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Abstract
In Bayesian statistics, improper distributions and finitely additive probabilities (FAPs) are

the two main alternatives to proper distributions, i.e. countably additive probabilities. Both of

them can be seen as limits of proper distribution sequences w.r.t. to some specific convergence

modes. Therefore, some authors attempt to link these two notions by this means, partly using

heuristic arguments. The aim of the paper is to compare these two kinds of limits. We show

that improper distributions and FAPs represent two distinct characteristics of a sequence of

proper distributions and therefore, surprisingly, cannot be connected by the mean of proper

distribution sequences. More specifically, for a sequence of proper distribution which converge

to both an improper distribution and a set of FAPs, we show that another sequence of proper

distributions can be constructed having the same FAP limits and converging to any given im-

proper distribution. This result can be mainly explained by the fact that improper distributions

describe the behavior of the sequence inside the domain after rescaling, whereas FAP limits

describe how the mass concentrates on the boundary of the domain. We illustrate our results

with several examples and we show the difficulty to define properly a uniform FAP distribution

on the natural numbers as an equivalent of the improper flat prior.
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tics.

1. Introduction

Improper priors and finitely additive probabilities (FAP) are the two main alternatives to
the standard Bayesian Paradigm using proper priors, i.e. countably additive probabilities
in the Kolmogorov axiomatic. Both alternatives are involved in paradoxical phenomena
such as non-conglomerability, marginalization paradox, etc. As an heuristic argument,
some authors such as Stone (1982) or Kadane et al. (1986, p.218), consider proper prior
sequences, for example sequence of uniform prior, and derive under two different topolo-
gies two kind of limits: FAPs limits and improper limits. The choice between FAP dis-
tribution and improper distribution has been largely debated in the Bayesian literature
(see Hartigan, 1983, p.15).

The aim of FAP limits is to preserve the total mass equal to 1, while sacrificing the
countable additivity. This point of view has been mainly defended by de Finetti (1972).
On the other hand, improper distributions aim to preserve the countable additivity,
while sacrificing a total mass equal to 1. Improper distribution appears naturally in
the framework of conditional probability, see Rényi (1955) and more recently Taraldsen
and Lindqvist (2010, 2016) and Lindqvist and Taraldsen (2018). Conditional probability
spaces are also related to projective spaces of measures (Rényi, 1970) which have a natural
quotient space topology and a natural convergence mode, named q-vague convergence by
Bioche and Druilhet (2016).

In Bayesian inference some paradoxes such as non-conglomerability (Stone, 1976, 1982)
or the marginalization paradox (Dawid et al., 1973) occur with improper or diffuse FAP
priors (Dubins, 1975), but not with proper priors. This lead some authors to include
the likelihood in the definition of a convergence mode for the priors, by for instance
considering the convergence of the posterior distribution w.r.t. to an entropy criterion
(Akaike, 1980) or an integrated version of this criterion (Berger et al., 2009) when the
posterior is proper. Bayesian inference with improper posterior is justified by Taraldsen
et al. (2019) from a theoretical point of view. Bord et al. (2018) consider the convergence
of proper to an improper posterior for Bayesian estimation of abundance by removal
sampling. Tufto et al. (2018) propose to adapt MCMC for the estimation of improper
posterior.
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In this paper, we only consider convergence of distributions regardless to any statistical
model. The implication of our result in Bayesian inference, especially the construction of
specific sequences of distribution used in the proof of Theorem 3 is left for future works. In
Section 2, we define several concept of convergence in the setting of improper and FAP
distributions. In Section 3 we revisit the notion of uniform distribution on integer. In
Section 4, we illustrate the fundamental difference between convergence to an improper
prior and to an FAP.

2. Convergence of probability sequences

We denote by Cb the set of continuous real-valued bounded functions, by CK the set
of continuous real-valued functions with compact support. For a σ-finite measure π, we
denote π(f) =

∫
f(θ) dπ(θ). Consider a sequence of proper priors {πn}n∈N. The usual

converge mode of {πn}n∈N to a proper prior π is the narrow convergence, also called
weak convergence or convergence in law, defined by:

πn
narrowly−−−−−−→
n→+∞

π ⇐⇒ πn(f) −−−−−→
n→+∞

π(f) ∀f ∈ Cb (1)

When it exists, the narrow limit of {πn}n is necessarily unique. In this section, we
consider two alternative convergence modes when there is no narrow limit, and especially
when the total mass tends to concentrate around the boundary on the domain, more
precisely when limn πn(f) = 0 for all f in CK . The idea is to consider a proper prior as a
special case of FAP or as a special case of a Radon measure, and for each case to define
in a formalized way, a convergence mode. In both cases the limit is not unique in general
but, as a requirement, must coincide with the narrow convergence when Eq. (1) holds.

In the following, we consider that Θ is a metric, locally compact, second countable
Hausdorff space Θ. This is the case, for example, for usual topological finite-dimensional
vector spaces or denumerable sets with the discrete topology. In the latter case, any
function is continuous and a compact set is a finite set.

2.1. Convergence to an improper distribution

To extend the notion of the narrow limit, we consider here proper distributions within
the set of projective space of positive Radon measures as follows: we denote by R the
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set of non-null Radon measures, that is regular countably additive measures with finite
mass on each compact set. Note that, in the discrete case any σ-finite measure is a Radon
measure.

We define an improper distribution as an unbounded Radon measure which appear in
parametric Bayesian statistics (see, e.g. Jeffreys, 1970). The projective space R associated
to R is the quotient space for the equivalence relation ∼ defined by π1 ∼ π2 iff π2 = απ1

for some positive scalar factor α. To a Radon measure π, it can be associated a unique
equivalence class π = {π′ = απ ; α > 0}. Therefore, a projective space is a space where
objects are defined up to a positive scalar factor. It is natural in Bayesian statistics to
consider such projective space since two equivalent priors give the same posterior. The
projective space R is also naturally linked with conditional probability spaces (Rényi,
1955). All the results presented below on the convergence mode w.r.t. to the projective
space R can be found in Bioche and Druilhet (2016). The usual topology on R is the
vague topology defined by

πn
vaguely−−−−−→
n→+∞

π ⇐⇒ πn(f) −−−−−→
n→+∞

π(f) ∀f ∈ CK (2)

where CK is the set of all real-valued functions on Θ with compact support.
From the related quotient topology, we can derive a convergence mode, called q-vague

convergence: a sequence {πn}n in R converge q−vaguely to a (non-null) improper distri-
bution π in R if πn converges to π w.r.t. the quotient topology where πn = {απn;α > 0}
is the equivalence class associated to πn and similarly for π. The limit π is unique whereas
π is unique only up to a positive scalar factor. It is not always tractable to check a con-
vergence in the quotient space. However, there is an equivalent definition in the initial
space R: {πn}n converges q − vaguely to π if there exists some scalar factors αn such
that {αn πn}n converges vaguely to π:

πn
q−vaguely−−−−−−−→
n→+∞

π ⇐⇒ anπn
vaguely−−−−−→
n→+∞

π for some a1, a2, ... > 0 (3)

The q-vague convergence can be considered as an extension of the narrow convergence
in the sense that if {πn}n and π are proper distributions and {πn}n converge narrowly
to π then {πn}n converge q-vaguely to π. Note that the converse part holds if and only
if {πn}n is tight (see Bioche and Druilhet, 2016, Proposition 2.8).
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When a sequence {πn}n of proper distributions converges q-vaguely to an improper
distribution, then limn πn(K) = 0 for any compact K (Bioche and Druilhet, 2016, Prop.
2.11). The following lemma gives an apparently stronger, but in fact equivalent, result.
It will be useful to establish the main result and to construct examples in Section 4.3.

Lemma 1. Let {πn}n be a sequence of proper distributions such that limn πn(K) = 0

for any compact K. Then there exists a non-decreasing sequence of compact sets Kn such
that ∪nKn = Θ and limn πn(Kn) = 0. Moreover, Kn may be chosen such that, for any
compact K, there exists an integer N such that K ⊂ KN .

Proof. Let K̃m, m ≥ 1, be a increasing sequence of compact sets with ∪mK̃m = Θ. For
each m, limn πn(K̃m) = 0, so there exists an integer Nm such that Nm > Nm−1 and
πn(K̃m) ≤ 1/m for n > Nm. Consider now such a sequence of integers Nm, m ≥ 1. For
any n there exists a unique integer m such that Nm ≤ n < Nm+1. We define Kn by
Kn = K̃m. So, πn(Kn) = πn(K̃m) ≤ 1/m. Since m increases with n, limn πn(Kn) = 0.
Futhermore, the sequence K̃m can be chosen such that, for any compact K, K is a subset
of all but finitely many K̃m, (see e.g. Bauer, 2001, Lemma 29.8). By construction, the
same property holds for the sequence Kn.

Note that, limn πn(K) = 0 for any compact set K does not imply that {πn} converge
q-vaguely. See Section 4 for some examples of such sequences.

2.2. Convergence to a FAP

In this section, we consider a proper distribution as special cases of FAPs. When a
sequence {πn} of proper distribution does not converge narrowly to a proper prior, we
need to define a weaker convergence mode so that the sequence can converge to some
FAPs. This convergence mode will be named FAP convergence, and the corresponding
limits, the FAP limits.

Denote by Fb the set of bounded real-valued measurable functions on Θ. A FAP π

can be defined as a linear functional on Fb which is positive, i.e. π(f) ≥ 0 if f ≥ 0 and
which satisfies π(1) = 1. Therefore, the set of FAPs belongs to the topological dual of Fb
equipped with the sup-norm. For any measurable set E ∈ Θ, we define π(E) = π(1E),
where 1E(x) = 1 if x ∈ E and 0 otherwise. We also denote

∫
f(θ) dπ(θ) = π(f).
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Since proper distributions are required to be special cases of FAPs, we do impose here
measurability conditions in the definition of Fb, contrary to many authors (see, e.g. Heath
and Sudderth, 1978). In the case where Θ is a denumerable set equipped with the usual
discrete topology, any functions or sets are measurable and therefore this distinction is
not relevant.

Consider a sequence {πn}n of FAPs. The minimal requirement for π to be a FAP
limit is that limn πn(f) = π(f) for any f ∈ Sc, where Sc is the set of f ∈ Fb such
that limn π(fn) exists. The existence of a limit π that satisfies this requirement is guar-
anteed by the Hahn-Banach theorem (see Rudin, 1991; Huisman, 2016) as follows: de-
fine the linear function Φ on Sc by Φ(f) = limn πn(f) and the sublinear functional
p(f) = lim supn πn(f). Then, there exists a linear functional π on Fb that coincides with
Φ on Sc and that satisfies π(f) ≤ p(f) on Fb. The functional π will be called a FAP
limit. The condition π(f) ≤ p(f) implies that π is a FAP. Conversely, a FAP necessarily
satisfies π(f) ≤ p(f). Replacing f by −f gives π(f) ≥ lim infn πn(f). Therefore, a FAP
limit can be characterized by the following lemma:

Lemma 2. A FAP π is a FAP-limit of the sequence {πn}n if and only if for any f ∈ Fb

lim inf
n

πn(f) ≤ π(f) ≤ lim sup
n

πn(f) (4)

or equivalently if and only if for any measurable set E

lim inf
n

πn(E) ≤ π(E) ≤ lim sup
n

πn(E). (5)

When Sc = Fb, the FAP limit is unique and corresponds to the convergence associated
to the weak∗-topology. In the general case, the FAP limit is not unique and its existence
relies on the axiom of choice. Unlike the q-vague convergence, the FAP convergence
cannot be considered as an extension of the narrow convergence. For example, consider
the proper distributions πn = δ√2/n, where δ is the Dirac measure. The sequence {πn}n
converges narrowly to π = δ0 but π is not a FAP limit of {πn}n. To show this, consider
f(θ) = 1Q(θ) ∈ Fb, with Q the set rational numbers, we have limn πn(f) = 0 6= π(f) = 1.
However, in the special case where Θ is a denumerable set, any real-valued function on Θ

is continuous and therefore if a sequence of proper distribution {π}n converges narrowly
to a proper distribution π, then π is a FAP limit.
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Another way to define a FAP limit in a formalized way has been proposed by Stone
(1982) for denumerable sets but can be extended to more general sets considered in this
paper. The existence of a limit relies on the Banach-Alaoglu-Bourbaki theorem (see, e.g.
Rudin, 1991), since a FAP belongs to the unit ball in the dual of Fb which is compact
for the weak∗-topology. Hence, for any sequence {πn}n of FAPs, there exists at least one
accumulation point π which is defined as a FAP limit. We recall that π is an accumulation
point of {πn}n for the weak∗-topology if and only if for any integer p, any f1, ...fp in
Fb and any ε > 0, there exists an infinite number of n such that |πn(fi)− π(fi)| ≤ ε,
i = 1, ..., p. Note that, since Fb is not in general first-countable, there does not necessarily
exist a subsequence {πnk

}k that converges to π. We can only say that, for any f ∈ Fb,
there exists a subsequence {πnk

(f)}k such that πnk
(f) converges to π(f).

Therefore, the set of FAP limits of {πn}n obtained by Stone’s approach is included in
the set of FAP limits obtained by using the Hahn-Banach theorem as above and (4) or
(5) still hold but are not sufficient conditions. The converse inclusion is false in general.
It is easy to see that the closed convex hull of the set of FAP limits defined by Stone is
included in the set of FAP limits defined in this paper. We conjecture that, conversely,
the set of FAP limits defined by (4) is the convex hull for the limits defined by Stone.
Consider for example π2n = δ0 and π2n+1 = δ1. There are only two FAP limits δ0 and
δ1 with Stone’s construction, whereas any π = αδ0 + (1 − α)δ1, 0 ≤ α ≤ 1 is a FAP
limit with our construction. In Section 4.1, we illustrate the difference between the two
convergence modes with another example.

Even if the two definitions of FAP limits are not equivalent, the main results, especially
Theorem 3, Corollary 4, Proposition 6, Lemma 7 and 8 hold for both of them. In the
following, we consider only the first definition of FAP limits.

2.3. FAP limits vs q-vague convergence

The fact that a sequence of proper distributions have both improper and FAP limits may
suggest a connection between the two notions as proposed heuristically by many authors.
The following results show that this is not the case. Roughly speaking, it is shown that
any FAP which is a FAP limit of some proper distribution sequence can be connected to
any improper prior by this mean.
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Theorem 3. Let {πn}n be a sequence of proper distributions such that limn πn(K) = 0

for any compact set K. Then, for any improper distribution π, it can be constructed a
sequence {π̃n}n which converges q-vaguely to π and which has the same set of FAP limits
as {πn}n.

Proof. For any FAP or any proper or improper distribution µ we define the distribution
(1A µ) by (1A µ)(f) = µ(1A f). From Lemma 1, it can be constructed an exhaustive
increasing sequenceKn of compact sets such that limn πn(Kn) = 0. Put γn = πn(Kn) and
define the sequence of proper distributions π̃n = γn

1
π(Kn)

1Kn
π + (1− γn) 1

πn(Kc
n)
1Kc

n
πn,

with Kc the complement of K. By Lemma 8 and 7 in Appendix A, π̃n has the same FAP
limits as {πn}. By Lemma 9, π̃n converges q-vaguely to π.

Corollary 4. Let {πn}n be a sequence of proper distributions that converges q-vaguely
to an improper distribution π(1). Then, for any other improper distribution π(2), it can
be constructed a sequence {π̃n}n that converges q-vaguely to π(2) and that has the same
FAP limits as {πn}n.

The only link that can be established between improper q-vague limits and FAP limits
of the same proper distribution sequence is that the FAP limits are necessarily diffuse,
i.e. they assign a probability 0 to any compact set.

3. Uniform distribution on integers

In this section, we compare different notions of uniform distributions on the set of integers
N. by using several considerations such as limit of proper uniform distributions.

We illustrate the fact that FAP uniform distributions are not well defined objects
(de Finetti, 1972, pp.122,224). Contrary to uniform improper distributions, FAP limits
of uniform distributions on an exhaustive sequence of compact sets are highly dependent
on the choice of that sequence.

3.1. Uniform improper distribution

There are several equivalent ways to define a uniform improper prior on integers. These
definitions lead to a unique, up to a scalar factor, distribution. The uniform distribu-
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tion can be defined directly as a flat distribution, i.e. π(k) ∝ 1 for k integer. It is
also the unique (up to a scalar factor) measure that is shift invariant, i.e. such that
π(k + A) = π(A) for any integer k and any set of integers A. The uniform distri-
bution is also the q-vague limit of the sequence of uniform proper distributions on
Kn = {0, 1, ..., n}. More generally and equivalently, the uniform distribution is the q-
vague limit of any sequence of proper uniform priors on an exhaustive increasing sequence
{Kn}n of finite subsets of integers.

3.2. Finitely additive uniform distribution

The notion of uniform finitely additive probabilities is more complex. Contrary to the
improper case, there is no explicit definition since π(k) = 0 for any integer k. We present
here several non equivalent approaches to define a uniform FAP. The first two ones can
be found in Kadane and O’Hagan (1995) and Schirokauer and Kadane (2007).

3.2.1. Shift invariant (SI) uniform distribution

As for the improper case, a uniform FAP distribution π can be defined as been any shift
invariant FAP, i.e. FAPs satisfying π(A) = π(A + k) for any subset of integers A and
any integer k. Such a distribution will be called SI-uniform. In that case, one necessarily
has : π(k1 + k2 ×N) = k−12 , for any (k1, k2) ∈ N×N∗. Kadane and O’Hagan (1995) also
investigate the properties of FAPs satisfying only π(k1+k2×N) = k−12 , where k1+k2×N
are called residue classes.

3.2.2. Limiting relative frequency (LRF) uniform distributions.

Kadane and O’Hagan (1995) consider a stronger condition to define uniformity. For a
subset A, define its limiting relative frequency LRF(A) by

LRF(A) = lim
N→∞

#{k ≤ N, s.t. k ∈ A}
N + 1

,

when this limit exists. A FAP π on N is said to be LRF-uniform if π(A) = p when
LRF(A) = p.

Let πn be the uniform proper distribution on Kn = {0, 1, ..., n}, then LRF(A) =

limn→∞ πn(A). Therefore a FAP π is LRF uniform if and only if it is a FAP limit
of {πn}n. It is worth noting that, unlike the improper case, the FAP limits are highly
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dependent on the choice of the increasing exhaustive sequence of finite sets Kn. Changing
the sequence {Kn}n changes the notion of uniformity. For example, if π̃n is the uniform
distribution on Kn = {2k ; 0 ≤ k ≤ n2} ∪ {2k + 1 ; 0 ≤ k ≤ n}, then limn π̃n(2N) = 1,
whereas limn πn(2N) = 1/2.

3.2.3. Bernoulli Scheme (BS) uniform distribution

We propose here another notion of uniformity that is not dependent of the choice a
particular increasing sequence of Kn as for the LRF uniformity. Consider a Bernoulli
Scheme, that is a sequence {Xk}k∈N of i.i.d. Bernoulli distributed random variables with
mean p ∈ [0; 1]. Define the random set A(X) = {k ∈ N, s.t. Xk = 1}. A FAP π is said to
be BS-uniform if, for any p ∈ [0; 1], π(A(X)) = p, almost surely. Note that the strong
law of large numbers, LRF(A(X)) = p, almost surely.

Proposition 5. Let {Kn} be an increasing sequence of finite subsets of N, with ∪n∈NKn

being infinite. Then any FAP-limit of the sequence πn of uniform distributions on Kn is
BS-uniform.

When ∪n∈NKn = N, this proposition shows that any FAP limit of uniform distribution
is BS-uniform. In particular, a LRF uniform FAP is also BS uniform. However, if for
example Kn is the set of even numbers less or equal to n, then any FAP-limit of the
sequence of uniform distributions on Kn will be BS-uniform, although it is intuitively,
certainly not uniform on N but on 2N. Therefore, BS uniformity looks much more like a
necessary condition for a FAP to be uniform, than like a complete definition.

4. Comparison of convergence modes on examples

We consider here some examples that illustrate the difference between convergence of
proper distributions to an improper distribution or a to FAP.

4.1. FAP limits on N.

For a sequence {πn} of proper distribution on N, it is known that there does not neces-
sarily exist a q-vague limit, but if it exists, it is unique in the projective space of Radon
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measures, i.e. unique up to a scalar factor. At the opposite, we have seen that a FAP
limit always exists but is not necessarily unique.

We illustrate the non-uniqueness of FAP limits with an extreme case. Consider the
sequence of proper distributions πn = δn, where δn is the Dirac measure on n. This
sequence has no q-vague limit since πn(k) = 0 for n > k. Moreover, for any subset A of
N so that A and Ac are both infinite:

0 = lim inf
n→∞

πn(A) ≤ π(A) ≤ lim sup
n→∞

πn(A) = 1,

whereas, for any finite set A, limn πn(A) = 0 = π(A) and for any cofinite set A,
limn πn(A) = 1 = π(A). Therefore, from (5), the set of FAP limits of πn is the set
of all diffuse FAPs on N. This shows that all the diffuse FAPs are connected through the
same sequence πn.

Let’s examine the set of FAP limits of πn = δn obtained with Stone’s definition of
FAP convergence (see Section 2.2). For any subset A, there exits a subsequence {πnk

}
such that πnk

(A) convergences to π(A). So, π(A) ∈ {0, 1}. Therefore the FAP limits of
πn in Stone’s sense are all remote FAPs, that is diffuse FAPs π such that π(A) ∈ {0, 1},
as defined by Dubins (1975, p.92). This also proves the existence of remote FAPs. Note
that a remote distribution is neither BS uniform nor SI and therefore cannot be LRF
uniform.

4.2. Convergence of sequence of Poisson distributions

We consider the sequence {πn}n of Poisson distributions with mean n. For any finite set
K, we have limn πn(K) = 0. However this sequence of proper priors does not converge
q-vaguely to any improper distribution (Bioche and Druilhet, 2016, §5.2). As a remark,
let π̃n be shifted measures on Z, defined by πn(B) = πn(B + n), where πn can be seen
as a measure on the set of all integers Z with π̃n(k) = 0 for k < 0. Then, using the
approximation of the Poisson distribution by a the normal distribution, it can be shown
that the sequence π̃n converges q−vaguely to the improper uniform measure on Z.

We consider now the FAP limits of the sequence {πn}n. The next result shows that
the limit have some properties of uniformity described in Section 3 but not all of them.
The proof is given in Appendix B.
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Proposition 6. Any FAP limit π of the sequence {πn}n of Poisson distribution with
mean n is shift invariant and BS-uniform but not necessarily LRF uniform.

Therefore, the FAP limits of the Poisson distribution sequence are examples of SI-
and BS-uniform distributions that are not LRF uniform. Kadane and Jin (2014) give
another example of SI but not LFR uniform FAPs using paths of random walks. Even
if they consider FAP on a subset of bounded function, it can be extended to Fb using
Hahn-Banach theorem similarly to Section 2.2.

4.3. FAP vs q-vague convergence of uniform proper distributions

To illustrate the fact that any FAP limit can be related with any improper distribution,
consider again the sequence {πn}n of Poisson distributions with mean n and any given
improper distribution π0 on the integers. Since limn πn(K) = 0 for any finite set, the
proof of Lemma 1 shows how to construct an exhaustive sequence of finite set Kn such
that limn πn(Kn) = 0. For example, choose Kn = {k ∈ N, k ≤ n/2} and define the
sequence of proper distributions π̃n by :

π̃n(A) = πn(Kn)
π0(A ∩Kn)

π0(Kn)
+ (1− πn(Kn))

πn(A ∩Kc
n)

πn(Kc
n)

(6)

for any set A. From Theorem 3, π̃n converge q-vaguely to π0 and has the same FAP limit
as the Poisson distribution sequence.

As another example, consider the sequence {πn}n of uniform distribution on {0, 1, ..., n}
and choose Kn = {k ∈ N, k ≤

√
n}. We have limn πn(Kn) = 0. Therefore, for any im-

proper distribution π0 on the set of integers, the sequence constructed as in (6) have
the same FAP limits as that of sequence of uniform distributions {πn}n and converge
q-vaguely to π0. This shows again the difficulty to connect improper and FAP uniform
distributions by limits of proper distribution.

4.4. Convergence of beta distributions

In this section, we consider the limit of the sequence of beta distribution πan,bn =

Beta(an, bn) defined on Θ =]0, 1[ when an and bn go to 0. We see that the FAP limits
depend on the way an and bn goes to 0, which is not the case for the q-vague improper
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limit. This illustrates the difference between FAP limits and q-vague limits of proper
distribution sequences.

The density of a beta distribution Beta(a, b) is given by

πa,b(x) =
1

β(a, b)
xa−1(1− x)b−1 for x ∈]0; 1[

where β(a, b) is the beta function.
From Bioche and Druilhet (2016), the unique (up to a scalar factor) q-vague limit of

Beta(an, bn) when an and bn go to 0 is the Haldane improper distribution:

πH(x) =
1

x(1− x)
for x ∈]0; 1[.

The q-vague limit gives no information on the relative concentration of the mass
around 0 and 1: for 0 < u < v < 1, πH(]0, u]) = πH(]v, 1[]) = +∞. To explore this
concentration, we temporally replace the space Θ by Θ̃ = [0, 1]. This has no consequence
on the Beta distribution but will change radically the q-vague limit. Put cn = an/bn

and assume that {cn}n converges to some c ∈ [0, 1]. The sequence {πan,bn}n converges
narrowly, and hence q-vaguely, to the proper distribution π̃ = 1

1+cδ0 + c
1+cδ1. Contrary

to the Haldane prior, π̃ shows how the mass concentrate on the boundary of the domain,
but gives no information on the behavior of the sequence inside the domain. Note that
the Haldane distribution is not a Radon measure on Θ̃ since πH([0, 1]) = +∞ where [0, 1]

is a compact set. Therefore πH cannot be a candidate for the q-vague limit on Θ̃.
We now consider the FAP limits on Θ =]0, 1[ of πan,bn and we show that they

give an information similar to that given by π̃ on the way the mass concentrate on
the boundary of the domain. Again, we assume that cn = an/bn converge to some
c ∈ [0, 1]. Easy calculations show that for any 0 < ε < 1 limn πan,bn(]0, ε[) = 1

1+c and
limn πan,bn(]1 − ε, 1[) = c

1+c . Therefore, for any FAP-limit π and for any ε ∈]0, 1[, we
have π(]0, ε[) = 1

1+c and π(]1− ε, 1[) = c
1+c , whereas π([u, v]) = 0 for 0 < u < v < 1.

5. Conclusion and perspectives

In this paper, we have shown that improper distributions and FAPs limits give quite
different information on the behaviour of the sequence of proper distribution and are
therefore complementary.
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In a Bayesian context, under some mild regularity condition on the likelihood f(x|θ),
these results can be applied to the joint distribution fn(x, θ) = f(x|θ)πn(θ) and to the
marginal distribution pn(x) =

∫
f(x|θ)πn(dθ) when it is well defined, both converging to

an improper prior if the sequence of prior converge to an improper distribution, similarly
for FAP limits. As limits of proper priors, FAP limits and improper prior limits represent
two different features of the sequence : the first one describes the behavior of the sequence
inside the domain, whereas the second one describes how the mass concentrate on the
boundary of the domain. We hope to use these differences in future works to understand
some paradoxical phenomenon that occurs in Bayesian statistics.

Appendix A

We establish some lemmas useful to prove Theorem 3. The first one is straightforward.

Lemma 7. Let {π(1)
n }n and {π(2)

n }n be two sequences of proper distributions and 0 ≤ γn ≤ 1

be a sequence of scalars that converges to 0. Then, the sequence defined by π̃n = γnπ
(1)+(1−γn)π

(2)
n

has the same FAP limits as {π(2)
n }n.

Proof. For any f ∈ Fb, lim supn π̃n(f) = lim supn π
(2)
n (f) and lim infn π̃n(f) = lim infn π

(2)
n (f).

The result follows from Lemma 2.

Lemma 8. Let {πn} be a sequence of proper priors and Kn be a non-decreasing sequence
of compact sets such that limn πn(Kn) = 0, then the sequence defined by π̃n = 1

πn(Kc
n)
1Kc

n
πn

has the same FAP limits than {πn}n.

Proof. First, note that {πn}n is not defined when πn(Kn) = 1, but this cannot occur
more than a finite number of times. For any f ∈ Fb, πn(f) = 1Knπn(f) + 1Kc

n
πn(f) =

πn(1Knf)+πn(Kc
n)π̃n(f). Since f is bounded, limn πn(1Knf) = 0. Moreover, limn(Kc

n) = 1.
Therefore, πn(f) and π̃n(f) have the same limit-sup and limit-inf and thus they have the
same FAP limits by Lemma 2.

At the opposite of Lemma 8, the following lemma shows that if we consider the restric-
tion of a sequence {πn}n of a proper or improper distribution on a exhaustive increasing
sequence {Kn}n of compact sets, we preserve the q-vague limits.



FAP vs improper limits 15

Lemma 9. Let Kn be a non-decreasing sequence of compact sets such that ∪nKn = Θ

and such that, for any compact K, there exists N such that K ⊂ KN . A sequence
{πn} of Radon measures converges q-vaguely to the Radon measure π if and only if
π̃n = 1

πn(Kn)
1Kn

πn converges q-vaguely to π.

Proof. Assume that πn converges q-vaguely to π, then there exists some positive scalars
{an}n such that for any f in CK , limn anπn(f) = π(f). Put ãn = an πn(Kn) and denote
by Kf a compact set that includes the support of f . Then, there exists an integer N such
that Kf ⊂ Kn for n > N . Therefore, for n > N , ãnπ̃n(f) = anπn(f). The result and its
reciprocal follow.

Appendix B

We prove here Proposition 6 of section 4.2.
In order to show that π is SI, we consider πn as distribution on Z, extending them by

0 on the non-positive integers. Define the π(k)
n by π(k)

n (A) = πn(A + k), for any subset
of Z. It is known that that ‖π(k)

n − πn‖TV ≤ k√
2πn

, where ‖ · ‖TV is the total variation
norm. Therefore, for any subset of N, limn→∞ |πn(A+ k)− πn(A)| = 0. Letting n go to
infinity, we deduce that, for any FAP limit π of πn, and any integer k : π(A+k) = π(A).

The fact that π is uniform in BS sense comes from an easy adaptation of the Hoeffding
inequality in that context. Let (Xk)k∈N be a Bernoulli scheme, of parameter p, and denote
by P being the associated probability. Hoeffding inequality gives, that, for any n :

P

{∣∣∣∣ ∞∑
k=0

e−n
kn

n!
(Xk(ω)− p)

∣∣∣∣ ≥ t
}
≤ 2e−2c

√
2πn t2 ,

for some positive constant c. The expected conclusion is then obtained thanks to the
Borel-Cantelli lemma.

The fact that some of the FAP limits π are not LRF uniform is a direct consequence
of the following lemma.

Lemma 10. For any 0 ≤ p, p′ ≤ 1, there exists a set A and some FAP limits π of {π}n
such that LRF (A) = p and π(A) = p′.

Proof. First note that , for any set A′, LRF (A′) = p if, and only if, ]{k ≤ n, k ∈ A′} =

pn + o(n). Therefore, for any set A with LRF (A) = p and for any set B such that



16

]{k ≤ n, k ∈ B} = o(N), one has both LRF (A ∪ B) = p and LRF (A \ B) = p. Take
now for set B the following :

B =
⋃
k∈N

{
u ∈ N : 4k − 2kk ≤ u ≤ 4k + 2kk

}
.

For that B, one has :

lim sup
n→∞

]{k ≤ n, k ∈ B}
n+ 1

= lim
k→∞

∑k
i=0 2i+1i

4k + 2kk
≤ lim

k→∞

(k + 1)2k+2

4k
= 0,

and thus LRF (B) = 0. However, π4k(B) converges to 1. Indeed, if Uk is some random
variable with law π4k , one has :

π4k
({
u ∈ N : 4k − 2kk ≤ u ≤ 4k + 2kk

})
= P

(
Uk − 4k√

4k
∈
[
− k ; k

])
.

The rigth-hand side term above converges to 1 thanks to the central limit theorem. Hence
LRF (A∪B) = LRF (A\B) = p while π4k(A∪B) converges to 1, and π4k(A\B) converges
to 0. Now, for any p′ ∈ [0; 1], choose two numbers a < b, so that p′ =

∫ b
a
e−u2/2
√
2π

du. Take
the set B′ to be :

B′ =
⋃
k∈N

{
u ∈ N : 4k + 2kmax(−k, a) ≤ u ≤ 4k + 2kmin(k, b)

}
,

then LRF (B) = 0 again and π4k(B′) converges to p′ , still thanks to the central limit
theorem. Let A = (A′ \B) ∪B′. Then LRF (A) = p and limk→∞ π4k(A) = p′. Now, any
FAP-limit π of subsequence π4k is also a FAP-limit of πk : π is therefore shift uniform
and BS uniform, but one has π(A) = p′.
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