John Marsden

André Windisch

Rob Mayo

Jürgen Grossi

Julien Villermin

Louis Fabre

Claire Aventini

Agile Manifesto -A Solution to Agile Development of Certifiable Avionics Systems

Keywords: Agile, Avionics, Certification, Iterative, Managing Complexity, Cost Explosion, Productivity, Scrum, Scaled Agile

des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

INTRODUCTION

Agile methodologies are deployed in the majority of today's software projects. The advantages are accelerated development cycles, faster delivery of mature software with regular increases in functionality and the flexibility to permit requirement changes late in the development cycle. Traditionally, avionics software development processes are driven by certification requirements: there is a clear separation into phases with dedicated reviews ensuring that transition criteria to the next phase are met (quality gates) and that the approach is acceptable to the certification authorities (Stages of Involvement -SOI). Key problems with this approach are that errors are often detected late in the life cycle and late requirement changes cannot be made without endangering project milestones. The solution to these problems can be provided by careful deployment of agile methodologies, reducing the size of increments so they can be implemented within one sprint (2-4 weeks) and promoting close collaboration between all project stakeholders, whilst nevertheless ensuring that the objectives of the certification standards are fulfilled. This paper explains how agile techniques are being increasingly deployed in avionic software development within Airbus, describing three examples from different company divisions, showing encountered challenges / impediments and how they can be overcome; benefits are explained and quantified in terms of cost and quality; and an outlook is given of how future projects will further extend the agile scope to cover increasingly safety-critical systems, with flatter organisational structures and closer customer collaboration. The remainder of this paper is structured as follows: chapter 2 gives a brief overview of related work before the foundation is discussed in chapter 3, including an analysis of conflicts between ED-12C/DO-178C and agile development. How the conflicts are resolved is described in chapter 4. Subsequently, in chapter 5, three case studies are outlined in which agile methods have been deployed in Airbus projects. Chapter 6 summarises the impacts on cost and quality of agile deployment. Chapter 7 concludes with an outlook of future activities.

RELATED WORK

There are a number of publications addressing how agile practices can speed up development of avionics software [START_REF] Wils | Agility in the Avionics Software World[END_REF], [START_REF] Hanssen | An Assessment of Avionics Software Development Practice: Justifications for an Agile Development Process[END_REF], [START_REF] Chenu | Avionics, Agility and Lean. Thales Avionics[END_REF] and modelling of agile process frameworks [START_REF] Kingsbury | Modelling of Agile Avionics Software Development Processes through the Application of an Executable Process Framework[END_REF]. Additionally, industry representatives are actively pooling experiences and deriving guidance [START_REF]Avionics Systems Hosted on a distributed modular electronics Large scale dEmonstrator for multiple tYpes of aircraft (ASHLEY), Agile Software Development for Avionics[END_REF]. Agile has been applied not only to avionics software, but for the development of entire aircraft [START_REF] Furuhjelm | Owning the Sky with Agile -Building a Jet Fighter Faster, Cheaper, Better with Scrum[END_REF]. The authors of this paper have benefited from these publications, tailoring agile practices to their own projects, and quantified the benefits, hence providing confirmation that agile is not only applicable and beneficial to avionics development, but also showing the business case.

FOUNDATION

Software Certification in accordance with DO-178C

Before a newly developed aircraft model may enter into operation, it must obtain a type certificate from the responsible aviation regulatory authority. EUROCAE ED-12C/RTCA DO-178C "Software Considerations in Airborne System And Equipment" [START_REF]12C: Software Consideration in Airborne Systems and Equipment Certification[END_REF] resulted from the consensus of several stakeholders (industry, authority, university, vendors,...) to provide guidance for the production of software for airborne systems and equipment.. It is recognised in A(M)C20-115D [START_REF] (m)c ; D | AIRBORNE SOFTWARE DEVELOPMENT ASSURANCE USING EUROCAE[END_REF] by the European Aviation Safety Agency (EASA) and the Federal Aviation Authority (FAA) as an Acceptable Means of Compliance (AMC), meaning that this standard can be used to demonstrate that a software is compliant with the applicable airworthiness requirements, by showing fulfilment of the standards "objectives". The philosophy of DO-178C is that the greater the rigour with which software is developed, the lower the occurrence of design errors in the software. Hence the standard stipulates objectives for all processes performed to develop the software. Each software item is assigned a Development Assurance Level (DAL), corresponding to the Functional Design Assurance level, derived by the safety process based on the potential effect of a failure condition of the system function (The software life cycle commences with the planning process, during which software planning documents are produced explaining how it is intended to fulfil the objectives of DO-178C. To ensure that the Certification Authorities agree with the proposed approach, the software life cycle includes the Certification Liaison Process, involving up to 4 "stages of involvement" (SOI): SOI#1 reviews the plans, in particular the Plan for Software Aspects of Certification (PSAC) and agrees whether SOI#2 and SOI#3 are required. SOI#2 is the development review, performed when approximately 75% of development data has been produced. SOI#3 is the verification review, performed when most (typically 75%) of verification data is available. SOI#4 is the conformity review, performed when all certification evidences are available and summarised in the Software Accomplishment Summary (SAS). Evidences for adherence to the standard include quality assurance records, configuration management records, and verification records, recording all changes made to software life cycle data, providing complete transparency of every step in the software development.

Figure 1 shows the "classical" waterfall instantiation of the DO-178C processes, including, in addition to the certification SOI's, the Airbus quality gate reviews Project Planning Review (PPR), Software Requirements Review (SRR), Software Design Review (SDR), Test Readiness Review (TRR), Software Qualification Review (SQR) and Software Certification Review (SCR).

Agile Frameworks

The Manifesto for Agile Software Development [START_REF]The Manifesto for Agile Software Development[END_REF] was written in early 2001 by seventeen leading software practitioners to redress imbalances:

"We are uncovering better ways of developing software by doing it and helping others do it. Through this work we have come to value:

-Individuals and interactions over processes and tools -Working SW over comprehensive documentation -Customer collaboration over contract negotiation -Responding to change over following a plan That is, while there is value in the items on the right, we value the items on the left more. © 2001, the Agile Manifesto authors This declaration may be freely copied in any form, but only in its entirety through this notice"

These principles have been elaborated in a variety of guidelines and process frameworks, of which SCRUM [START_REF] Sutherland | The Scrum Guide[END_REF] is the most widely applied. There are close parallels between agile software development and lean manufacturing pioneered by the Toyota Motor Company [START_REF] Ohno | Toyota Production System[END_REF]: both are focused on delivering customer value and eliminating waste through continuous improvement.

Figure 2 summarises the SCRUM lifecycle. The evaluation process includes a sprint review, demonstrating the sprint increment to stakeholders and a sprint retrospective, where the development team assesses what to improve for the next sprint.

SCRUM defines only three roles: scrum master, product owner and developer. The product owner is the customer/stakeholder interface: he captures the customer requirements in the product backlog, and refines these requirements, with the support of the team, until they are detailed enough ("ready") for the team to implement. The scrum master is responsible for ensuring compliance to SCRUM and for eliminating inhibitions. The developer role is cross-functional, cross-discipline, and involves all activities required to implement and deliver the product.

SCRUM foresees a team size of between 3 and 9 developers: in order to scale SCRUM to larger projects, multiple SCRUM teams are recommended rather than one large SCRUM team, as intra-team communication is essential to productivity, and becomes exponentially more difficult as the team size increases. [START_REF]Addison-Wesley Signature Series (Cohn)[END_REF] and [START_REF]Agile Software Requirements: Lean Requirements Practices for Teams, Programs, and the Enterprise (Agile Software Development Series)[END_REF] explain approaches for scaling SCRUM to large projects.

Conflicts between Certification and Agile

This section highlights potential conflicts between agile and DO-178C that must be addressed in the planning process.

a) The less-valued items on the right-hand side of the Agile Manifesto (processes & tools, documentation, contract and plan) are crucial to software certification, so clearly deploying agile in the avionic software domain must clarify the apparently conflicting priorities with the higher-value left-hand side items (individuals/interactions, working software, customer collaboration and responding to change).

b) Embracing change (planning to re-plan) not only endangers the project schedule and budget, but may invalidate SOI#1, resulting in additional certification liaison and probably the need to repeat some work, especially expensive verification activities. Furthermore, allowing change appears to absolve the customer of the responsibility to be clear about his requirements at the start of development: a recipe for disaster! c) Continuous improvement implies that teams will change HOW they develop software during the development, contradicting the certification mantra of executing the plans. d) Agile frameworks favour "light" requirements in the form of user stories, which may not be complete, resulting in incomplete testing and verification gaps: the objectives of DO-178C cannot be fulfilled! e) The agile concept of evolving architectures, deliberately not considering anticipated future changes to prevent duplication of effort through rework can result in an under-dimensioned architecture: this is less likely if all design is performed before coding is started. f) Additionally, many excellent but specialised engineers can struggle with the flexibility required in agile development: whilst they are extremely productive in their area of speciality; in a crossfunctional/cross-discipline team, they are expected to perform other tasks in which they are less effective, slowing development. g) Finally, where does agile stop? There are potential conflicts wherever in the enterprise/organisation agile teams meet non-agile: if the agile team has detected the need for a change, but the non-agile team is not willing to adapt, how is this resolved?

DEPLOYING AGILE WITH DO-178C

This section describes four process instantiation models in order of increasing agility (Figures 1, 3, 4 &5).

Within Airbus, development follows the "Requirements-Based Engineering" paradigm: every system or software functionality is justified with a requirement. Every requirement must be validated, to ensure the right system is being built, and verified, to ensure the system is being built right: verification is the largest single cost factor.

Early validation and verification of requirements can avoid expensive late detection of errors, or at least detect them early, when they are least costly to resolve.

Classical DO-178C Approach

In the classical DO-178C process instantiation, ideally software planning is based on a complete set of system requirements allocated to software (SRATS). Each of the main process phases (planning, requirements, design, coding & integration and test) is completed and reviewed before transitioning to the next process phase. Projects usually appear to be on-track until coding and integration starts. At this point it usually becomes clear that the requirements are not complete or entirely correct, and that the design has overlooked some key constraints, resulting in requirement and design changes. During testing further inconsistencies and misunderstandings emerge. Experienced project managers try to address this in risk management, possibly extending the testing / delivery phase to provide time for the re-work.

Incremental Approach

Alternatively, multiple releases may be foreseen (figure 3), resulting in the incremental instantiation, with or more releases, each containing functional increments. Whether SOI#'s are repeated or only performed once is dependent on the contract and certification liaison.

Functional Approach

The third scenario (figure 4) shows a further step towards agile development: releases are divided into functional packages. As soon as the requirements for a functional package are complete and reviewed, the software design commences for this function. For the first functions, design commences prior to the formal quality gate SRR, resulting in a residual risk that the requirements may be impacted by interaction with a later function, but this risk is acceptable, as the requirements can be updated prior to SRR and the design aligned before SDR. By implementing high-risk functions first, this overlap can be beneficial as design can reveal requirement flaws, which can still be corrected prior to SRR. Also, this parallel development of several functions, each in a different development process phase, results in a more balanced work distribution across disciplines within the development team. "Verification lag" (the time between defining a requirement and completing verification of the implementation of the requirement), is reduced, but restricted by the quality gates. DO-178C Process/Guidance defines objectives to be met by software process activities, without stipulating HOW the development is performed. This allows the applicant to decide the order in which the evidences are accumulated.

Agile Approach

Further minimisation of the verification lag can be achieved by reducing the granularity of the implemented functions or features further, instantiating the software life cycle once for each feature, as shown in Figure 5. However this impacts SOI's and quality gates: The quality gates SRR, SDR and TRR all occur simultaneously, as requirements, design and test procedures are only complete in the final sprint. This can be mitigated by "micro-reviews", internal reviews held for every process transition of every function, documented with a checklist as quality assurance record. The quality gates then become a summary review of the accumulated evidences from the micro reviews. Further mitigation includes sprint reviews, at which the newly developed functions can be demonstrated to stakeholders, ideally including the customer: demonstration of the functions is a more tangible method of ensuring quality than reviewing documents! Number of implemented functions has proven a more reliable KPI than the number of requirements reviewed or the proportion of design completed. This approach can be described in a "Way of Working" section of the software plans, explaining the multiple instantiations of the software development processes and the micro-reviews. The duration of the planning process and timing of SOI#1 may be unchanged, but increased confidence in the plans may be obtained by performing initial sprints to validate and streamline the approach before submission of the plans to the certification authorities.

Key aspects of the process instantiation model, necessary to avoid the conflicts described in section 3, are:

-Promotion of an agile mind-set, planning to re-plan and commitment to continuous improvement: training and coaching must be provided Finally, the answer to the question "where does agile stop?" is: when the organisation no longer sees additional benefits, which, in view of accelerating technology development and increasingly competitive markets, is probably never: either the entire organisation becomes agile, or the organisation will probably not survive.

APPLICATIONS OF AGILE DEVELOPMENT (a) Military Mission System Software Upgrade

This major software upgrade of Avionics Software for a fighter aircraft included integration of new functionality and updating of legacy software on the mission computers. The 30-month project became increasingly agile, initially incremental, later functional and finally deploying agile practices. The team was cross-discipline, including system, software, equipment and verification engineers. The integration responsible was nominated as product owner. Daily 15-minute stand-up team meetings were held. A Kanban board was used to track progress of increments and any problems which occurred. A scrum master was introduced later in the project, accelerating the removal of obstacles/impediments.

Problem: Mind-set: The teams have been successfully producing software for many years. Some engineers and managers saw no need for change. Solution: awareness training and coaching was provided. The positive results convinced the vast majority of people.

Problem: Duplicated Verification Effort: Some verification effort had to be duplicated for each functional increment and the verification gap was too large, as regression tests were not completely automated: Solution: extension of Continuous Integration and Verification to include completely automated regression/baseline tests, with qualification of a test results comparison tool, in addition to existing automated nightly software build and standards compliance checks.

(b) Generic Weapon System

This case study describes the development of the first flying release of the application software for the Generic Weapon System (GWS) Project performed by the embedded military software products department of Airbus Helicopters, deploying an Agile Scrum framework. The 7-person software team in Donauwörth implemented SRATS (system requirements allocated to software) provided by a system team in Marignane, delivering a working software increment every 3 weeks, for test by the Marignane integration team. The project had to manage typical project risks: immature hardware provided by an external supplier, SRATS based on imperfect information so liable to change, sub-contractors were unable to participate in SCRUM-approach due to contractual legal restrictions and collaborating teams were not co-located, negatively impacting communication. The first major release had to be delivered in 11 months, including software infrastructure and the first large subset of mission functions.

Problem: Unempowered Product Owner: A Requirement Engineer was selected as Product Owner (PO), in addition to his previous task of writing the requirements. PO was not empowered to construct the roadmap / product vision and was not responsible for backlog priorities or ROI. Solution: Ensure the PO is empowered. Unfortunately the software manager, who is empowered, has traditional management responsibilities, so could not be full-time PO. Problem: Commitment: Team members with 50% commitment, resulting in lack of focus: less than 50% productivity and impact on intra-team communication. Solution: 100% commitment of all team members.

Problem: Inexperienced Scrum Master (SM): This resulted in sub-optimal change motivation (in retrospective); assistance/coaching in planning meetings; coaching of PO; insufficient time allocated to SM role. Solution: Coach the coach! Over time the SM grew into the role. This could have been accelerated by coaching.

(c) Automatic Code Generator

Scrum was applied for development of an Automatic Code Generator, qualified to DO178B DAL C. The project had to address all the conflicts described in section 3: stringent processes & tools, strict process assurance of software plans (Tool Qualification Plan, Tool Software Development Plan, Tool Software Configuration Plan, etc.) and exhaustive documentation / evidences (Tool Software Requirement Document, Tool Software Design Document, Tool Software Verification Procedure, etc.). Additionally, rigid contracts inhibited sub-contractors from active involvement in the SCRUM team.

Existing processes worked well but three main improvement goals were identified: -Prevent technical debt: Remove the gap between prototyping and formal DO178B development. -Robust scope modification: Strengthen ability to handle scope modifications, late specification changes and new needs "on the fly" -Mitigate tunnelling effect: Closer follow-up of subcontracted activities, seek & eliminate blocking events

The transition to agile was carefully prepared over a period of 7 months: this was a live project, the team needed to be given time to adapt. The team was organised with two product owners, one responsible for the user's needs, the definition and prioritization of features, the functional clarifications and one responsible for certification needs. A release consisted of Development Sprints followed by Consolidation Sprints when the maturity milestones agreed by Product Owner were achieved.

Developments Sprints were composed of functional increments, fulfilling specific user needs including verifications, whereas Consolidation Sprints were composed of general proof and compliance demonstration focused on achieving certification goals (the testing and delivery phases in figure 5). A significant productivity increase was observed (approximately 25%) but, more importantly, the customer needs were met, even though they were not mature on project start, and the quality was high: development time and total man hours consumed were almost halved.

Problem: Mind-set. Although agile is a simple concept, it is extremely difficult to deploy well, and initially there was a tendency to revert to previous non-agile ways of working. Solution: Coaching from an experienced Scrum Master was organised. Problem: Commitment. Team members on multiple projects, resulting in lack of focus. Solution: management commitment to ensure dedicated teams.

(d) Avionics Software Upgrade

An Agile approach is being applied on a major upgrade of a ED-12B / DO-178B DAL A software application, including the integration of new functionalities and the correction of open problems from the previous certification step.

The switch from a classical "waterfall" development process to an Agile process occurred at the beginning of the certification step. Key drivers, established by the management, for this change were the empowerment of the technical entity for its product management, and the reduction of development cycles. The existing 7-persons development team was therefore reorganised and internal trainings on Agile methodology performed.

A scrum master was nominated in the team, and a product owner external to the team supports the communication towards System / Function Design Responsible.

The Agile framework was adapted to the DAL A software development processes; daily scrum meetings of 15 minutes are held, a Kanban tool accessible to all team members is used to visualize the workflow and measure the team performance. The Software Quality Engineer is also involved throughout the sprints. product owner and the team have together committed on the definition of "Done": a "user story" is considered as "done" when all Software Life Cycle artefacts are stored under configuration management, verified with independence, and no problem is anymore reported by those verification activities.

Whereas impact on productivity (i.e. number of implemented PRs) cannot be stated yet, as implementation sprints can be planned till the end of the certification step (no long verification phase is to be performed as testing is done during the sprint), the key factor that is the quality of delivered product at the end of the sprint has never been better: all verifications activities are performed in the same sprint as the implementation, therefore all detected non-conformities are corrected during the sprint. This is the major impact of the application of Agile method to our software development.

Problem: Maturation of inputs. One recurring problem from the previous certification step was the lack of of input System / Function requirements. System / Function responsible and System benches teams were also reorganised into a "Scrum of Scrums". High priority is given to the Backlog refinement task performed by the Product Owner.

If a Backlog item is declared as not mature enough, it is excluded from the scope of the next sprint. The Product Owner also has the capability to produce prototypes to validate system needs without disturbing the development team on the current sprint. This allows the refinement of the System needs and the quotation for the next sprint. Problem: Training of Team. Many different methods and tools are used during the development (model-based development, manual code, automatic code generator and associated verification tools). Team members were specialised in one or several fields, but none had the knowledge on all activities. Trainings were organised, and during the first sprints, all activities were performed by pairs. The team is now multidisciplinary and masters all defined processes, contributing to the team motivation (development and verification activities are equally shared between people), and to satisfy our DAL A objectives with independence. Problem: Collaboration. Part of the team members are not co-located in the same area as the rest of the team. Scrum meetings are performed every morning via teleconference, except for once a week where the team physically meets. It is the opportunity to reinforce the team spirit (for example we take a group photo on a predefined theme). Motivation and interaction between people are high contributors to the success of this process.

EVALUATION RESULTS

In order to perform an objective evaluation the same statistics have been derived from case studies (a) and (b). For case study (a), three development cycles were performed applying three different approaches: the first cycle used an incremental approach, the second cycle a functional approach and the last cycle deployed agile. For case study (b), a before (waterfall) and after (agile) comparison is shown. The primary Key Performance Indicator used is Problem Reports (PR), i.e. how many software problems occurred and how quickly they were resolved. This is considered to be the most important indicator, as total project team size, functional increments and complexity of functions was roughly constant, although possibly to minimise risk, highest risk functions were generally implemented earlier. This potential bias is however considered to be compensated by the more intensive testing performed prior to the final production software release. Figure 6 simply shows the duration of the 3 cycles for case study (a). Figure 7 shows the deficiencies per release cycle: the "normalised" line compensates for the reduced duration of the agile cycle. Figure 8 shows the corresponding increase in productivity. It is worth noting that the agile approach included a "learning curve", during which the team learnt how to utilise agile methods, and that to minimise this learning curve and avoid excessive risk, it was not full SCRUM, but the subset described in case study (a).

Case study (b) deployed full SCRUM. Figure 9 shows the impact on project duration, for a set of roughly equivalent features. Figure 10 shows the productivity, in terms of problems fixed.

CONCLUSION

In the case studies described in the paper, significant improvements in quality, schedule and cost have been achieved developing highly-complex, high-integrity, embedded real-time software, with more reliable status reporting and hence reduced risk. In these cases it has been shown that, when carefully deployed, agile techniques are not only compatible with ED-12C / DO-178C, but through greater visibility and openness actually simplify it.

Moreover, in the military mission system software upgrade program, system requirements, system design and system verification was also implemented within the same development team as the software development, showing feasibility of cross-functionality, beyond pure software.

Although the use cases were not performed at the level of a complete system, all projects have shown certifiability, and no show stoppers were identified on the highest criticality one. Future increments foresee not only continuous improvement in the continuations of the described projects, but further extension of the scope to even larger projects, other DAL's, and beyond the engineering domain, with the goal of making a significant contribution to the Airbus digitalisation vision.

Figure 1 :

 1 Figure 1: DO-178C Software Development Lifecycle

Figure 2 :

 2 Figure 2: Agile Software Development Lifecycle

Figure 3

 3 Figure 3: Incremental Process

Figure 6 :Figure 7 :Figure 8 :Figure 9 :Figure 10 :

 678910 Figure 6: Case Study (a) -Time / Duration

Table

Table 1 : Software Development Assurance Levels

 1). MCDC) i.e. all conditions which can affect every decision are covered, whereas DAL C only requires statement coverage, or that verification of objectives is performed with independence.

	The objectives for DAL A are much more stringent than
	for	lower	DAL's:	for	example,	modified
	condition/decision coverage (Failure Condition	Software Level
		Catastrophic		A	
		Hazardous		B	
		Major		C	
		Minor		D	
		No Safety Effect		E