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Abstract– Modern cyber-physical system are often respon-
sible for safety critical control functions. The quality and per-
formance of these function is directly linked to asserted real-
time behavior. In the literature requirements on this behavior
are considered exclusively in the context of central architec-
tural decision making. This can be problematic because such
systems can consist of a large number of reusable software-
components, supplied by different stakeholders that are exe-
cuted on interconnected processing units. In this work, we
present a novel approach to obtain temporal requirements for
the design of cyber-physical systems in a more distributed
way. The significant advantages are the following: First,
our approach simplifies the transfer of assertions made dur-
ing functional design to the system design process which is
important when building systems from reusable components.
Second, our approach enables us to consider important as-
pects of temporal properties in an automated form, that oth-
erwise have to be addressed manually. We demonstrate the
applicability of our approach using an automotive use case.

Keywords– Cyber-physical systems, Model-based system
engineering, Temporal requirements, Component reuse, Con-
trol software

1 Introduction
Context Cyber-physical systems are characterized by a
tight integration of a physical mechanism with computer
based algorithms that control or monitor these mechanisms.
This integration provides several benefits. First, algorithms
can regulate systems constantly and accurately, so that chal-
lenging requirements can be met. For example modern emis-
sion standards on combustion processes can only be met us-
ing sophisticated control algorithms. Additionally software
can help to reduce maintenance by adapting to wear, aging or
defects in the operated system based on the diagnosis of sen-
sors, actuators and the controlled system itself. The increas-
ing responsibilities require a high degree of dependability and
quality, as failures may result in either serious damages or ex-
pensive fines.

Many of these algorithms originate in control engineering,
such as controllers, observers, automata or parameter estima-
tors. The design of such functions is based on physical mod-
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Figure 1: Abstract example for the development of a cyber-
physical system from reusable components.

els of the controlled systems that represent the behavior of the
plant. An important aspect for the quality of control appli-
cations is the behavior of the executing platform, which has
been studied for a long time in the field of networked con-
trol systems. There is an extensive amount of literature on
the design and test of control functions with known latencies
from sensors to controllers known latencies from controllers
to actuators, as well as known sampling rates [8, 28]. For
example, unaccounted latencies in control loops can reduce
the achievable control performance or may even destabilize a
controlled system. Therefore it is necessary that requirements
on such properties are specified appropriately, to ensure that
they are considered appropriately during system design.

Several works propose a specification of these properties
through a centralized instance as part of the system design
process [11, 24]. In the literature the applicability of these
processes are demonstrated for systems that can be compre-
hended in every detail by a small team.
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However, identifying all requirements in regard to time can
be problematic for large industrial scale systems due to sev-
eral reasons. For example, in the automotive industry sys-
tems are designed from hundreds of reusable components,
developed by specialized teams that are separated in space
and time. This separation limits communication between ar-
chitects and domain experts. Additionally, only a small num-
ber of components have access to the physical world, while
the majority of components depends on other components
for their input data. These data dependencies result in com-
plex signal flows that can depend on the behavior of multiple
processing units and communication links. Thus, the central
planning instance must be aware of all control theoretic de-
tails of the individual components as well as the signal flow to
specify appropriate requirements. From experience, we know
that this assumption is unrealistic and generally results in sys-
tems that are underspecified. Without proper specification,
the design process of real-time systems will then either lead
very conservative designs or to misbehaving systems.

Thus, improvements to current practices are required to
disclose assertions used in control design, so that they can
be considered during the design of cyber-physical systems.

Contribution: In this paper, we discuss a component based
approach to derive system-level timing requirements from
component descriptions. Major goals of this process is to
improve the quality of system designs by disclosing require-
ments that are otherwise easily overlooked. The approach
consists of two key parts. The first part are component de-
scriptions based on the temporal semantics model. Thereby,
we borrow from the concept of the data-age, where require-
ments refer to event-chains not yet defined. Second, we
demonstrate how these descriptions can be transformed into
requirements used by standard models.

While our work is mainly motivated by automotive soft-
ware, the approach is applicable to any component-based
cyber-physical system with control functions.

2 Background
In the past the real-time community has developed several
formats and methodologies consider test temporal require-
ments during the development process. Work has focused
on top-down system engineering according to the V-model
[11, 24]. Thereby, it is assumed that the whole cyber-physical
system and its algorithms are planned by a central planning
instance. This design includes the functional and the dy-
namical architecture of the system, which is documented and
tested using models. Temporal properties are addressed by
specifying and testing timing requirements based on event-
based timing models, which focus on observable events and
their relation to another [4, 20, 11]. Properties that are rep-
resented in event-based models are the latency of an event-
chain, the event-rate and the synchronicity of events. The la-
tency describes the difference between the tags of events that

are causally linked by a signal flow. The event rate describes
the difference of the tags of two consecutive events, while the
synchronicity can either refer two the difference of the tags
or to the difference of the latency of two events.

Several event-based standards for the specification of tim-
ing requirements have been proposed such as the AUTOSAR
Timing Extensions [1, 11], AMALTHEA [27] or MARTE
[6]. These requirements then provide boundary conditions
for the mapping of software onto processing units and the
design of the scheduling [12]. The implementations can be
verified using real-time analysis methodology such as Real-
time Calculus [26], Compositional Performance Analysis [9]
or automata-based methodologies [5, 14].

However, requiring that timing properties have to be ob-
tained by a central planning instance, will likely lead to un-
derspecified systems unless they are small. Without proper
specifications the software-hardware co-design process might
lead to expensive and unnecessary errors. This has also been
pointed out by [18, 21, 13]. To enhance the number of tim-
ing constraints, iterative processes can be used as in [13].
Still, the identified constraints are system specific, which lim-
its reuse. Additionally, the underlying event-based models
can not consider all relevant temporal aspects of control soft-
ware. First, it is not possible to consider software effects in
the components themselves on temporal properties, such as
delaying or filtering. Second, these models can not represent
time related properties that can affect the quality of the con-
trol software, such as aliasing or the bandwidth. Therefore,
a lot of manual labor is required to derive real-time require-
ments from the abstract models used in control engineering
An improved description for temporal properties in cyber-
physical systems was provided in [25]. The main drawback
of the approach is that it can be used for analysis only but not
for design.

There exist also several contract based approaches, which
document implementation aspects such as execution times
and response times [3, 23, 21]. These contracts, based on
assume-guarantee reasoning, use interfacing to decompose
system into smaller more manageable units. If data data de-
pendencies exist, contracts are obtained by decomposing an
event-chain of an existing system-level timing specification
obtained from top-down design processes. One drawback is
the assumed composability, which is not always given due to
interactions as discussed by [17]. Also components may have
to assume properties, that may not by functionally relevant to
the individual component but for the overall functionality of
the system. This is described by [7] as "assumption explo-
sion". Reusing such contracts to obtain timing requirements
for a new design, is then likely to result in several unnecessary
constraints.

3 The Temporal Semantics Model
In a cyber physical system data will often represent physi-
cal states which get their context from the physical system.
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Figure 2: Example showing the propagation of a logical time
stamp along the signal path and its alteration by algorithmic
delays in the buffer and the predictor.

Also, it is often much more important to know, what point in
time the data actually represents rather than knowing the time
of the read operation. The general approach of our model
is therefore to focus on the represented point in time, which
we call the logical timestamp. Additionally we acknowledge,
that often the original source of the processed information as
well as the signal paths are not necessarily important as long
as the value is correct and has the desired properties. There-
fore, it is sensible to consider the properties of information at
the interfaces, rather than as a property of a signal flow. Based
on these considerations we developed the temporal sematics
model which will be outlined and motivated in the following.
For a more formal description of the model we refer to [25]
and to the provided supplementary material1.

3.1 Events, Signals and Causal Chains

The temporal semantics model provides a means to describe
temporal properties of data in a cyber-physical system based
on data-events. A data-event is an observable occurrence at
an interface. We thereby differ between sampling, actuation,
reading and writing, whereas sampling and actuation are op-
erations, where a driver component interacts with its physi-
cal environment. Reading and writing are operations at data
interfaces whereby a component communicates with other
components. In AUTOSAR these interfaces are called VARI-
ABLEDATAPROTOTYPES. The set of events that occurs at a
single interface is called a signal. In control theory signals
are often represented in the frequency domain. If a signal is
represented in the frequency domain, it is called a spectrum
of the signal. For each signal, there exists a signal path, which
describes the flow of information from a sampling interface
to the respective interface. A causal chain describes causal
relationship between events.

Each event is described by a triple consisting of a value,
the time of the occurrence of the event and the so called logi-
cal timestamp, which is the concrete point in time, where the
value represents the physical state. The logical timestamp is
motivated by the assumption the values are physically based

1http://arxiv.org/abs/1711.09130
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Figure 3: Step response of the simulated system for different
time delays.

and that they represent a physical state in the physical world
at a certain point in time. This logical timestamp can be ob-
tained by propagating time of a sampling instant at a physical
interface through along a signal flow. We further assume that
the temporal context (logical timestamp) can be altered by so
called algorithmic delays in the components due to buffer-
ing (negative) or predictions based on models (positive). An
example for a simple signal flow is shown in Fig. 2. Note,
that the timestamp t̂kx progresses with the signal flow due to
computation. In contrast the logical timestamp is propagated
from the sampling event and altered only by the algorithms in
the components.

3.2 Temporal Signal Properties
Using this model, we can define a set of measurements that
are based on the logical timestamp. These measurements,
which we call temporal signal properties, provide an im-
proved description for the timing behavior of such signal
flows compared to existing descriptions. They are called the
logical data age, data synchronicity, logical sampling rate,
logical band limit and aliasing. In the following we present
the individual properties and discuss why they improve the
description for the timing behavior of such signal flows com-
pared to existing descriptions.

Logical Data Age is a measurement for input delays. Input
delays are an important aspect as they can reduce the perfor-
mance of a controlled system significantly [19]. Effects of
time delays are overshooting behaviors or an overall loss of
stability. Input delays may also reduce the ability of a monitor
to notice a defect in the system within a given timeframe.

In order to demonstrate the effect of a time delay on a con-
trol system, we set up a small experiment. For these experi-
ments we build a Simulink model of a PID controller which
controls a stable plant. The plant itself can is modeled by a
second order transfer function G(s) = 1/(s2 + s + 1). The
output of the plant is sampled at a rate of 1ms. This signal is
then filtered by a first-order filter. This filtered signal is then
used by a controller at a rate of 10ms. The controller param-
eters are P = 70, I = 10, D = 10. The absolute value of the
control output is limited to 100. To show the effect of the time
delay we add a constant time delay block into the system and

3



Network

Logical Data Age

Sns Sns Sns SnsSnsSnsSns

Ctl CtlCtl

Figure 4: Logical data age of an abstracted signal flow.
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Figure 5: Simulation results for the estimated bulk modulus
when a) the pressure pcr is delayed by τ ; b) the pressure pcr
and the angle of the crank shaft α are delayed by τ .

simulate the step response. The results of these experiments
are shown in Fig. 3. As expected, does the increasing delay
worsen the behavior of the controlled system by increasing
the overshoot.

In event based models such as AUTOSAR, time delays are
measured by end-to-end latencies. Still, component may de-
lay values internally using algorithms or buffers. Such de-
lays can not be measured by the end-to-end latency and will
therefore be ignored. Thus, the latency is not always a proper
measure of the time delay. We address these effects, by mea-
suring the logical data age which is the difference between
the tag and the logical timestamp of an event. An interpreta-
tion of the logical data age of a controller is shown in Fig. 4.
Note, that the concrete signal flow that may include several
functions is abstracted into a point-to-point communication
through an abstract network.

Data Synchronicity is an is a measure of the temporal co-
herence of data, which can be important when dealing with
data fusion algorithms or for functions that compare states.
These algorithms will often compute a state based on several
input values. If these values are not temporally coherent, the
processed output will differ from the true physical state.
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Figure 6: Output signal of the differentiator for constant and
varying logical sampling rate.

To emphasize the importance of that temporal coherence,
we simulate an application function which measures the
states of an injection system presented in [2]. The function
computes the states of fuel in the common rail of a combus-
tion engine using an estimator. This estimator uses a zero
dimensional model of the common rail to estimate the bulk-
modulus based on the inflow and outflow and the measured
pressure in the common rail. For a more detailed description
of the algorithm we refer to [2].

Again we setup an experiment using a Simulink-model.
The estimator depends on several inputs such as the fuel pres-
sure, the rotational angle of the crank shaft as well as the rota-
tional speed of the engine and the parameters of the injection
control. To obtain the system behavior we use a reference
model and add measurement noise. For our experiment, we
vary the age of input properties using time-delay blocks. We
discuss two different setups, where the measured pressure pcr
and the angle of the crank shaft α are delayed. At first, we
delay only the pressure signal pcr. Next, the angle α is also
delayed. Note that the reference value for the estimated bulk
modulus is set to ERef = 8500.

In the first experiment, the delay of the pressure causes a
constant offset in the estimated bulk modulus. For a single
sample delay the difference is neglectable. For a delay of two
samples, an offset error of 2% (see Fig. 5) is identified. From
experience we know that such constant offsets are hard to re-
late to timing and have a high chance of not getting noticed.
If α is also delayed, the offset error vanishes as shown in Fig.
5. This small setup demonstrates that it can be important for
some values to be synchronous while the absolute delay may
be irrelevant.

In our model we measure data synchronicity as the differ-
ence of the logical timestamps of values that are computed
simultaneously. This is advantageous to measuring the dif-
ference of tags of the input values, because that measure can
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Figure 7: Logical sampling rate of an abstracted signal flow.

not represent the properties of signal flows. The advantages
to compared to synchronicity descriptions based on event-
chains are the same as for the logical data age.

Logical Sampling Rate is a measure of how fast the infor-
mation can change at an interface. This is important when
dealing with periodically sampled data.

To demonstrate the effects that can be caused by a falsely
assumed sampling rate we provide an example. This exam-
ple includes a function, which reads values from an external
sensor and then differentiates this value. Such functions are
used for example to compute an acceleration from a speed.
We execute this function with a constant period and design
the differentiator, assusming a constant sampling rate of the
information of 10ms. The nominal behavior for this function
is shown in Fig. 6. Next, we vary the sampling rate of the
input values using a random jitter of up to 2ms as shown in
Fig. 6. As a result, the differentiator produces a signal with
undesirale noise, which indicates a behavior that does not ex-
ist.

The variation described in the example can be caused either
by a variation in the latency of the signal flow or by a jitter
in the sampling itself. This is also shown in Fig.7 for an ab-
stract signal flow. To represent such effects, we measure the
sampling of the information as the difference of the logical
timestamps of two consecutive events. This improves on cur-
rent models as they describe either the event rates an events
or the latency of the event chain but not both simultaneously.

Logical Band Limit is a measure for the range of frequen-
cies, that a signal represents. More specifically it describes
the highest frequency fmax

x in which a signal x that can
be represented as a spectrum can have an amplitude that is
nonzero. An example for a spectrum of a signal is shown in
Fig. 8 a). The maximum frequency is determined by the cutt-
off frequency of filter algorithms in the signal path as well as
the logical sampling rates. This is because a sampled signal
cannot represent frequencies that are larger than the Nyquist
frequency [15], which is determined by the sampling rate. If
there exists no spectrum (e.g. if the signal represents a dis-
crete state), the band limit describes a lower bound on the
time, in which the signal does not change its values. The log-
ical band limit improves the description of the information
content of a signal compared to using only the event rate. For
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Figure 8: Representation of a signal with measurement noise
that is undersampled.
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Figure 9: Step response of the simulated system with and
without aliazing.

example, assume a signal has been filtered with bandwidth
that is much lower than the sampling frequency. In that case
the event rate would indicate a much wider spectrum than the
one that is actually available.

Aliasing describes a distortional effect effect than occurs
when a signal with high frequencies is sampled at a lower
resolution. From Shannon’s sampling theorem we can derive
that aliasing will occur if an input reads a signal whose fre-
quency spectrum that is greater than the Nyquist frequency
of the input. This occurs exactly, when the logical band limit
of the output signal is larger than the logical sampling rate of
the input signal. Note, that once aliasing occurs, it will be
propagated along the signal path.

A simple example of this effect is shown in the bode plot
in Fig. 8 b). Note, that the high-frequency peak is undersam-
pled. Thereby it is folded into the lower end of the spectrum.
We also use the previous control example to demonstrate the
behavioral effects of aliasing. Therefore we introduce mea-
surement noise to the output signal. Noise is added to the
measured signal using a band limited white noise with a noise
sampling of 2e-3 and a noise power of 5e-6. In one experi-
ment, the filter runs in the same rate as the sensor (1ms). In
the second setup the filter runs in the rate of the controller,
which results in aliasing. The results of this experiment are
shown in Fig. 9. The experiments show that the controlled
system reacts in less than 0.5s with a small overshoot and
settles at the reference value for the faster execution rate. The
measurement noise has only a minor effect on the tracking
behavior. In contrast, the slower execution rate, the system
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Figure 10: Overview of proposed proposed process.

reaches the set point value at the same speed, but oscillates
afterward. This is because aliasing causes the high-frequency
measurement noise to be interpreted as a low-frequency os-
cillation. Since low frequencies are hard to suppress, the con-
troller follows them, resulting in significant limitations of the
achievable control performance.

4 Application to the Design-Process
As shown by the examples, it is possible to test behavioral
effect on the functionality of the individual components in re-
gard to temporal signal properties without knowing the actual
signal paths in the system. Testing methodologies, other than
simulations, include linear analysis and model checking [10].
The obtained results retain valid, as long as the concerned
physical system does not change severely. Therefore, it is
sensible to annotate known requirements on temporal signal
properties as part of the component description. These re-
quirements are truly reusable, because they do not reference
to a specific architecture. This can be important, when using
the same function on control units of different suppliers.

Using these component descriptions, we propose a pro-
cess to improve the timing requirement-set of system designs.
Thereby, we first identify the related signal paths of the spec-
ified interfaces. Next we transform the signal requirements
into requirements that can be represented by are standard
event-based models. This is necessary, as companies have
invested heavily into tooling concerning their respective do-
main models such as AUTOSAR.

Our work differs from other work in the form that existing
work uses component annotation only for properties that are
related to the implementation of the real time system, such
as execution time, response time or service curves, but does

<COMPONENT=" C o n t r o l l e r ">
. . .

<SIGNAL−REQUIREMENTS>
<ALIASING−REQUIREMENT>

<DATA−ELEMENT−REF> Ct l_y < /DATA−ELEMENT−REF>
<ALLOWED>FALSE</ALLOWED>

</ALIASING−REQUIREMENT>
<LOG−DATA−AGE−REQUIREMENT>

<DATA−ELEMENT−REF> Ct l_y < /DATA−ELEMENT−REF>
<MAX>20.0 </MAX>

</LOG−DATA−AGE−REQUIREMENT>
</SIGNAL−REQUIREMENTS>

. . .
<BEHAVIORS>

<ALG−DELAY>
<DATA−ELEMENT−REF> Ct l_u < /DATA−ELEMENT−REF>
<SOURCE−ELEMENT−REF> Ct l_y < /SOURCE−ELEMENT−REF>
<ABS>0.0 < /ABS>

</ALG−DELAY>
</BEHAVIORS>

. . .
</COMPONENT>

Figure 11: Example for a component specification.

not address requirements on signals. We also do not rely on
interface algebra, which means that component description
only have to include requirements that are a concern of the
component. Thereby we lower the amount of assumptions
compared to the approaches discussed in [7].

4.1 Extended Component Descriptions
In order to apply our metrics to the design process, we spec-
ify requirements on these metrics as part of the component
description. Note that our approach is similar to the Age-
Constraint constraint used in AUTOSAR. Thereby we define
constraints on event-chains that are not yet defined. Thus,
our proposed extension can be added to existing software-
component descriptions in a similar way as the AgeCon-
straint. Our description is applicable to either sender-receiver
interfaces as well as client-server interfaces. In the follow-
ing we will discuss the general frameworks for the so called
SIGNAL-REQUIREMENTS and BEHAVIORS. An example
for the proposed description is shown in Fig. 11 for a con-
troller which includes two requirements and a behavior.

4.1.1 Behaviors

Behaviours abstract the internal design of a component in or-
der to disclose changes in signal properties, without having
to understand each component in its detail. Currently our
model includes the description of the Sampling, Resampling
and Delays as so called BEHAVIORS. These behaviors are
formulated as a relation of the properties of an output to the
properties of an input.

Delay is a change in the temporal context of the information
by the component. They can be either positive or negative
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depending on the algorithm. Foramlly a delay is defined as
the difference between the logical timestamps of an input and
a related output interface. A positive delay may result from
buffering insider of components. Negative delays may result
from a prediction of future states.

Sampling and Resampling is a change of logical band
limit of a signal with a defined band limiting frequency. Var-
ious methods are known that can alter the sampling rate of
signals. In general these methods can be described as a fil-
ter [16]. Assuming that the filter is ideal, the band limit of
a signal is equal or less than the cutoff frequency. For non-
ideal filters, we can define a criteria for the cut-off frequency
such as the −3dB mark of the filter. Sampling indicates that
the data is read through a sensor interface, while resampling
indicates that the data is read through a read interface.

4.1.2 Requirements

To disclose assumptions on signal properties we also docu-
ment requirements. Generally, the properties of any of the de-
fined signal properties can be specified. These requirements
are specified either as bounds, using the values MIN or MAX
or as an absolute values ABS. Additionally, we imply that the
values of the corresponding signals are correct according to a
chosen norm.

4.2 Graph-Based Search for Signal Paths

Signal properties refer only to interfaces, but not to the re-
spective signal flows. Therefore signal flows need to be de-
termined in order to formulate timing requirements for the
respective system. In the following we discuss methodolo-
gies to identify such signal paths. Thereby we assume that
the functional architecture is known, including a description
of the components and the communicating interfaces. At first
we construct the so called signal flow graph. Based on this
graph, we can then identify the signal paths.

4.2.1 Constructing the Graph

The signal flow graph is a mathematical representation of the
data dependencies in the software. It consists of nodes, which
describe the interfaces and edges, which describe the depen-
dencies between these interfaces. We differentiate between so
called inter-component edges, which represent communica-
tion between components and intra-component edges, which
represent dependencies inside of components. The first type
can be obtained from the architecture description which re-
lates the input and output interfaces of the components. Next
we determine the intra-component edges. Thereby it is im-
portant to represent all relevant dependencies while ensuring
that the number of dependencies in the graph do not grow too
large. That would be problematic, because that would result
in a large amount of possible signal paths for each interface.

black boxes gray boxes from gray boxes from
dominant inputs data dependencies

Figure 12: Considered approaches to represent dependencies
inside of components.

In the following, we discuss three different approaches to ad-
dress this problem and discuss their advantages and disadvan-
tages.

Black Boxes At first, we assume that no information about
the internals of the components are known during the con-
struction of the graph. Thereby, the dependencies are over-
approximated by mapping each output to each input of a com-
ponent. A small example for such a so called black box in-
terpretation of a single component is shown in Fig. 12 a).
The problem of this over-approximation is, that it adds a large
number of edges to the signal flow graph. Given a software
with hundreds of components, this approach may lead to a
large number of possible paths in the graph. The so called
path explosion hinders the following search for signal paths,
limiting the overall applicability of our approach.

Gray Boxes from Dominant Inputs Second, we use an
approach based on so called dominant inputs. Thereby, we
define exactly one input interface, which we consider as rel-
evant. These relations can be obtained from the linking in-
formation included in the specified behaviors. The motiva-
tion for the dominant input The use for this approach can be
justified by the fact the logical timestamp of an output sig-
nal that is computed from multiple input values has differ-
ent possible interpretations such as medians or bounds. By
choosing the dominant input, we decide on an interpretation
where the logical timestamp of the output depends only on
the logical timestamp of a single interface. The advantage
of the approach is that the final graph will have only a very
limited amount of paths. A problem of the approach is the
occurence of cycles. Such cycles are actually self-references,
which means that we will not able to find a sensor interface
from which to derive a physical time. An example for such a
dependency is shown in Fig. 12 b), where the cyclic depen-
dency is highlighted in red.

Gray Boxes from Data Dependencies At last, we analyze
the internals of the component and relate data dependencies
between the input and output interfaces. These dependen-
cies may be obtained from documentations or code-analysis.
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The advantage of the approach is that it prevents unnecessary
over-approximations for the relations of inputs and outputs.
At the same time we might not be able to prevent that inputs,
whose influence on a value may not be very important will
still be represented as a dependency. At the same time we
prevent, that the following path search will get stuck in a sin-
gle cycle since there will always exist other paths to derive
the logical timestamp from. For our example we highlight
this additional path in blue in Fig. 12 c).

4.2.2 Obtaining Signal Paths from the Signal Graph

After the construction of the signal flow graph, we identify
the signal paths. The specific task thereby is to identify all
relevant signal flows that end at an interface of interest. In or-
der to solve this task we can rely either on a fully or a partially
automated approach based on graph-based search methodolo-
gies.

To identify each signal path in a fully automated form, we
use a path search algorithms that iteratively searches all paths
that end at the interface of interest. Such automated search
can only be used, if the solution space is limited. This require-
ment can be fulfilled by constructing the signal flow graph
using the dominant-input based approach because it contains
a very limited number of possible paths. Additionally fully
automated search is practical, if the number of dependencies
between the interfaces is low. Else the number of possible
search results can be excessive, which would render the re-
sults useless.

If the solution space is to large we employ a partially au-
tomated approach, where a system engineer interacts with
graph search techniques. This interaction is carried out with
a graphical tool that we have created for this application.
Thereby the system engineer separates the signal flows that
are considered as relevant from the other ones. Our method-
ology uses the tool to backtrack the graph starting from the
specified interface. Thereby, the parents of a respective node
are identified and shown to the user. These results are ana-
lyzed by the system engineer, whereby the signals whose in-
fluence can be considered as unimportant, are removed from
the solution space. For example when a controller has two
inputs, where one is a slowly changing scheduling parameter,
then its effect on the signal properties of the control value can
be neglected. Once deselected, the node will not be consid-
ered in future steps. Next, we search for the parents of the
nods in the solution space and add them to our results. These
results are then again shown and analyzed. We repeat this
process until all relevant paths are identified.

4.3 Transformation of Signal Requirements
In the following we outline the relationship of constraints on
signal properties to requirements on conventional real-time
properties such as the event rate, and the end-to-end latency
which can be modeled and analyzed by existing tooling. We
assume that signal requirements are formulated in a bounded

form. For the interested reader we provide formal the rela-
tionships as supplementary material2.

At first we discuss the data age requirement. It can be
shown, that such a requirement will be satisfied, if we can
ensure that the latency stays in certain bounds, which can be
computed by subtracting the delays in the path from the re-
quirement. Thus the data age requirement provides an im-
plicit requirement on the end-to-end latency of the respective
causal chain. A requirement on the data synchronicity will
be satisfied if the relative latency of the corresponding event
chains stays inside of certain bounds. We can compute these
bounds from the requirement by subtracting the delays in the
path. Thus, we derive a requirement on the synchronicity of
the respective event-chains. We can also show that a require-
ment on the logical sampling rate can be satisfied, if the sum
of difference of two consecutive latencies and the difference
of two consecutive tags stays inside of certain bounds. We
therefore require in this case, that sum of these two values
must be inside of specified bounds.

When discussing the logical band limit, we first have to ac-
knowledge that the sampling rate can not raise the band limit.
Therefore a guaranteed upper bound must be realized deter-
mined by the cut-off frequency of filters in the path. Still, we
can at least guarantee the lower bound of the band limit. If
we ensure the sampling rate is small enough to represent the
frequencies. Hereby, we have to require that the logical sam-
pling rate at this interface is smaller or equal than the required
band limit. Therefore, the requirement on the band limit can
be reformulated into a requirement on the sampling rate.

By definition, the band limit can only be increased with-
out aliasing by a resampling operation. Also we know that
the timing behavior can not decrease the band limit. In order
to satisfy an aliasing constraint, it must be ensured, that for
each read interface in the signal path the sampling rate is not
larger than the band limit. It can be shown, that is sufficient
to test this requirement for a subset of interfaces, namely in-
put interface, which are linked to a resampling behavior as
well as the specified interface itself. In order to respect these
constraints, we therefore can formulate requirements on the
sampling rate, which then result in the corresponding real-
time requirements for the respective interfaces.

4.4 Use Case

In order to demonstrate the applicability of our approach we
present an automotive use case that is derived from an ex-
isting engine control software. Our use case consists of 13
components that are responsible for the control of the fuel
system of a combustion engine (see Fig. 13). It includes
a control system similar to the aliasing example including a
sensor (Sns), a preprocessing unit (Prep), a control function
(Ctl) and an actuator. Additionally, this system contains sev-
eral models (Mdl) and some monitoring functions (Mon).

2http://arxiv.org/abs/1711.09130
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Figure 13: Setup of the example control system.

Type Interface Format Value

log. sampling rate u(5,2) MIN 8
MAX 12

aliasing u(5,2) False
data sync. u(9,1), u(9,2) MAX 2
log. data age u(12,1) MAX 200

Table 1: Specified requirements on signal properties

For our example we examine each component for their in-
ternal behavior. The results are annotated in Fig. 13. We
obtain four requirements by analyzing the components indi-
vidually. The respective interfaces are highlighted in Fig. 13.
The first requirement specifies that logical sampling rate at
second input of c5 has to be between 8ms and 12ms. Ad-
ditionally no aliasing is allowed at that interface. We require
a data synchronicity at the first two interfaces of c9 smaller
than 2ms. The last requirement specifies that the logical data
age of the first interface of c12 must be smaller than 200ms.

Next, we identify a dominant input for each output inter-
face of the components. We indicate the assignment of these
dominant input using bold arrows in Fig. 13. When build-
ing the signal flow graph, we do not obtain any cycles so that
this approach can be used. This then enables us to identify
the signal flows in an automated form. Once we know the
signal paths for the specified interfaces, we can evaluate the
guarantees in the components and the specified properties and
determine system-level timing constraints.

As a result of this process we identify a set of timing re-
quirements. The first condition requires that the sum of the
event-rate at the sampling interface of c1 and the latency jit-
ter of the respective causal chain has to be in the limits of
8ms and 12ms. Assuming a constant event rate of 10ms
with negligible jitter at the read interface, we specify for the
latency jitter of the causal chain to be in between 8ms and
12ms. The aliasing requirement results in a limit on the sum
of event-rate and latency jitter to be smaller than 1ms. Note
that the requirements derived from condition (1) and (2) can

not be satisfied simultaneously. Further analysis shows, that
this is due to a deactivated sensor in c2. If we reactivate the
filter and add a resampling guarantee with a band limit of
10ms condition changes to 10ms. For the third criteria we
determine that the latencies of the causal chains must differ
by 12ms due to the delay in c8. The same delay also results
in a required latency for the causal chain of the first input first
of c12 to be smaller than 190ms.

As this small example demonstrates, can our approach be
used to derive real time constraints for component based sys-
tems from the descriptions of individual components. Such
real-time constraints can then be used to apply existing
methodologies and tools for the design of the scheduling and
mapping of a software. Additionally the methodology can
support the detection of false assumptions and design errors
in the software of cyber physical systems.

5 Conclusion
In this paper we discuss a process to improve the requirement
set of cyber-physical system for temporal properties. We use
the temporal semantics model to measure timing behaviors
that we call temporal signal properties. Using these proper-
ties we annotate component descriptions to disclose tempo-
ral requirements that originate from function design. Also,
the internal behavior is disclosed in an abstract form. Dur-
ing system design these descriptions can be used to derive
system-level timing requirements. The applicability of the
approach is shown using a use case. While we outline the
general approach, future work will have to demonstrate the
specific integration into a domain specific standard, such as
AUTOSAR or a more general software engineering standard,
such as AADL [22]. Also it would be interesting to study
alternative interpretations for intra-component dependencies
to simplify the graph-search. While our work has focused on
input signals, an extension for output signal could be useful
especially when dealing with close loops.
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