
HAL Id: hal-02156364
https://hal.science/hal-02156364

Submitted on 14 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ESPRIT: Overview of the Vehicles Road-Train
Real-Time Architecture

Nicolas Gobillot, Eric Lucet

To cite this version:
Nicolas Gobillot, Eric Lucet. ESPRIT: Overview of the Vehicles Road-Train Real-Time Architecture.
ERTS 2018, Jan 2018, Toulouse, France. �hal-02156364�

https://hal.science/hal-02156364
https://hal.archives-ouvertes.fr


ESPRIT: Overview of the Vehicles Road-Train
Real-Time Architecture

Nicolas Gobillot
CEA, LIST, Interactive Robotics Laboratory

91191 Gif-sur-Yvette, France
Email: nicolas.gobillot@cea.fr

Eric Lucet
CEA, LIST, Interactive Robotics Laboratory

91191 Gif-sur-Yvette, France
Email: eric.lucet@cea.fr

Abstract—This paper deals with the communication
and real-time architecture of an innovative articulated
vehicle, coupled with up to seven other similar vehicles
to form a road-train. The controller device was chosen
powerful and flexible enough to prototype an innovative
system of vehicles able to reconfigure themselves after
a coupling or uncoupling process. Automotive industry
standards are consider in order to benefit from existing
systems. Implementation on real vehicles demonstrates
performances and robustness in scenario conditions.

Keywords: Distributed architecture, real-time system,
embedded system, vehicle automation.

Category: Abstract of regular paper

I. INTRODUCTION

The Easily diStributed Personal RapId Transit [3],
[5] project was launched in order to design a new
specific light weight electric vehicle able to be stacked
together to gain space for improving car-sharing public
transport. By using innovative coupling systems, up to
eight ESPRIT vehicles can be nested together in a road-
train, (see figure 1) seven being towed, for an efficient
redistribution by a single operator. Then, ESPRIT vehicles
are available to users at specifically designed charging
stations scattered across cities.

A. Context

The ESPRIT vehicle design has been established in
view of a future industrialization with the automotive
industry. On the hardware point of view, most of the
selected components are well tested and validated off-the-
shelf modules that are already used in current cars and
road vehicles. This design choice implies that the commu-
nication architecture between the different modules and
between the different vehicles in road-train configuration
is based on the Controller Area Network (CAN) bus,
similarly to the one presented in [4]. On the software side,
most of the calculators are industrial-grade controllers

Fig. 1. Two of the ESPRIT vehicle mock-ups.

using proven programming languages such as GRAFCET,
combined with Petri-net based formalism [13], to produce
predictable behaviours. However, the ESPRIT vehicles
main controller is an embedded computer system chosen
for its ease of use in a prototyping process and its
powerful Central Processing Unit (CPU) at the cost of
a less predictable behaviour. On the final production
vehicles, this computer will be replaced by a specific
automotive controller.

The Esprit vehicles can be used in three different
modes:

• Manual driving on the public roads.
• Autonomous “follower” mode for the towed vehi-

cles.
• Autonomous parking, docking and un-docking mode

when the road-train arrives in or leaves a station.

The first manual driving mode is similar to any current
electric car: the user drives the ESPRIT vehicle with a
steering wheel, a DNR gear speed selector (Drive, Neutral



and Reverse), an accelerator pedal and a brake pedal. The
second mode is only used on towed vehicles to follow
the front driven one and autonomously participate in
propulsion, steering, braking with energy recovery and
stabilizing the road-train on a single track path. The last
driving mode is a fully autonomous mode when ESPRIT
vehicles enter or leave a station in order to properly dock
to the vehicles already at the station or un-dock with the
vehicles to be left at the station.

B. Contributions

Since the ESPRIT vehicles will be driven by users on
public roads, safety concerns have to be enforced. On
the software point of view, the main controller runs a
real-time Linux operating system with a fixed priority
scheduler and a proprietary middleware helping with
task management as well as providing a large amount of
hardware drivers and communication facilities. Moreover,
the use of a deterministic communication protocol, the
Controller Area Network, between the vehicles allows us
to use Worst-Case Execution Time computation tools [2]
such as OTAWA [1], AiT [6], Bound-T [7], Chronos [9]
or MBPTA [12] and validate the correct behaviour of the
software architecture with Worst-Case Response Time
(WCRT) analyses for fixed priority scheduling [10].

Contributions are the providing of a real-time archi-
tecture guaranteeing that the WCRT does not exceeds
the specified deadlines not only for the software tasks
involved but also for the end to end communication
between modules.

This paper is organized as follows: first, the global
communication architecture and the different modules
involved in this process are introduced. Then the main
controller is presented with its task-based, real-time
operating system. In the last part, current results and
possible improvements to create a more robust system
are discussed.

II. GLOBAL ARCHITECTURE

The communication architecture of ESPRIT vehicles is
separated in two main parts: the communication between
the different modules inside one vehicle (intra-vehicle
communication) and the communication between vehicles
(inter-vehicle communication). In the first part of this
section, the interactions between each controller and the
developed communication architecture to make these
interactions possible are explained. In the second part, the
different hardware controllers embedded in each vehicle
are described.

A. Communication network

Because ESPRIT vehicles can be driven in single
car or in road-train configuration, the communication
architecture involved needs to be safe and robust. For this
architecture to work seamlessly in both configurations,
internal communications are separated from the vehicle-
to-vehicle data transfer.

1) Internal communication: ESPRIT vehicles use
many off-the-shelf automotive components. So, to comply
with the standards in the automotive industry, the Con-
troller Area Network (CAN) protocol was selected for
all communications between the car’s modules (see [11]
for an overview of vehicle networking using the CAN
bus). The automotive industry is mainly using 500kbaud
bus speed that has become a de facto standard among
manufacturers. So, to comply with this standard, we also
use 500kbaud bus speed.

The communication architecture was designed to cope
with the large amount of data exchanged between the
different controllers and between the different vehicles,
since most of the CAN frames are periodically sent
every 10ms. Moreover, the main controller (explained
in section II-B4) is the central hub of all the internal
communication as well as the vehicle-to-vehicle com-
munication. So, we designed a “three and a half” CAN
buses communication architecture, as shown in figure 2.
A safe behaviour of the complete system needs to be

Main

controller
EBS HMI

Docking

controller

EPS Motors
Energy

management
Inter-vehicle

CAN bus 1 intra (0.23 load)

CAN bus 2 intra (0.91 load)

CAN bus 3 inter (0.94 load)

CAN bus 2 inter (0.42 load)

0.080.39 0.08 0.05 0.02

0.44 0.08 0.05

0.03 0.25 0.05 0.01

0.05

Fig. 2. The main communication architecture for one
ESPRIT vehicle.

ensured if one communication lane fails. For that, two
partially redundant CAN buses are used for internal
communication and two separate buses are used for



vehicle-to-vehicle communication, one of them being
one of the internal buses but filtered to limit the bus
load. The two internal buses, namely CAN bus 1 intra
and CAN bus 2 intra, are only partially redundant due
to hardware limitations on several modules that are only
equipped with one CAN interface.

The use of CAN bus 1 intra and CAN bus 2 intra
buses depicted figure 2 is done in redundancy whenever
possible and more specifically between the main con-
troller, the Electronic Brake System (EBS) and the user
interface (HMI). Other modules are connected on the
communication buses to balance bus load and maintain a
safe data transmission, CAN bus 1 intra being exclusively
an internal bus. The second CAN bus (CAN bus 2 inter)
is also used to transfer low level data between vehicles,
such as energy balancing in the charging process, when
the main controller is powered off. Lastly, the third data
line (CAN bus 3 inter) is used to exchange information
between vehicles in road-train configuration.

Most of internal communication messages are ex-
changed on CAN bus 2 intra. CAN bus 1 intra carries
17 frames for a total bus load of 23%. CAN bus 2 intra
transmits 74 frames cumulating at 91% bus load and it
provides a 2 frames vehicle-to-vehicle communication
participating in 5% of the 42% bus load on CAN bus 2
inter. CAN bus 3 inter allows a data transmission up to
38 vehicle-to-vehicle frames depending on the amount
of vehicles in the road-train for a maximum bus load of
94%. Values on the right of the data lines in figure 2
are the CAN bus load emitted from each module. The
bus load for CAN bus 2 inter and CAN bus 3 inter does
not correspond to the connected module’s emission load
because it depends on the amount of connected vehicles
and thus, it is the maximum possible load.

2) Vehicle-to-vehicle communication: The vehicle-to-
vehicle communication serves two purposes: firstly it
allows the main controllers to communicate for control
purposes and secondly it permits a correct energy man-
agement when several vehicles are coupled.

For a correct behaviour of each vehicle in road-train
configuration, an advanced adaptive and dynamic control
law was developed. The control law role is twofold: it
is designed to stabilize the road train in order to prevent
lateral oscillations and it is guiding the road-train on a
mono-trace trajectory by adjusting the steering and wheel
torques of each vehicle.

The control law needs to be computed on a single
main controller, while requiring the knowledge of the
complete state of the road-train. Thus, a master-slaves
scheme is implemented among involved main controllers:

main controller of the first vehicle in the road-train is the
master controller collecting data from its own vehicle and
from all connected slaves, in order to compute the relevant
setpoints. These setpoints are then sent to slave controllers.
Each slave controller is responsible for the dispatching of
received setpoints to the relevant controllers. For example,
if the master controller’s control law computes a torque
setpoint for a slave vehicle, the slave controller has to
determine if the request is a motor torque or a braking
torque and transfer the setpoint either to the Electronic
Brake System or to the Motor Inverters.

However, our safety analysis showed that a single
failure on the master main controller may lead to a
catastrophic behaviour. To limit the risks, if the master
controller fails one slave controller takes its role and keeps
the road-train in a degraded safe mode where the driving
capabilities are limited. The limited driving capabilities
are a limited maximum speed, direct brake setpoints from
the driven vehicle measured on the brake pedal and a
limited road train stabilisation with reactive steering on
slave vehicles.

The Energy Management controller role is to ensure a
sufficient amount of energy for each vehicle to work
properly. For that purpose, it has the possibility to
balance energy between vehicles when needed. Moreover,
when vehicles are powered off, the Energy Management
controller remains in a low power ON state in order
to manage the battery charging procedure when several
vehicles are connected. The Inter-vehicle controller also
remains powered ON to allow vehicle-to-vehicle commu-
nication on CAN bus 2 inter.

B. Hardware controllers

Each vehicle is equipped with eight controllers, each
dedicated to a specific task. In the following, controllers
are presented in order of criticality on a decreasing scale.

1) Braking system: The first and most critical module
is the braking system. This module is an off-the-shelf
Electronic Brake System (EBS). It is made of an hydraulic
circuit and an embedded controller, as shown in figure 3.

The hydraulic circuit needs two pressure inputs directly
connected to the brake pedal master cylinder. Then, it is
redirecting the pressure to four brake callipers, one for
each wheel of the vehicle. In addition to that hydraulic
circuit, a custom-developed embedded software can also
generate braking pressure for each brake by using a
hydraulic pump. The embedded controller can also actuate
the Electric Parking Brake (EPB).



Fig. 3. Electronic Brake System installed in the first
prototype.

Since the Electronic Brake System is a critical system
of the vehicles, it is connected to two CAN buses
(CAN bus 1 intra and CAN bus 2 intra) with a specific
redundancy process: on normal operation, it is reading
and writing on both buses and it is comparing the received
values. If both values are identical, the communication
is correct. However, if an error occurs on either CAN
interface, it deactivates this CAN interface, relying only
on the other one and it sends a warning status. If both
CAN buses fail, the Electronic Brake System deactivates
itself and works only as a pressure transfer module from
the brake pedal to the brake callipers.

2) Steering system: The second most critical system is
the vehicle steering. As for the EBS, an off-the-shelf rack-
and-pinion Electric Power Steering (EPS), as shown in
figure 4, that is used in current production cars was chosen.
This module is using a standard software providing two
operation modes: steering assistance and City Park.

Fig. 4. Electric Power Steering used in the ESPRIT
vehicles.

Steering assistance is done by accompanying the
steering wheel movements with an electric motor using
the embedded steering column torque sensor. The city
park mode uses received setpoints on the embedded
controller to actuate the steering rack. In this mode, the
embedded steering column torque sensor is only used
to check if a torque is applied to the steering wheel. It
allows the user to stop the autonomous steering rack

actuation by manipulating the steering wheel.
Even if this system is the second most critical in the

vehicle, it only has one CAN bus interface. If the CAN
bus fails, the electric motor power supply is automatically
switched off. Nevertheless, the steering wheel can still
be actuated by the user since it is directly connected to
the rack-and-pinion.

3) Motor management: ESPRIT vehicles are equipped
with two electric propulsion motors, one for each rear
wheel. Each motor is driven by its own power inverter.

Inverters are equipped with an embedded controller that
is managing motor speed and motor torque depending on
the desired operation. It is also in charge of monitoring
the input voltage and current coming from the main
battery. Lastly, it allows the motors to act as generators
to recharge the battery during motor braking.

On the vehicle’s criticality scale, the motor manage-
ment is the third most critical system but, as for the
steering system, the power inverters have only one CAN
bus interface. In case of failure of a CAN bus, motors
power supply is switched off to let them in free rotation.

4) Main controller: The main ESPRIT vehicles con-
troller is an embedded computer dedicated to four main
tasks:

• Managing the three driving modes (manual, follower
and docking) and allowing or not transitions between
these modes, depending on conditions.

• Computing an advanced control law in road-train
configuration, that is dedicated to road-train stabiliza-
tion, path following and driving torque repartition.

• Collecting inputs from the user interface and transmit
the data to the correct controller or module.

• Collecting and sending data from and to other
vehicle’s main controller.

The main controller implementation is further described
in section III.

5) Inter-vehicle communication: As ESPRIT vehicles
can be docked or un-docked to form a road-train,
they need to be able to communicate together. This
communication is done by a specific controller dedicated
to messages filtering, messages redirection from one
vehicle to another one and impedance adaptation on the
data bus line.

One important aspect of this controller is its low data
transmission time in order to minimize communication
delays between vehicles. In the current implementation,
this delay is about 260µs per controller.

6) User interface: The user interface (HMI) is made
of several elements available to the driver: an accelerator



pedal, a DNR gear speed selector, a start/stop push button,
a dashboard screen and a steering column switch cluster.

The accelerator pedal is providing an analogue signal
proportional to the pedal position, the DNR selector
and the start/stop button are providing digital signals.
On the other hand, the switch cluster is using a low
speed CAN bus that is incompatible with other buses
used otherwise on the vehicle. In order to connect these
devices to the existing buses, we are using a dedicated
low level embedded controller for data conversion and
further transmission.

Also, the dashboard screen is using its own controller
to collect useful data to be displayed to the user, such as
vehicle speed, odometer distance, DNR actual position,
battery charge and driving mode.

7) Station docking controller: When an ESPRIT
vehicle arrives into a station, its driving mode is switching
to docking. In this mode, the main controller switches
its inputs from the user to the station docking controller.
Thus, the vehicle is completely autonomous but the user
can still brake in case of emergency.

The station docking controller has three main roles: to
localize the vehicle in the station, to compute a feasible
trajectory to dock with other vehicles, and to operate the
coupling device.

• The localization algorithm uses specific sensors such
as laser and ultrasonic range-finders to accurately
localize the vehicle in the station. The station is
equipped with four gates indicating the station entry,
the parking entry, the parking exit (which is also a
charging station) and the station exit, as shown in
figure 5. The localization algorithm then provides
to the main controller two types of information: the
exact position of the vehicle and between which
gates the vehicle currently is.

• The trajectory computation algorithm uses the local-
ization knowledge to determine a feasible path from
the current vehicle position to either the parking exit
if the station is empty or the already parked vehicle
to dock with. This trajectory is then sent to the main
controller to be followed autonomously.

• The docking coupler is an actively released and
passively coupled and locked device. It has to
be actuated in order to start the coupling process.
Then, the station docking controller is releasing the
coupling device when the vehicle is located close
to the docked one.

8) Energy management: Since the ESPRIT vehicles
are battery powered electric cars, a smart energy manage-

ment system is embedded. It has three roles depending
on the road-train configuration:

• It manages an efficient charging scheme when the
vehicles are connected to the charging station.

• It limits the current available to all subsystems in
driving mode depending on the battery charge.

• It shares and balances power between vehicles in
road-train configuration.

III. MAIN CONTROLLER SOFTWARE

The main controller is the brain of ESPRIT vehicles.
It is concentrating most of the data exchanged between
each subsystem.

In the software architecture design, it was first decided
which logical modules are needed to perform all the
main controller’s work. These logical modules were
then implemented on tasks of the embedded computer’s
middleware.

A. Logical modules

We identified four roles for the main controller in
section II-B4. However the mapping of these roles onto
logical software modules is not direct:

• The communications are exclusively done through
three CAN buses so, we need a communication
driver to handle all the data transfer.

• The control law for driving and stabilizing the road
train is intended to be used in road train configuration
only, so its execution depends on the driving mode
state-machine’s state.

• The three driving modes have to be selected depend-
ing on the road train configuration, the user inputs
and whether the road train is in a station or not.
We have decided to implement this module with a
state-machine.

• Depending on the driving modes, the setpoints to the
controllers does not come from the same inputs. For
example: in manual mode, the user directly drives the
vehicle’s steering, motor and brakes but in follower
mode, the control law drives the steering, motor and
brakes depending on the user inputs. For this data
switch to work as intended, we have implemented a
data structure containing a data dispatcher.

• We also decided to implement an error management
process running in background to check if the
software, the communications and the hardware
behave as intended during the vehicle’s operation.



Fig. 5. Station conceptual view with an arriving road train being autonomously docked.

1) CAN communication driver: In the communication
scheme, raw CAN2.0A [14] frames are used for data
transfer across all sub-modules except for the motor
inverters which use the J1939 protocol for CAN frame
identification. Using raw CAN frames allows to specifi-
cally select the frame identifiers for each module and for
each vehicle. The frame identifier selection is particularly
useful in road train configuration since we are able to
differentiate each vehicle depending on the CAN frame’s
identifiers.

In the CAN bus protocol, every module passively
listens to any activity on the bus and can actively send
asynchronous data. Our application needs to communicate
with three CAN buses, so we require two software tasks
per bus for an efficient data transfer: the first one is
a periodic emission driver for sending data across the
network. The second one is an event-based reception
driver for collecting information from the other systems.

2) Control law: The control law used in the ESPRIT
vehicles is designed around the kinematic and dynamic
models of vehicles in different road-train configurations.
It has three roles: firstly it stabilizes the road-train to
avoid jackknifing and driving oscillations, secondly it
allows the road-train to follow a mono-trace path, and
thirdly it distributes driving power across the whole train.

For that, it needs input data from the master vehicle,
such as its relative position, its speed and the steering
input from the driver. It also needs the relative angles and
speeds from all the follower vehicles. Then it computes
the motor or braking torque for each wheel of the road-
train and adjusts the steering of the follower vehicles.

Due to the highly dynamic nature of the road train
configuration, this control law needs a 10ms computation
period and a 20ms overall response time to achieve the
best performance. The current control law manages to

stabilize an eight vehicle road train in an elk test1 at
45km/h.

3) Driving mode’s state-machine: Depending on the
situation, the main controller has to select one of these
three driving modes:

• Manual driving when a user drives the car just as
any regular electric vehicle.

• Follower mode when a car is towed and participates
in the driving process.

• Autonomous docking when an ESPRIT vehicle or a
road-train enters or leaves a station.

These three modes are organized as a state-machine for
increased robustness. Each mode is further developed into
sub state-machines to manage the specificities involved
in each driving mode and transitions from one mode to
another.

Moreover, the state machine embeds a failsafe state,
in case an unrecoverable error occurs. This specific state
sets the vehicles in a safe configuration with degraded
dynamic performance and a limited maximum driving
speed.

4) Data dispatcher: In order to correctly redirect data
flows in vehicles, a dispatcher is implemented. It collects
the input data from the user interaction, the control law
computations and the vehicle-to-vehicle communications
and redirects them to the actuators depending on the
driving mode selected by the state-machine.

Five different paths were defined. They are specified
from the vehicle configuration and the state-machine’s
mode: two paths exist when only one ESPRIT vehicle is
driven and three additional paths are possible on road-
train configuration.

• In single vehicle configuration:

1see ISO 3888-2 (https://www.iso.org/standard/57253.html)



– Manual mode: data from the driver inputs are di-
rectly redirected to actuators, the accelerator pedal
drives the motors, the brake pedal hydraulically
actuates the brake callipers and the steering wheel
moves the steering rack.

– Autonomous docking: the docking controller com-
putes the autonomous steering, motor torque and
brake setpoints. However, for safety reasons, the
driver keeps the braking capability with a direct
actuation of the brake pedal.

• In road-train configuration:
– Manual mode (only available for a master vehicle):

data from driver inputs goes to the control law
which computes the actuators setpoints for the
motors and the brakes, steering is done by the
driver.

– Follower mode (only available for a slave vehicle):
all actuators are driven by the master vehicle’s
control law through the slave’s main controller.

– Autonomous docking: same as in single vehicle
configuration, except that the docking controller
sends setpoints to the control law which in turn
computes the desired actuator setpoints for all
vehicles.

5) Error handler: In case of problem on any module
within the road-train, errors need to be taken into account
while still computing a safe behaviour. For instance,
in case of a recoverable error, this process only warns
the driver and quickly recovers to a normal behaviour.
However, in case of an unrecoverable error it adapts
the driving conditions by reducing the maximum speed
allowed and asks the driver to stop the vehicle as soon
as possible.

B. Task architecture

The logical modules presented above (section III-A)
have to be executed on an embedded computer. The
computer selected for ESPRIT vehicles prototypes is the
Effibox Goliath 2000 (figure 6) from Effidence company2.
It is equipped with quad-core Intel R©CoreTMI5 clocked at
2.7GHz. This embedded computer runs a modified soft
real-time version of the Ubuntu Linux operating system
and a proprietary middleware [15].

1) Task model: The task model used in this embedded
computer is defined by its priority, its period (for periodic
tasks) and its CPU affinity. The tasks are scheduled using
the fixed priority scheduler provided by the Linux kernel.
However, the tasks are not synchronized by the operating

2http://www.effidence.com

Fig. 6. Effibox Goliath 2000 embedded computer.

system nor by the middleware so communication delays
between tasks depends only on the task’s periods.

In the application, the most critical delay is the end-
to-end response time from the data production to its
use. For example, if the driver presses the accelerator
pedal, the delay between the accelerator pedal position
measurement and the motor actuation through the main
controller has to be minimized, including all vehicle-to-
vehicle communications.

In order to minimize this overall end-to-end data
response time, the amount of tasks involved in any
data path has to be reduced since the tasks cannot
be synchronized. Moreover, the embedded computer’s
manufacturer, considering the used operating system and
middleware, guarantees a correct behaviour of periodic
tasks defined with a period larger or equal than 10ms.
We then decided the fastest periodic task to be executed
at a period of 10ms.

2) Logical module’s implementation: With the task
model imposed by the hardware and middleware, it was
decided to implement the logical modules as follows:

• As stated in section III-A1, the three CAN buses
needs six tasks to handle properly frame emission
and reception. However, in our communication
architecture, the CAN bus 1 intra and CAN bus 2
intra buses are partially redundant, so to maximize
the data synchronization, we have grouped the
emission processes for these two buses. Only five
tasks have been implemented: two periodic ones for
emission and three event-based ones for reception.

• One periodic task is dedicated to the error handler
process to run in background.

• Another periodic task is dedicated to the state-
machine, the control law and the dispatcher pro-
cesses to minimize inter-task delays.

Figure 7 shows this repartition with the logical modules
in green, the tasks in yellow and a shared data structure



in blue.

Main loop

Command
law

State
machine

Dispatcher

Data structure

send
CAN 1 2

send
CAN 3

receive
CAN2

receive
CAN1

receive
CAN3

Error

Fig. 7. Logical modules implementation on middleware’s
tasks and their data paths.

The task parameters for each task is described in table 1.
In this implementation, all five tasks involved in CAN bus

task period affinity priority
send CAN frames 1 2 10ms core 1 medium
send CAN frames 3 10ms core 1 medium
receive CAN 1 data event core 1 medium
receive CAN 2 data event core 1 medium
receive CAN 3 data event core 1 medium
Main loop 10ms core 2 high
Error handling 100ms core 3 low

Table 1. Tasks involved in the software architecture and
their parameters.

management are dedicated to a single CPU core whereas
the other two tasks run on dedicated cores.

3) Measured response times: To be able to analyse
the software’s execution and its response times, the data
logging features provided by the middleware are used to
trace the response times of each task.

The figure 8 shows three different response times
measures in three different road-train configurations: 8a
represents the operation of a single ESPRIT vehicle,
whereas 8b and 8c shows respectively the response
times of road-trains of two and eight vehicles. With this
architecture, all the CAN frames do not need to be sent
every 10ms, so to reduce the bus load, some CAN frames
are sent on a lower frequency, so the send CAN frames
1 2 (purple plot) and send CAN frames 3 (green plot)
have a large variation in response times. However, even
if the send CAN frames 1 2 maximum execution times
are quite high (8ms) with relation to the task’s period of
10ms, the CPU core dedicated to this task spends most
of its time waiting for the data to be sent on the CAN
buses.

In single vehicle operation, the only time consuming
task is the emission of CAN frames on buses 1 and 2,

all other tasks run under 0.5ms. However, in road-train
configuration, the control law activates (cyan plot) and
needs to transmit data on CAN bus 3. As we can see, all
the tasks are able to run under their 10ms period.

On a data transfer point of view, when a CAN frame
arrives on the bus, it wakes the corresponding receive
task and at worst, it can be taken into account by the
main loop 10ms later as shown in figure 9. The same
delay (10ms) can be inferred to the periodic task non-
synchronisation when a computed data is sent on the
CAN bus, as shown in figure 10.

IV. RESULTS

The main controller of the control architecture then
has an impact of at worst 20ms between the arrival of
an input data on the CAN bus and the output of the
computed value. This delay gives a good behaviour in
single vehicle configuration, when biggest delays come
from the reactivity of the driver.

However in road-train configuration, since the control
law is dynamically reacting to user inputs and road train
configuration, the delay from a computed setpoint to the
observation of its effect is critical for a correct operation.

Figure 11 shows the worst case delay for the data
path from the main loop of the master vehicle’s main
controller to another controller on a slave vehicle and
back. As we can see, this worst case delay adds up to
70ms. The dynamic nature of the system dictates that the
stabilizing control law has to cope with these large delays
in data transmission compared to single vehicle operation.
As stated in section III-A2, the control law was designed
to cope with 20ms delay between the computation of a
setpoint to the observation of its effect in order to provide
the best stabilization performances.

Moreover, added delays coming from the other modules
than the main controller were not discussed in this paper.
For example, motor inverters add a 40ms delay between a
sent torque setpoint and a received torque change measure.
The inverter manufacturer provided a prototype software
to reduce the motor inverter delays. This new software
is currently being tested to evaluate its performances.

In order to improve these response times, it is planned
to investigate a better software management. These
improvements are twofold:

• If the middleware manufacturer provides an update
enabling task synchronization, we would be able
to reduce the main controller delays from 20ms
to 10ms and the vehicle-to-vehicle communication
delays from 70ms to 40ms. Alternatively, we may



(a) Single vehicle operation (b) Two vehicles road-train (c) Eight vehicles road-train

Fig. 8. Measured response times in seconds for six of the tasks involved in the software architecture on a time-scale
of five minutes.

receive CAN data

0

main loop

0 10 20 30

t

t

Fig. 9. Delays between data reception and possible usage.

main loop

0 10 20 30

send CAN data

0 0+δ 10+δ 20+δ 30+δ

t

t

Fig. 10. Worst case delay between data computation and
possible emission due to non-synchronous tasks.

have to use a different middleware implementing a
task synchronization protocol, such as RT-MAPS [8].

• If this task synchronization is not possible with the
current embedded controller, we want to optimize the
task allocation to further reduce the amount of tasks
involved in the application and to achieve a similar
delay improvement as the task synchronization.
However, we cannot merge some of the current
tasks due to their Worst Case Execution Times.

V. CONCLUSION

A communication and control architecture was de-
signed for the navigation of a fleet of coupled vehicles.
In this specific system, modularity and time performances
are critical for a safe behaviour of the road-train. Design

Master vehicle

M
ai

n
co

nt
ro

lle
r

Slave vehicle

M
ai

n
co

nt
ro

lle
r

C
on

tr
ol

le
r

Main loop

0 10 20 30 40 50 60 70
t

send CAN data

0
t

receive CAN data

0
t

Main loop

0
t

send CAN data

0
t

receive CAN data

0
t

send CAN data

0
t

receive CAN data

0
t

Fig. 11. Worst case delay between a computed setpoint
and the measured effect through an inter vehicle com-
munication ; Dashed lines represents vehicle-to-vehicle
communications.

choices were guided by the selected hardware and real-
time performances of the complete system.

At the moment, multi-vehicle communications have
been tested on two real vehicles and up to eight simulated
vehicles. Promising results were already achieved with a



single vehicle configuration and with a simulated road-
train by connecting four real controllers together.

For future improvements, real road-train tests are
planned to be performed and compared to simulations.
End-to-end response times for inter-vehicle communica-
tions should also be reduced.

ACKNOWLEDGEMENTS

This research and development work was carried out in
the scope of the Easily diStributed Personal RapId Transit
(ESPRIT) project. This project has received funding
from the European Union’s Horizon 2020 research and
innovation programme under grant agreement No653395.

REFERENCES

[1] Clément Ballabriga, Hugues Cassé, Christine Rochange, and
Pascal Sainrat. OTAWA: An Open Toolbox for Adaptive
WCET Analysis. In Software Technologies for Embedded and
Ubiquitous Systems, Lecture Notes in Computer Science, pages
35–46. Springer, Berlin, Heidelberg, oct 2010.

[2] I. Broster and G. Bernat andA. Burns. Weakly hard real-time
constraints on controller area network. In 14th Euromicro
Conference on Real-Time Systems, 06 2002.

[3] Valery Cervantes, Peter Davidson, and Helen Porter. Developing
a new mobility as a service concept. In Association for European
Transport, 2017.

[4] L. Cheng and Y. Xu. Design of intelligent control system for
electric vehicle road train. In Proceedings of the 10th World
Congress on Intelligent Control and Automation, pages 3958–
3961, jul 2012.

[5] ESPRIT. Easily diStributed Personal RapId Transit project, 2017.
[6] C. Ferdinand. Worst case execution time prediction by static

program analysis. In 18th International Parallel and Distributed
Processing Symposium, 2004. Proceedings., pages 125–, apr
2004.

[7] N. Holsti, T. Lngbacka, and S. Saarinen. Worst-case execution
time analysis for digital signal processors. In 2000 10th European
Signal Processing Conference, pages 1–4, sep 2000.

[8] Karthik Lakshmanan, Dionisio de Niz, and Ragunathan Rajku-
mar. Coordinated task scheduling, allocation and synchronization
on multiprocessors. In 30th IEEE Real-Time Systems Symposium,
2009.

[9] Xianfeng Li, Yun Liang, Tulika Mitra, and Abhik Roychoudhury.
Chronos: A timing analyzer for embedded software. In Science
of Computer Programming, 2007.

[10] C. L. Liu and James W. Layland. Scheduling Algorithms for
Multiprogramming in a Hard-Real-Time Environment. J. ACM,
20(1):46–61, jan 1973.

[11] B.K. Ramesh and K. Srirama Murthy. In-vehicle networking.
In SAE Technical Paper. The Automotive Research Association
of India, 01 2004.

[12] L. Santinelli, F. Guet, and J. Morio. Revising Measurement-
Based Probabilistic Timing Analysis. In 2017 IEEE Real-Time
and Embedded Technology and Applications Symposium (RTAS),
pages 199–208, apr 2017.

[13] M. Sogbohossou and A. Vianou. Formal Modeling of Grafcets
With Time Petri Nets. IEEE Transactions on Control Systems
Technology, 23(5):1978–1985, sep 2015.

[14] Technical Committee: ISO/TC 22/SC 31. ISO 11898 – Road
vehicles – Controller Area Network (CAN). In Car informatics.
On board computer systems., 2015.

[15] C. Tessier, C. Cariou, C. Debain, F. Chausse, R. Chapuis, and
C. Rousset. A real-time, multi-sensor architecture for fusion
of delayed observations: application to vehicle localization. In
2006 IEEE Intelligent Transportation Systems Conference, pages
1316–1321, September 2006.


