into sensor/electronics/sensor software while in other cases also the electronics part may be decomposed into wiring harness and discrete electronic components.

V. VARIABILITY AND CONFIGURATION

In the overall workflow, as discussed in Section III, variability and configuration is a key aspect. In order to promote reuse and secure separation of concern, variability is defined in three dimensions:

1. Product: The feature content of the product influences how the software and embedded system are configured, as well as the models of physical components. 2. Experiment: Depending on which requirements to verify and which experiment setup is deemed appropriate for a given verification effort, different simulation components need to be selected and parameterized accordingly. 3. Notation/Representation: Different behavioural representations are suitable depending on the intended simulation target and fidelity. The variant selection in each of the dimensions is done in order to support the verification effort at hand. For example, the same product configuration may be verified with a set of experiments and each experiment may be performed with different tooling, fidelities and notations. Although orthogonal, the three dimensions often covariate. This is particularly true for the second and third dimension. A particular experiment, is often done in a particular tool that in turn depend on a specific notation. For example, performance assessment of some vehicle dynamics feature might require a certain experiment setup (second dimension). To be meaningful this experiment require a high fidelity plant component (third dimension) that is also used for other purposes.

In order to capture the simulation model configurations appropriately, feature modeling and variant resolution rules of EAST-ADL were used. This provided a systematic approach to managing variability across the three dimensions.

VI. SIMULATOR

As noted in section II, there are several off-the-shelf simulators available. Because of the complex experimental setting and continuous need for tailoring, a specific simulation platform was developed in the HeavyRoad project, with specific attention to the Volvo context. Fig. 5 shows the architecture of the Adapt simulation platform. The simulation core is responsible for triggering simulation modules and data exchange over a simulation bus. Adapt modules represent software components, physical simulation models, logging, and even interfaces to physical buses and I/O. Adapt modules for software components are primarily based on the Autosar standard. The AUTOSAR software component template defines the interface and triggering of the software components, making it possible to infer all execution information from the model. The same source code is used for the simulation modules as for the target binaries. A module generator provides the wrapper code that interacts with the software component and with the Adapt simulation core.

Adapt modules for Functional Mockup Units are based on binaries and interface descriptions according to the Functional Mockup Interface standard [START_REF]FMI development group: FMI 2.0[END_REF]. An FMU module generator provides wrapper code that interacts with the Functional Mockup Unit's binary according to its specification in the description file. The wrapper code likewise interacts with the Adapt simulation core.

There are additional Adapt modules for various purposes, one being external bus communication. The communication module reads and writes from CAN and LIN busses as well as IP communication like UDP or TCP.

The communication concept is signal based, and in order to route signals correctly, each module has an interface description file, declaring which signals are read and written by the module. This file is parsed during simulation initialization.

VII. FIDELITY OF PLANT AND ENVIRONMENT

In order to integrate simulation models of physical phenomena, the Functional Mockup Interface [START_REF] Blochwitz | Functional Mockup Interface 2.0: The Standard for Tool independent Exchange of Simulation Models[END_REF][10] is used. FMI is an open standard for exchanging dynamical models between different modeling and simulation tools.

When accuracy requirements are low, it is possible to run the Functional Mockup Units as individual simulation modules, only executing and exchanging data on specified points in time according to its trigger conditions. The simulation is thus based on a fixed step solver.

There is also the possibility to integrate several Functional Mockup Units to an aggregate that internally is simulated with a high precision solver. This way, tightly coupled components can be simulated with preserved precision and accuracy, even if the external simulation is

Virtual Signal Bus / Triggering

SW Components

Functional Mockup Units running at slower speed. The definition of the aggregate is done using the System Structure and Parameterization format, SSP, and a solver synthesis approach is defined in the project.

VIII. FIDELITY OF EMBEDDED SYSTEM SIMULATION

The embedded system can be simulated based on models of software, electronics and sensors and actuators. They are then represented as Functional Mockup Units. The physical elements largely have the same implications as discussed above. When AUTOSAR software components are executed on the Adapt simulator, modules are generated based on the original application code and autogenerated wrapper code. The wrapper code is a minimal replacement of the AUTOSAR middleware to execute the application. To increase fidelity of the software execution and to include the platform configuration it is also possible to run AUTOSAR application code on a Virtual AUTOSAR Cluster, VAC. The application code is then invoked exactly as in the product, and the full middleware is executing. Except that code is cross-compiled and the drivers for I/O and communication is modified, full execution fidelity is achieved, and the tooling is fully consistent with the target tooling.

IX. VALIDATION AND VERIFICATION OPTIONS

An integrated system simulation model can be used for both automatic black box accelerated testing and for real-time interactive validation. The former is perhaps the most important capability, in order to verify dangerous and rare driver situations and collect enough testing time to reach required confidence levels. In this simulation mode, test stimuli and response analysis, as well as invariant monitoring is performed without user interaction. The Adapt platform also supports real time execution. In this simulation mode, visualizations can be used to interact with operators, test subjects and other stakeholders, see Fig. 8. Integration with physical I/O and buses is also possible, using the corresponding interface modules to support rapid control prototyping or hardwarein-the-loop.

X. TOOLING

Various tooling has been developed to support the different parts of the workflow identified in the project. SystemWeaver [START_REF]SystemWeaver -Product Information[END_REF] is the information backbone used as development hub for electrical and electronics systems engineering by Volvo. And it has been adapted to support product models according to Section IV. This enables the use of real product data to be used in validating the concepts developed in HeavyRoad. Similarly, the EATOP/Artop [START_REF]AUTOSAR Tool Platform User Group: Artop[END_REF][9] open source platform has been refined during the project. Both tool environments have been expanded to support modeling for simulation. Autosar entities with links to source code and functions with links to Functional Mockup Units were the main elements related to simulation. Support for variability was refined and validated in the context of simulation. It is largely the same needs and mechanisms as for other variability use cases, but the dimension of behavioral models and timing needed particular attention regarding how it was modeled and resolved.

The Verification and Validation concepts of EAST-ADL were used to identify which parts of a model is included in a particular simulation. Within a verification case, requirements and procedures are defined, see Fig. 7. The VVTarget element references the functions of the models to include or the test hardware that realizes them.

To support the fidelity concepts in Section VII, the Modelon FMI Composer tool for Functional Mockup Unit Aggregation [START_REF] Modelon | FMI Composer tooling[END_REF] was developed. Similarly, the Virtual AUTOSAR Cluster concept in Section VIII was made as an extension to Arccore tooling for AUTOSAR [START_REF]Arccore: AUTOSAR platform and tooling[END_REF].

XI. EXAMPLE SYSTEM

In order to validate project results, several example systems have been modeled and simulated. One of them is a platooning system, where the truck platoon was simulated on the Adapt platform and positions were provided to a visualization tool, to allow interactive validation.

Platooning is a vehicle feature where wireless vehicleto-vehicle communication is used to inform trailing vehicles about the state and activities of the lead vehicle. Rather than waiting for retardation of a lead vehicle to be detected by sensors, braking information is available immediately. This way, a shorter distance between vehicles is possible, providing less drag and fuel consumption. The simulation model of the platooning vehicles was based on an architecture model of the vehicle set. Components, interfaces, connections and triggering were defined using EAST-ADL, and behaviors from Simulink were exported as function mockup units.

Each of the vehicles was structured into controller, devices and plant sections according to the pattern laid out in Section IV, and multiple occurrences of the vehicle instantiated in the model. The interaction between vehicles was both physical and logical, corresponding to sensor input and vehicle-to-vehicle communication. Because focus was not on handling, the plant model for vehicle dynamics was very simple, with small processing load during simulation.

The model contained optional elements only included in certain configurations. Prior to simulation, the variable rich system models were therefore resolved for variability and simulation modules generated from the remaining component descriptions, see Fig. 9.

XII. DEPLOYMENT

Regarding deployment of the proposed concepts, there are several challenges that were identified. As noted in the introduction, continuous integration and delivery of embedded systems, requires automatic verification of the software together with its controlled plant and environment. Different systems might require simulation models of the plant and environment that are different in character. A large challenge in a simulation environment for this purpose is thus to have an appropriate plant model that is general and flexible while at the same time can be simulated with high performance and with sufficient fidelity.

The tooling aspect is appropriately addressed by the FMI standard, currently supported by a large number of modeling tools (more than 100), including most common system simulation tools such as Simulink, Modelica tools, and Amesim. By building the simulation platform on the FMI interface, import of models already developed in these tools are possible without needing to implement specific import modules for each separate tool. This way, maximum reuse models of already developed within the organization is possible.

The model organization approach that is prototyped in this work involves decomposition of the plant model into components with compatible external interfaces. If a high fidelity variant is chosen, the low fidelity variant of each component is deleted prior to simulation. This needs to be done by automatic tool support to avoid mistakes and allow automation. Similarly, as different analyses and verification activities use different tools and representations, models need to be automatically configured for these purposes too.

XIII. LIMITATIONS AND POSSIBLE EXTENSIONS

The Simulation environment has some limitation for practical and historical reasons that may need to be addressed for future validation scenarios. The solver is currently using a fixed step solver, and relies on the internal solvers of FMUs for high fidelity simulations. In order to increase simulation performance and precision an improved event and time management may be appropriate. The simulation environment is currently built for Windows targets. In order to make use of low cost and scalable simulation equipment, a migration to Linux for the simulation engine is conceivable. This would also simplify integration of Linux-based software in the simulations.

A third area that is subject to investigations and possibly future extensions is the use of portable scenario definitions. Currently, the traffic scenarios are part of the simulation models of the environment. By including a parser and engine for scenarios, a more flexible approach to traffic scenarios is allowed.

Finally, focus is currently on the logical aspects of the system hardware and software. Artifacts and limitations of the computing platform, such as execution times and communication delays, etc. are not simulated. Thus, only abstraction layer 7 of the ISO communication model is covered. By taking the allocation information and model annotations regarding execution time, execution speed, communication speed, etc. into account, more aspects could be verified.

XIV. SUMMARY AND CONCLUSIONS

Simulation based verification is an indispensible technology for developing embedded automotive system. It is needed to support continuous integration, since testing of the software must be done by simulation together with models of its surrounding elementsunit testing of the software or embedded system is not sufficient, as external requirements are only met by the integrated system. For autonomous system and driver support systems in general, simulation is also essential in verifying correct behavior in rare and dangerous situations that would not occur during test drives. This paper has described results related to simulation technologies from the HeavyRoad project, where various aspects of integration and simulation are addressed. In particular, the project has provided i) solutions for rigorous and automatic generation of simulations in the face of variant rich systems with varying needs for simulation fidelity. A simulation platform ii) tailored for typical automotive needs regarding test environments as well as the in-vehicle software platforms. Project technologies are also provided to support iii) validation of result with visualization tools and to allow integration between simulated systems and real computational units and electrical devices.

Fig. 4

 4 Fig. 4 Model using the proposed Pattern for System

Fig. 5 .

 5 Fig. 5. ADAPT Simulation platform

Fig. 6 .

 6 ArEATOP tooling platform for modelling the simulated systems.

Fig. 8 .Fig. 7 .

 87 Fig. 8. Adapt platooning simulation together with visualization tools

Fig. 9 .

 9 Fig. 9. Generation of Simulation Modules for the Platooning System.

Cadence of development Activities in a Continuous Integration Setting

	Medium cadence			Fast cadence			Slow Cadence	
						Feature Integration				
						Functional Integration			
						System Integration				
						Software Integration				
						Component Integration			
	i)										
	Layer y	Application	Layer x	Application	SWC	Sensor/act.	Platform	Electronics	Actuator	Plant	Environment
		Engineering	Electrical	Electrical	Electrical	Engineering	Engineering	
					(Logical)					
		Units					(Bit pattern)		Units	Units	
		(Logical)									

Fig. 2.

1

This work was sponsored by VINNOVA FFI grant 2014-03947.