Mark Pitchford
email: mark.pitchford@ldra.com

Securing the Connected Car : Application Code Matters

Developers of embedded software for automotive applications have seen some dramatic events in recent years. Difficulties with uncontrolled, software induced acceleration in Toyota's Prius models and surrounding legal issues, leading to an increased awareness of the need for software quality. The emergence of ISO 26262, resulting in new, more structured established development practices for many. A near exponential rise in embedded software content, and corresponding increases in software engineering complexity. And now, the advent of the "connected car", with its vulnerability to attack from malicious hackers being demonstrated in models from a range of manufacturers.

Each of these issues individually has the potential to turn established practices on their heads, and there is sufficient common ground between them for the combination to be especially telling. Any standard entitled "Road vehiclesfunctional safety" clearly has an impact on software faults leading to acceleration, but less obviously it is also concerned with the vulnerability issue too. After all, if a lack of security takes the control of a car away from its driver, then that security breach is a functional safety issue.

The example is not an isolated incident. According to Senator Ed Markey 2 , "Nearly 100% of cars on the market include wireless technologies that could pose vulnerabilities to hacking or privacy intrusions. A majority of automakers offer technologies that collect and wirelessly transmit driving history data to data centres, including third-party data centres, and most do not describe effective means to secure the data."

Most vehicles contain a variety of wireless technologies, including cellular, Wi-Fi, Bluetooth, Near Field Communication (NFC), and other RF communication. There is frequently a direct path from these wireless technologies to the central automotive bus of the vehicle, along with navigation, security, and other smart applications.

The good news is that despite all of this vulnerability being something of a Brave New World in the automotive sector, there are nevertheless established technologies which are well proven in other sectors. A connected car will never be as secure as one that is totally isolated, but by deploying these technologies supplemented with current automotive best practice, its defence against malicious agents can be optimized.

Security and ISO 26262

In the field of safety critical embedded software, security concerns such as these are traditionally perceived to be a separate domain from the core business of functional safety, and yet the safety implications of security are implicitly acknowledged by ISO 26262 which "provides an automotive-specific risk-based approach to determine integrity levels [Automotive Safety Integrity Levels (ASIL)]" 3 . As for any other safety related risk, as soon as there is potential for security vulnerabilities to threaten safety, ISO 26262 demands safety goals and requirements to deal with them. It requires that the safety goals be classified with appropriate ASILs for their criticality, designed with due reference to their classification, and developed and verified to show compliance with the system's safety requirements. In short, the action to be taken to deal with each safety-threatening security issue needs to be proportionate to the risk (and hence ASIL).

The whole principle of the assignment of ASILs for various automotive systems implies an assumption of separation, so that the most critical systems on a vehicle cannot be compromised by less critical functionality elsewhere.

Traditionally, this was fine. ECUs were dedicated to their local functionengine control, ABS, or whateverand there was no need for communication between them.

In recent years, this crystal clear position has become muddied a little in that networks are now used as a common communications mechanism for various systems irrespective of ASIL. Even so, once these communications are proven not to compromise the integrity of any systems using them, the various systems can be considered separated and so the principles of ISO 26262 remain upheld.

But the connected car changes all that. External access brings with it the potential for malicious outside influences to access any weak point, or "attack surface". Such an attack surface4 represents a significant risk even if it exists in a low or non-critical system, because the availability of the previously benign networks provides a portal to the highest ASIL systems. In stark terms, just because someone has attacked a car infotainment system doesn't mean they can't access the brakes.

Cyber Security Maturity Model

Although functional safety standards such as ISO 26262 offer clear guidance on the safety implications of security issues, they are not an adequate measure of the security measures themselves. Cyber Security Maturity Models enable communities to evaluate their current status and provide a framework for them to design a program to improve their security posture.

Clearly the needs of the embedded system community differ in several important aspects from those of the enterprise computing fraternity. However, the framework of such models is usually sufficiently open to allow those differences to be specified in the detail.

For example, OWASP-SAMM v1.55 (Software Assurance Security Model) is built upon the core business functions of software development with security practices tied to each (Figure 1). Clearly such a framework leaves scope for such as "security knowhow" to be consistent with the specific field of automotive embedded software.

The "Swiss Cheese" Model

Connectivity has fundamentally changed how we must view car safety. For example, consider a car built in 1977, and lovingly maintained such that its systems are kept in the same pristine order as the day it entered service. There is every reason to suppose that it will remain exactly as safe as it was then.

Buy a new, mid-range car today and it will clearly be far safer than a 40-year-old classic car could ever be. Much of that is the result of its sophisticated electronic systems, and its connectivity providing sophisticated facilities such as automatic crash response. But for the newer model to retain its safety advantage, it must also retain a consistent level of security. In short, unlike the classic car, the current model cannot automatically be assumed to retain its admirable safety features in 40 years' time unless its software remains sufficiently impervious to attack.

To understand the scope of the challenge in keeping it so, it is useful to borrow an analogy from the world of medical systems. In March 2000, Professor James Reason proposed an analogy to explain how system accidents occur in medical environments 6 . Many aspects of medical endeavour require human input, and the inevitable human error that goes with it. But generally, there are so many levels of defence that for a catastrophe to happen, an entire sequence of failures is required such than none of the defences prevent it.

Professor Reason likened this principle to a sequence of slices of "Swiss Cheese", except that in his model the holes in the "slices" are forever moving, closing, widening and shrinking (Figure 2). Just like the checks and controls applicable to medical systems, a multiple level approach to automotive security makes a great deal of sense, such that if aggressors get past the first line of defence, then there are others in waiting.

No connected system is ever going to be both useful and absolutely impenetrable, and no single defence of that system aside can guarantee impenetrability. It therefore makes sense to protect it proportionately to the level of risk involved if it were to be compromised, and that means applying multiple levels of securityor "slices" of Swiss Cheese -so that if one level fails, others are standing guard.

Examples of such "slices" might include:

• Secure boot to make sure that the "correct" image is loaded • Domain separation to defend critical parts of the system • MILS (Least Privilege) design principles to minimize vulnerability • Minimization of attack surfaces • Secure coding techniques • Security focused testing But should every one of these precautions be implemented on every occasion? And if not, how should the decisions be made as to what applies, and when? To address that question, it is useful to focus on the relationship between two key "slices of Swiss Cheese" -Domain Separation, and Secure Coding.

Domain Separation

In their paper "Remote Exploitation of an Unaltered Passenger Vehicle", Miller and Valasek observed of the Jeep vehicle that "…there are no CAN bus architectural restrictions, such as the steering being on a physically separate bus. If we can send messages from the head unit, we should be able to send them to every ECU on the CAN bus."

The implication here is that it important to prevent, as far as is reasonable, the access to safety critical domains from those that are more benign. The paper references a "physically separate bus", which in theory would allow the safety critical element to be protected from outside interference.

However, to isolate it completely is not possible if the full potential of the connected car is to be leveraged. In practise there are several ways to provide some degree of separation between different domains and yet still provide a level of communication between them.

Happily, there is a plethora of technologies available to help achieve domain separation. Secure middleware solutions are designed to control and restrict access to information clearly have a potential role to play, and there is an everincreasing number of hardware and software technologies designed to underpin that by making the implementation layer as secure and non-bypassable as possible. But as recent attacks on Tesla vehicles suggest, although separation technologies offer an admirable line of defence, they are no "silver bullet".

The Tesla Model S uses a physical (LAN-CAN) gateway box to isolate the infotainment system from the safety-critical vehicle controllers. The gateway box implements a structured API which supports a limited range of commands between the two networks, designed to ensure that if the safety critical vehicle controllers are to be accessed then a detailed knowledge of that API is required.

The hacker team 7 created a malicious Wi-Fi hotspot called 'Tesla Guest' to emulate the Wi-Fi at Tesla's service centres. When a Tesla connected to the hotspot, the browser would push an infected website created by the hacker team. That provided a portal to access relatively trivial functions, but the more safety critical systems such as braking also fell under their control once they had replaced the gateway software with their own. The software separation of domains provided by virtualisation technology leveraging such as Intel's VT 8 and Freescale's Virtualization extensions is more flexible than Tesla's hardware-based approach, but is restricted only to the processor implementing the hypervisor. Any other bus masters in the system, such as DMA engines and Graphics Processing Units (GPUs), can bypass the protections provided by the hypervisor and thus must also be managed to enforce the required security policy, which in practice is difficult to achieve. Evidence that hypervisors are not infallible was well publicised with the exploitation of the VENOM flaw 9 .

Tesla quick response was admirable, and the principle of separation is undoubtedly sound. But as Tesla's experience shows, it is only one part of the story. What is required, then, is a multi-faceted approach that will minimize the vulnerable attack surface, maximize the separation of the outward facing attack vector from the safety applications it serves, and ensure that application code and any operating systems it runs on are developed with security as a priority.

Developing Secure Application Code Identifying high risk areas

There is, however, a pragmatic consideration. It is easy to suggest the application of every possible security precaution to every possible software architecture and application, but clearly that makes little commercial sense, especially when (for example) a head unit's Linux-based OS is involved, complete with massive footprint and unknown software provenance. Where, then, should attention be focused?

According to Peterson, Hope and Lavenhar, "Architectural risk assessment is a risk management process that identifies flaws in a software architecture and determines risks to business information assets that result from those flaws. Through the process of architectural risk assessment, flaws are found that expose information assets to risk, risks are prioritized based on their impact to the business, mitigations for those risks are developed and implemented, and the software is reassessed to determine the efficacy of the mitigations." 10Although this and similar studies are generally focused on enterprise computing, the basic premise of identifying and focusing attention on the components of the system at most risk makes a great deal of sense. The ISO 26262 standard 11 introduces the concept of controllability for its ASIL assessments:

Risk = Severity x (Exposure x Controllability)
Controllability is the parameter that determines the ASIL of each hazardous event, and although it is classified qualitatively in ISO 26262 no specific method for classifying it is described. For safety related security issues, the risk to safety implied by a security related risk can clearly be assigned a Controllability value evaluated as for any other functional safety risk.

However, not all threats to security are also threats to safety and yet clearly the theft of (say) credit card details from a head unit represent a significant risk. This dilemma is perhaps best handled by divorcing safety and security risk and giving each appropriate priority, such that Security Risk = Severity x Exposure and Safety Risk = Severity x (Exposure x Controllability) In this way, issues which involve a high risk to (purely) security and those which represent a minor security infringement with nevertheless serious safety implications will both be given appropriate attention.

However that matter is handled, clearly the elements of the system considered most at risk by this or any other measure will depend on the system itself. The "Controllability" factor here is necessarily different for security related issues, However, examples of high risk areas are likely to include:

• Files from outside of the network • Backwards compatible interfaces with other systemsold protocols, sometimes old code and libraries, hard to maintain and test multiple versions • Custom APIsprotocols etclikely to involve errors in design and implementation 8 https://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.html 9 http://securityaffairs.co/wordpress/36787/hacking/venom-vulnerability.html 10 https://www.us-cert.gov/bsi/articles/best-practices/architectural-risk-analysis/architectural-risk-analysis 11 http://www2.warwick.ac.uk/fac/sci/wmg/research/lcvtp/documents/presentations/lcvtp072-ws6disseminationeventfunctionalsafetyanddiagnosticsfinalversion_3.pdf

• Security code: anything to do with cryptography, authentication, authorization (access control) and session management

Consider that principle in relation to a system deploying domain separation technologyin this case, a separation kernel hypervisor (Figure 3). It is easy to find examples of high risk areas specific to this scenario. For instance, consider the gateway virtual machine. How secure are its encryption algorithms? How well does it validate incoming data from the cloud? How well does it validate outgoing data to the different domains?

Then there are data endpointsonly those shown in the cloud in the diagram, but many more in reality. Is it feasible to inject rogue data? How is the application code configured to ensure that doesn't happen?

Another potential vulnerability arises because many systems need to communicate across domains. For example, central locking generally belongs to a fairly benign domain, but in an emergency situation after an accident it becomes imperative that doors are unlocked, implying communication with a more critical domain. However such communications between virtual machines are implemented, their very nature demands that their implementation should be secure.

With these high-risk software components identified, attention can be focused on the code associated with them leaving us with a system where secure code does not just provide an additional line of defence, but it actively contributes to the effectiveness of the underlying architecture by "reinforcing" its weak points.

Optimizing the security of this application code involves the combined contributions of a number of factors, mirroring the multi-faceted approach to the security of the system as a whole.

Secure Coding Practices

The CERT (Computer Emergency Readiness Team) Division of the Software Engineering Institute (SEI) 12 has evolved dramatically since it was created in 1988 as the CERT Coordination Centre in response to the Morris worm incident. The small organisation established to coordinate response to internet security incidents now has more than 150 cybersecurity professionals working on projects that take a proactive approach to securing systems.

Recognised as a trusted, authoritative organisation dedicated to improving the security and resilience of computer systems and networks, the CERT Division regularly partners with government, industry, law enforcement, and academia to develop advanced methods and technologies to counter large-scale, sophisticated cyber threats.

CERT have nominated a total of 12 key secure coding practices -a "top ten", more recently supplemented by two "bonus practices" . It is interesting to both consider how each of them relates to the code for the automotive system outlined in figure 2.

Once again referencing OWASP-SAMM as an example, the extent to which each of these CERT practices is adopted will influence the maturity level awarded for the related activity (Figure 4). Note that the model has changed in v1.5 to provide more granularity to the scoring in an assessment, such that it is now fractional to two decimal places for each practice.

As an of how security practices map in to OWASP-SAMM, consider the validation of inputs. Assessors are likely to consider elements such as:

• Awareness of all untrusted data sources • Rudimentary validation of appropriate data ranges for each untrusted source • Checks on the use of appropriate data types in each case • Data and Control Coupling analysis, to recognize how data injection could potentially infiltrate a system, and to ensure that it is defended accordingly (Figure 5)

Validate inputs

"Validate input from all untrusted data sources.

Proper input validation can eliminate the vast majority of software vulnerabilities. Be suspicious of most external data sources, including command line arguments, network interfaces, environmental variables, and user controlled files"

As Figure 6 suggests, there are many potential sources of untrusted data in today's connected car, and that situation can only intensify as there is a move towards autonomy. This "validate inputs" practice clearly applies to each of those data sources, but perhaps less obviously it is also important that data from other domains is also considered as untrusted. In particular, if those domains are hosting applications of differing ASIL or security levels, then data validation plays a key role in ensuring that communication paths offer aggressors no "back door" access to a critical domain.

Heed compiler warnings "Compile code using the highest warning level available for your compiler and eliminate warnings by modifying the code. Use static and dynamic analysis tools to detect and eliminate additional security flaws"

Many developers have a tendency to attend only to compiler errors during development, and ignore the warnings.

Cert's recommendation is to setting the warnings at the highest level available and ensure that all of them are attended to. Static analysis tools are designed to identify additional and more subtle concerns, with "lightweight" tools or analysis settings likely to provide a quick check, but miss some of the more subtle issues.

Typical uses for static and dynamic tools in a security focused analysis include:

• Static analysis of code with reference to secure coding standards such as CWE, CERT C and MISRA C, to minimize the use of constructs and techniques likely to introduce vulnerabilities into the system; • Data and Control Coupling analysis, providing a means to recognize how data injection could potentially infiltrate a system, and to ensure that it is defended accordingly (Figure 5); • Unit test to show that defensive mechanisms have been implemented and are traceable to security requirements; • Automatically generated robustness test cases, ensuring that such as boundary conditions, null pointers, and default conditions are handled adequately and hence introduce no vulnerabilities.

Architect and design for security policies "Create a software architecture and design your software to implement and enforce security policies. For example, if your system requires different privileges at different times, consider dividing the system into distinct intercommunicating subsystems, each with an appropriate privilege set"

Security should not and cannot be a "bolt-on" feature. Ensure that security requirements are captured, and that those requirements are fully implemented at the architecture and design stage. Ensure that "Least Privilege" principles are followed, dividing the system into subsystems such that each is only allowed the privileges necessary to perform the task it is designed for.

Practitioners familiar with the development processes promoted by ISO 26262 will be familiar with the notion that requirements are to be established, and that bi-directional traceability between those requirements, software design artefacts, source code and tests is to be established. Designing for security implies extending those principles to include requirements for security alongside requirements for safety. There are tools available to reduce the administration headache associated with such traceability (Figure 7). With reference to the example in Figure 3, there is a danger that separation technologies could be seen as a "silver bullet"; a mechanism to permit code developed without security in mind to be protected. It is important to ensure that high risk code is also addressed to ensure that the protection offered by domain separation is not subject to possible compromise. Security requirements analysis will help guard against any such complacency.

Keep it simple

"Keep the design as simple and small as possible. Complex designs increase the likelihood that errors will be made in their implementation, configuration, and use. Additionally, the effort required to achieve an appropriate level of assurance increases dramatically as security mechanisms become more complex" Some developers will spend time writing efficient code by limiting the number of statements. Although there may be situations where constraints make the application of optimization methods unavoidable, in general the efficiency of modern compilers means that the benefits of doing so are limited. It is usually far more beneficial to make sure that the code is logically structured, easy to understand, and easily tested.

Figure 8: Using the TBvision component of the LDRA tool suite to assess code complexity

There are many complexity metrics to help developers evaluate their code, and automated static analysis tools help by evaluating those metrics (Figure 8).

Default deny

"Base access decisions on permission rather than exclusion. This means that, by default, access is denied and the protection scheme identifies conditions under which access is permitted"

Effectively a by-product of the application of least privilege principles, this is especially applicable to inter-domain communications which must be limited to a highly controlled communications mechanism as exemplified by the Tesla.

Adhere to the principle of least privilege (POLP)

"Every process should execute with the least set of privileges necessary to complete the job. Any elevated permission should be held for a minimum time. This approach reduces the opportunities an attacker has to execute arbitrary code with elevated privileges" 40 years ago, in their paper "The Protection of Information in Computer Systems", Saltzer and Schroeder established a principle that "Every program and every user of the [operating] system should operate using the least set of privileges necessary to complete the job."13 This invoked the Principle of Least Privilege, mirroring a personnel management principle applied by the US military some years before.

The POLP is a core principle of the MILS (Multiple Independent Levels of Security) architecture, a key component of which is the separation kernel of the kind illustrated in the example.

Sanitize data sent to other systems

"Sanitize all data passed to complex subsystems such as command shells, relational databases, and commercial offthe-shelf (COTS) components. Attackers may be able to invoke unused functionality in these components through the use of SQL, command, or other injection attacks This is not necessarily an input validation problem because the complex subsystem being invoked does not understand the context in which the call is made. Because the calling process understands the context, it is responsible for sanitizing the data before invoking the subsystem"

In the example, suppose that the entertainment domain needs to communicate data to the high security domain. The entertainment domain is implemented using a Linux OS, complete with large attack surface and source code of unknown pedigree. Despite that, the entertainment system software may well have a much better understanding of what is acceptable data in the context of the transmission. It is therefore important to deploy secure "sanity check" code to assess its validity in the less critical domain.

Practice defence in depth

"Manage risk with multiple defensive strategies, so that if one layer of defence turns out to be inadequate, another layer of defence can prevent a security flaw from becoming an exploitable vulnerability and/or limit the consequences of a successful exploit For example, combining secure programming techniques with secure runtime environments should reduce the likelihood that vulnerabilities remaining in the code at deployment time can be exploited in the operational environment"

The "Swiss Cheese" model illustrates why defence in depth is helpful. No connected system is ever going to be both useful and absolutely impenetrable. It makes sense to protect it proportionately to the level of risk involved if it were to be compromised, and that means applying multiple levels of security so that if one level fails, others are standing guard.

Use effective quality assurance techniques

"Good quality assurance techniques can be effective in identifying and eliminating vulnerabilities. Fuzz testing, penetration testing, and source code audits should all be incorporated as part of an effective quality assurance program. Independent security reviews can lead to more secure systems. External reviewers bring an independent perspective; for example, in identifying and correcting invalid assumptions"

The traditional approach to testing in the security market is largely reactiveso that the code is developed in accordance with relatively loose guidelines, and then it is tested by means of performance, penetration, load and functional testing to spot any vulnerabilities and to deal with them. Although it is clearly preferable to ensure that the code is secure "by design" by using the processes championed by ISO 26262, the tools used in the traditional reactive model such as penetration tests still have a place. However, their role in this scenario is more to confirm that the system is secure, and not to find out whether it is.

Unit test tools provide a targeted "robustness test" capability by automatically generating test cases to subject the application code to such as null pointers, and upper and lower boundary values (Figure 9), and static analysis tools clearly lend themselves to secure code auditing. There are a number of potential sources of secure coding standards, and every opportunity to tune them to the needs of a particular development organization.

Given that the use of a secure coding standard is one of CERT's key guidelines, it is perhaps no surprise that the same organization have their own. CERT C is a coding standard designed for the development of safe, reliable and secure systems that adopts an application centric approach to the detection of issues.

MISRA offers another option, despite a common misconception that it is designed just for safety-related, not securityrelated, projects. To address this, in April 2016 MISRA released a summary14 of the extent to which MISRA C:2012 could be mapped to ISO/IEC TS 17961:2013, a technical specification outlining coding rules for secure C15 . That showed that most of the 46 C Secure rules were covered by the MISRA C:2012 guidelines, and that correlation was improved further with the introduction of MISRA C:2012 Amendment 1 and its 14 additional guidelines.

Static analysis tools vary in terms of their ability to identify the more subtle nuances of standard violations, but the more sophisticated implementations can seem slower because of the additional processing required to achieve that. A sensible approach is to choose tools with the option to run in "lightweight" mode initially, and to apply more complete analysis as development progresses.

Establish and meet security requirements

"Identify and document security requirements early in the development life cycle and make sure that subsequent development artefacts are evaluated for compliance with those requirements. When security requirements are not defined, the security of the resulting system cannot be effectively evaluated" This is perhaps a subset of the "Architect and design for security policies" practise, although it does serve to emphasize that Security requirements, like safety and functional requirements, need to be specified at the outset and need to be shown to have been implemented. Figure 4 shows how the automation of requirements traceability can help.

Address modelling threats

"Use threat modelling to anticipate the threats to which the software will be subjected. Threat modelling involves identifying key assets, decomposing the application, identifying and categorizing the threats to each asset or component, rating the threats based on a risk ranking, and then developing threat mitigation strategies that are implemented in designs, code, and test cases" As discussed earlier, identifying high risk areas in the example system such as data endpoints and communication between domains provides key focal points throughout the development process. Addressing those focal points throughout the development lifecycle is key to optimizing the security of the system as a whole.

Conclusions

The key to automotive system security is to make every component as secure as it can reasonably be. Even then, security is a continuously evolving game. Hackers don't stand still just because life has become more difficultthey simply have new challenges to overcome.

No connected system is ever going to be both useful and absolutely impenetrable. It makes sense to protect it proportionately to the level of risk involved if it were to be compromised, and that means applying multiple levels of security so that if one level fails, others are standing guard. Domain separation and secure application code provide two examples of these levels -or slices of "Swiss Cheese". It can be seen that the effort required to create a system that is sufficiently secure can be optimized by identifying highrisk elements of the architecture, and applying best-practice secure coding techniques to the application code associated with those elements.

It would be very expensive to apply state-of-the-art security techniques to every element of every embedded system. It is, however, important to specify security requirements and then architect and design them to be appropriate to each element of a system -perhaps the most important lesson to take from CERT's "Secure Coding Practices". In terms of the coding itself, risk assessment will create important pointers regarding where the system as a whole will most benefit from the application of static and dynamic analysis techniques. Happily, as MISRA's analysis has proven, many of the most appropriate quality assurance techniques for secure coding are well proven in the field of functional safety. These techniques include such as static analysis to ensure the appropriate application of coding standards, dynamic code coverage analysis to check for any excess "rogue code", and data and control coupling to validate the handling of key data.

Given the dynamic nature of the endless battle between hackers and solution providers, optimizing security is not merely a good idea. Should the unthinkable happen and with it a need to defend a connected system in court, there are very real advantages to being able to provide evidence of the application of the best available practice.

Figure 1 :

 1 Figure 1: An overview of the SAMM model as described in version 1.5 of the guide Choosing "Education & Guidance" to illustrate the mechanism, if the guide's recommendations are implemented then the outcome should be:

Figure 2 :

 2 Figure 2: The "Swiss Cheese" Model, illustrating how a sequence of imperfect defensive layers will only fail when those imperfections coincide.

Figure 3 :

 3 Figure 3: Deploying separation technology to help optimize security.

 Figure 4: OWASP-SAMM Maturity Levels

Figure 5 :

 5 Figure 5: Illustration of Data Coupling Coverage analysis using the TBvision component of the LDRA tool suite

Figure 6 :

 6 Figure 6: Automotive Attack Surfaces and Untrusted Data Sources

Figure 7 :

 7 Figure 7: Automating requirements traceability with the TBmanager component of the LDRA tool suite

Figure 9 :

 9 Figure 9: Using the TBeXtreme component of the LDRA tool suite to test code robustness Adopt a secure coding standard "Develop and/or apply a secure coding standard for your target development language and platform"

https://www.owasp.org/index.php/Attack_Surface_Analysis_Cheat_Sheet

Software Assurance Maturity Model: A guide to building security into software development VERSION 1.5 https://www.owasp.org/index.php/OWASP_SAMM_Project

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1117770/ Software Assurance Maturity Model: A guide to building security into software development

https://electrek.co/2016/09/27/tesla-releases-more-details-on-the-chinese-hack-and-the-subsequent-fix/

http://www.sei.cmu.edu/

http://www.cs.virginia.edu/~evans/cs551/saltzer

MISRA C:2012 -Addendum 2: Coverage of MISRA C:2012 against ISO/IEC TS 17961:2013 "C secure coding rules

ISO/IEC TS 17961:2013 Information technology --Programming languages, their environments and system software interfaces --C secure coding rules