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Benôıt Lallouéa,b,
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ABSTRACT
Online learning is a method for analyzing very large datasets (”big data”) as well
as data streams. In this article, we consider the case of constrained binary logistic
regression and show the interest of using processes with an online standardization of
the data, in particular to avoid numerical explosions or to allow the use of shrinkage
methods. We prove the almost sure convergence of such a process and propose using
a piecewise constant step-size such that the latter does not decrease too quickly and
does not reduce the speed of convergence. We compare twenty-four stochastic ap-
proximation processes with raw or online standardized data on five real or simulated
data sets. Results show that, unlike processes with raw data, processes with online
standardized data can prevent numerical explosions and yield the best results.

KEYWORDS
Big data; Data stream; Logistic regression; Online learning; Stochastic
approximation; Stochastic gradient

1. Introduction

1.1. Background

Data stream online analysis concerns data that arrive continuously such as process
control data, web data, telecommunication data, medical data or financial data. Online
learning, which proceeds in successive steps, the results of which are being updated
at each step taking into account a batch of new data, is particularly adapted to data
streams. For observations arriving sequentially, recursive stochastic algorithms can
be used to estimate, for instance, parameters of a linear regression model [8, 10],
principal components of a factorial analysis [18] or centers of classes in non-hierarchical
clustering [6], whose estimations are updated by each new arriving data batch. When
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using such recursive processes, it is not necessary to store the data and, due to the
relative simplicity of the computation involved, a much greater number of data can
be taken into account than with classical methods during the same amount of time.
Therefore, recursive algorithms can also profitably be used for very large datasets (by
randomly drawing a data batch from the dataset at each step) when the capacities of
statistical learning methods are potentially limited by computing time. Batch gradient
and stochastic gradient methods are presented and compared in [4] and reviewed in
[3].

When using a stochastic gradient process, a numerical explosion can be encountered
[19]. To avoid such phenomenon, methods of gradient variance reduction [3, 13], such as
gradient clipping [19], can be used. The idea underpinning gradient clipping is to limit
the norm of the gradient to a maximum number called threshold. This number must be
chosen and a poor choice of threshold can affect computing speed. In our approach, the
limitation of the gradient is implicitly obtained by online standardization of the data:
each continuous variable is standardized with respect to the estimations at the current
step of its expectation and its standard deviation computed online. Indeed, in the case
of a data stream, the mathematical expectation and the variance of each variable are
a priori unknown and the usual offline standardization cannot be performed. This
may also be an issue when using a shrinkage method such as LASSO or ridge, which
first necessitates standardizing the explanatory variables. Again, it is not possible to
perform the offline standardization in the case of a data stream and an online process
can be used, with a projection at each step on the convex set defined by the constraint
on the parameters of the regression function. More generally this type of process can
be used for any convex set, for example if it is imposed that the parameters associated
with the explanatory variables are positive. Finally, we can consider a case where the
expectations and the variances of the explanatory variables depend on the step n or on
the values of controlled variables and a regression model with standardized explanatory
variables is defined. Assuming that we can estimate online the expectation and the
variance of these variables, we can also use the same type of process to estimate the
parameters of the regression function.

In a previous study [10] addressing sequential least square multidimensional linear
regression using a stochastic approximation process, we proved the convergence of three
processes with online standardized data instead of raw data, discussed the advantages
of this approach compared to other methods, and experimentally showed that processes
with online standardized data were superior to processes with raw data. In the present
study, we use a similar approach in the case of constrained binary logistic regression,
using a stochastic gradient process with online standardization of the data. Herein, the
second Lyapounov method ([14], p.9) is used in the proof of convergence, the additional
problem being that the expectations and variances of the explanatory variables are
unknown but replaced by convergent online estimations, as in the case of sequential
linear regression [10]. We consider an averaged stochastic gradient process: intuitively,
when the algorithm is not too distant from the solution, averaging allows decreasing
the variability of the initial algorithm, which can oscillate around the true solution,
and thereby improve its performance [21][6].

Since a suitable choice of step-size is often crucial for obtaining good performances
for stochastic gradient processes, we examined various choices of step-size. Bach and
Moulines [2] already showed that a constant step-size averaged stochastic gradient
process does not converge to the true value of the parameter (because the gradient of
the loss function is not linear in the case of logistic regression) and alternatively defined
other processes with a Newton-approximation scheme. However, Bach [1] suggested
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using a decreasing piecewise constant step-size, in order that the step-size does not
decrease too quickly and does not reduce the speed of convergence, which we test in
the present experiments and compare the latter to a more classical decreasing step-size.

Subsection 1.2 is devoted to the formulation of the problem, which is a problem of
Stochastic Optimization of the expectation F (x, a) of a random variable Y (x, a) de-
pending on an unknown parameter a which is estimated online along with the stochas-
tic gradient process, Subsection 1.3 to a comparison with other recent formulations
such as Stochastic Compositional Optimization [23] and Conditional Stochastic Op-
timization [12], Subsection 2.1 to a definition and to a theorem of almost sure con-
vergence of the stochastic gradient process, Subsection 2.2 to a comparison with the
Stochastic Compositional Gradient Descent algorithm [23] as well as some possible
extensions of our work, while Section 3 is devoted to the results of experiments where
processes with raw data are compared to processes with online standardized data. The
article ends with a conclusion (Section 4) and two appendices: Appendix A contains
the proof of the theorem and Appendix B features additional experimental results.

1.2. Formulation of the problem

Let A′ be the transpose of a matrix A. The abbreviation a.s. stands for almost surely.
Consider a data stream and assume that the observed data are realizations of a

random vector (R1, ..., Rp, S) in Rp × {0, 1}. Let R be the random column vector(
R1 ... Rp 1

)′
, m =

(
E
[
R1
]
... E [Rp] 0

)′
, Rc = R − m (rc a realization of Rc), σk

the standard deviation of Rk (k = 1, ..., p), Γ the diagonal (p+ 1, p+ 1) matrix with
diagonal elements 1

σ1 , ...,
1
σp , 1 (taking by convention σk = 1 for a categorical variable),

Z = ΓRc the vector R whose continuous components are standardized (z = Γrc a

realization of Z) and θ =
(
θ1 ... θp θp+1

)′
a column vector of real parameters.

Consider the logistic model with standardized covariates:

P (S = s | Z = z) = f(s; z, θ) =

(
ez
′θ

1 + ez′θ

)s(
1

1 + ez′θ

)1−s
=

ez
′θs

1 + ez′θ
. (1)

E [S | Z] = h (Z ′θ) with h(u) = eu

1+eu = 1
1+e−u .

Remark 1. Let mj = E[Rj ], j = 1, ..., p. Note that if θ0 is the column vector of the
parameters of the logistic regression function of S with respect to R, then f(s; z, θ) =

f0(s; r, θ0) = er
′θ0s

1+er′θ0
, with for j = 1, ..., p :

θj0 =
θj

σj
, θp+1

0 = θp+1 −

 p∑
j=1

mj θ
j

σj

⇔ θ0 =


1
σ1

. . .
1
σp

−m1

σ1 · · · −mp

σp 1

 θ. (2)

Define the loss function − ln f(s; z, x) = ln 1+ez
′x

ez′xs
. The cost function

F (x) = −E [ln f (S;Z, x)] = E

[
ln

1 + eZ
′x

eZ′xS

]
= E

[
−Z ′xS + ln

(
1 + eZ

′x
)]

(3)

has θ for unique minimizer since F is a convex function with positive Hessian

3



F ′′(x) = E

[
ZZ ′

eZ
′x

(1 + eZ′x)2

]
. (4)

θ is the unique solution of:

F ′(x) = E

[
−ZS +

ZeZ
′x

1 + eZ′x

]
= E

[
Z
(
h
(
Z ′x
)
− S

)]
= 0. (5)

The purpose of this study is to recursively estimate θ using a stochastic gradient
algorithm with online standardized data.

1.3. Comparison with other formulations

Let R2 denote the random column p-vector
((
R1
)2
. . . (Rp)2

)′
and g (R) denote the

random column 2p+ 1-vector
(
R′R2′)′.

The diagonal matrix Γ is a function of E [R] and E
[
R2
]
, thus of E [g(R)]: Γ =

C (E [g (R)]). Moreover E [R] = AE [g(R)], with A = (Ip+1 (0)), Ip+1 the identity
matrix of order p + 1 and (0) the null (p + 1, p) matrix. We can then write F (x) =
F (x,E [g (R)]) as the expectation of a function f of x parametrized by E [g(R)] , R, S:

F (x) = F (x,E [g (R)]) = E

[
ln

1 + exp
(
(R−AE [g (R)])′C (E [g (R)])x

)
exp

(
S (R−AE [g (R)])′C (E [g (R)])x

) ]
= E [f (x,E [g (R)] ;R,S)] . (6)

A. The minimization of F (x) is a problem of Stochastic Optimization of the expecta-
tion of a random variable Y (x, a) that depends on an unknown parameter a = E [g (R)]
which is estimated online by iterative averaging along with the solution θ. We have
dealt with this type of problem in other settings, for example in a streaming multiple
factor analysis of a random vector Z [15] or in a streaming generalized canonical cor-
relation analysis [17] where unknown elements such as an expectation or a covariance
matrix or a metric are estimated online along with the principal components. We ex-
tended this approach in [16] to the case of principal component analysis of a random
vector with a time-varying expectation. We present in Subsection 2.2 the same type
of extension.

B. In [7], the authors studied the minimization on a compact set of composite risk
functions, in particular

F (x) = EV [f (x,EV g (x;V ) ;V )] . (7)

Formulation (6) can be considered as a particular case of (7) with g not depending
on x. However, the authors only established a central limit theorem for the empirical
estimator minimizing the empirical risk obtained by replacing the expectations in (7)
by empirical means over a finite sample. Here, we solve the minimization of F (x) (6)
directly by using a stochastic approximation process including the sequential estima-
tion of E [g (R)] by iterative averaging.
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C. The aim of Stochastic Compositional Optimization (SCO [23], [11], [25] for multi-
level compositional optimization, and references therein) is to minimize the composi-
tion of two expected-value functions:

F (x) = EV [f (EW g (x;W ) ;V )] . (8)

Taking V = (R,S), W = R and g (x;R) =
(
x′, g (R)′

)′
, this formulation is formally

the same as in equation (6). Thus formulation (6) could be considered as a particular
case of (8) and the convergence results of SCO applied to the problem (6). However,
we show in Subsection 2.2 that a larger choice of step-sizes than in [23] is allowed by
our convergence analysis using a classical method of stochastic approximation.

D. The aim of Conditional Stochastic Optimization (CSO, [12]) is to minimize

F (x) = EV
[
f
(
EW/V g (x;V,W ) ;V

)]
. (9)

This formulation does not apply to the present case since there is no conditional
expectation in formulation (6).

In conclusion, the sequential minimization of F (x) in (6) is a stochastic approxima-
tion problem involving a stochastic gradient process and requiring the simultaneous
online estimation of the unknown expectation of g (R).

2. Approach: Definition of a stochastic gradient process

2.1. Definition and convergence

Let
(
(R1

n, ..., R
p
n, Sn), n > 1

)
be an i.i.d. sample of (R1, ..., Rp, S) and, for n > 1, Rn =(

R1
n ... R

p
n 1
)′

, Rcn = Rn − m and Zn = ΓRcn. For k = 1, ..., p, let R
k
n be the mean

of the sample
(
Rk1 , ..., R

k
n

)
of Rk and

(
V k
n

)2
= 1

n

n∑
i=1

(
Rki −Rkn

)2
its variance (both

recursively computed), Rn =
(
R1
n ... R

p
n 0
)′

and Γn the (p+ 1, p+ 1) diagonal matrix

with diagonal elements 1√
n

n−1
V 1
n

, ..., 1√
n

n−1
V pn
, 1.

Assume that mn observations (Ri, Si) are taken into account at step n of the fol-

lowing defined process. Let µn =
n∑
i=1
mi, In = {µn−1 + 1, ..., µn} be the set of indices

of the observations taken into account at step n, R̂n = Rµn , Γ̂n = Γµn and for j ∈ In:

Z̃j = Γ̂n−1

(
Rj − R̂n−1

)
= Γ̂n−1

(
Rcj − R̂cn−1

)
with R̂cn−1 = R̂n−1 −m. (10)

For k = 1, ..., p, each component Rkj of Rj is pseudo-standardized with respect to

the empirical mean R̂kn−1 and to the empirical estimation of σk,
√

µn−1

µn−1−1V
k
µn−1

. Note

that all data up to step n − 1 are used to estimate m and Γ at step n by R̂n−1 and
Γ̂n−1 respectively, which are recursively computed.

Assume that θ is constrained to belong to a convex subset K of Rp+1 (if there is no
constraint, K = Rp+1). Let Π be the projection operator on K. Recursively define the
stochastic approximation process (Xn, n ≥ 1) and the averaged process

(
Xn, n ≥ 1

)
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in Rp+1 such that:

Xn+1 = Π

Xn − an
1

mn

∑
j∈In

Z̃j

(
h
(
Z̃ ′jXn

)
− Sj

) , (11)

Xn+1 =
1

n+ 1

n+1∑
i=1

Xi = Xn −
1

n+ 1

(
Xn −Xn+1

)
. (12)

Remark 2. The use of the projection operator Π is only necessary if θ is constrained
to belong to a convex set K, for example when using a shrinkage method. It is not the
case if we wish only to avoid a numerical explosion, as in the experiments conducted
in Section 3.

Assume:
(H1a) There is no affine relation between the components of R.
(H1b) The moments of order 4 of R exist.

(H2) an > 0,
∞∑
n=1

an =∞,
∞∑
n=1

an√
n
<∞,

∞∑
n=1

a2n <∞.

Theorem 2.1. Under H1a,b and H2, (Xn) and
(
Xn

)
converge almost surely to θ.

The proof using the second Lyapounov method ([14], p.9), also valid in the case of
linear regression, is shown in Appendix A.

2.2. Discussion and possible extensions

A. The SCGD (Stochastic Compositional Gradient Descent) algorithm used to solve
the minimization of F (x) in (8) is the composition of a stochastic gradient descent
algorithm (Xn) with step-size (αn) and of an iterative weighted algorithm (Yn) with
step-size (βn) such that:

Xn+1 = Π (Xn − αn∇g (Xn;Wn)∇f (Yn+1;Vn)) , (13)

Yn+1 = (1− βn)Yn + βng (Xn;Wn) , (14)

Π being the projection operator on a closed convex set, (Vn,Wn) an i.i.d. observation of
(V,W ), (Xn) depending on (Yn) and (Yn) on (Xn), αn and βn verifying the assumptions

∞∑
n=1

αn =∞,
∞∑
n=1

βn =∞,
∞∑
n=1

(
α2
n + β2n +

α2
n

βn

)
<∞ (15)

to ensure the a.s. convergence of the algorithm (Xn) ([23], Theorem 1). It requires that
the algorithm (Xn) with step-size (αn) must be slower than the algorithm (Yn) with
step-size (βn), which decreases the convergence rate and creates practical difficulties
according to [11].

B. Consider the algorithm (Xn) defined in equation (11). To estimate E
[
Rj
]

and

Var
[
Rj
]

for j = 1, . . . , p, we estimate E [g (R)] whose unknown components are E
[
Rj
]

and E
[
(Rj)2

]
, j = 1, . . . , p, by iterative averaging, introducing at each step n a mini-

batch of mn observations Rk, k ∈ In, and estimating E [g (R)] at step n by Mn such
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that

Mn+1 = (1− βn)Mn + βn
1

mn

∑
i∈In

g (Ri) ,M1 = 0, with βn =
mn

µn
, thus (16)

Mn+1 =
1

µn

µn∑
i=1

g (Ri) . (17)

Then R̂n−1 =
(
M1
n . . .M

p
n 1
)

and V̂ i
n−1 = Mp+1+i

n −
(
M i
n

)2
, i = 1, ..., p. Thus the

algorithm (Xn) defined by equation (11) depends on (Mn).
C. Consider the case where mn = 1 for all n and compare (11) and (12) with SCGD

defined by (13) and (14) taking αn = an and βn = mn

µn
= 1

n .

According to definition (14) of (Yn), as g(x;R) =
(

x
g(R)

)
and E [g(x;R)] =

(
x

E[g(R)]

)
,

we have Yn =
(Y 1

n

Y 2
n

)
and:

a) Y 1
n+1 = (1− βn)Y 1

n + βnXn = 1
n

∑n
i=1Xi = Xn, with Y1

1 = 0;
b) Y 2

n+1 = (1− βn)Y 2
n + βng (Rn), thus Y 2

n+1 = Mn+1, with Y2
1 = 0;

c) Xn+1 = Π
(
Xn − anZ̃n

(
h
(
Z̃ ′nXn

)
− Sn

))
;

thus, SCGD is different from the algorithm defined by (11) and (12) as h
(
Z̃ ′nXn

)
in (11) is replaced by h

(
Z̃ ′nXn

)
;

d) if we use in definition (11) of (Xn) with mn = 1, the step-size an = 1
nα , 1

2 < α ≤ 1,

and take βn = 1
n , then a2

n

βn
= 1

n2α−1 > 1
n , thus (15) is not verified; however, (an) verifies

the assumption
∑∞

n=1 an =∞,
∑∞

n=1 a
2
n <∞,

∑∞
n=1

an√
n
<∞.

D. A more general step-size βn could be taken and, in the definition of Z̃j , j ∈ In,

R̂n−1 could be replaced by (M1
n . . .M

p
n 1)′ and Γ̂n−1 by a (p + 1, p + 1) diagonal

matrix with diagonal elements 1√
Mp+1+i
n −(M i

n)
2
, i = 1, . . . , p, and 1. Then it can be

proved that (Mn) converges a.s. to E [g (R)] and (Xn) defined by (11) to θ under the
following assumptions on (βn):

βn > 0,
βn
βn+1

≤ 1 + γβn + γn + o(βn), γ < 2, γn ≥ 0,

∞∑
n=1

γn <∞,

∞∑
n=1

βn =∞,
∞∑
n=1

β2n <∞ (18)

and assumptions H1a, H1b, H2 with
∑∞

n=1
an√
n
< ∞ replaced by

∑∞
n=1 an

√
βn < ∞.

Condition (18) is verified for example when βn = 1
n or from a certain rank when

βn = 1
nα , 1

2 < α < 1. Note that the same time-scale can be taken for the two processes

(Xn) and (Mn), βn = an verifying
∑∞

n=1 (an)
3

2 <∞.
In conclusion, solving the minimization of F (x) in equations (6) and (8) involves

the composition of a stochastic gradient descent algorithm and an iterative weighted
algorithm, although the performed convergence analyses are different, allowing a larger
choice of step-sizes in the present study without assumption on the comparison of the
convergence rates of (an) and (βn).

E. Note that Theorem 2.1 can be extended to the case where the explanatory
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variables have an expectation and a variance depending on n or on the values of
controlled variables, thus m and Γ depend on n and are denoted by m(n) and Γ(n).

Then R̂n−1 and Γ̂n−1 must be replaced by estimators of m(n) and Γ(n), respectively
Θn and Φn depending on data up to step n−1 (as in [16] in the case of a time-varying
expectation). To ensure the a.s. convergence of the process (Xn), we assume that:

sup
n
‖m (n)‖ <∞, sup

n
‖Γ (n)‖ <∞, (19)

Θn −m (n) −→ 0,

∞∑
n=1

an ‖Θn −m (n)‖ <∞, (20)

Γn − Γ (n) −→ 0,

∞∑
n=1

an ‖Γn − Γ (n)‖ <∞ a.s. (21)

3. Application

Twenty-four stochastic approximation processes were compared, including classical
stochastic gradient descent (SGD), averaged stochastic gradient descent (ASGD) with
a piecewise constant step-size with different level sizes as suggested in [1], as well as the
same processes but with the online standardization of the data defined in Subsection
2.1.

The processes and their respective parameters are described in Table 1. Abbrevia-
tions used to name the processes are as follows: C for classical SGD or A for ASGD;
R for raw data or S for online standardized data; V for variable step-size or P for
piecewise constant step-size. For instance, AR1P50 is the averaged process with raw
data, 1 observation per step, piecewise constant step-size with level size 50; CS1V is
the classical process with online standardized data, 1 observation per step and vari-
able step-size. Processes on raw data (in particular ”CR.”) are those currently used,
while those using online standardization of the data (particularly averaged stochastic
gradient descent with piecewise constant step-size, ”AS.P.”), are introduced in this
article.

3.1. Step-size

For processes with a variable step-size (V), we have defined an = c
(b+n)α . For processes

with a piecewise constant step-size (P), we have chosen an = c
(b+bn

τ
c)α where b.c denotes

the integer part while τ is the size of the levels. For both cases, we set α = 2/3 (as
suggested by Xu [24] in the case of linear regression), b = 1 and c = 1.

3.2. Initialization and simulation of a data stream

All processes were initialized with X1 = 0. For processes with online standardization,
a random sample of 1000 observations (drawn with replacement from the dataset)
was used to compute a first estimation of the means and standard deviations of the
explanatory variables prior to the beginning of the iterations. For averaged processes,
the first 1000 iterations were used as a burn-in period and were not included in the
computation of the average.
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Table 1. Description of the processes.

Abbreviation Method type Type of data Number of
observations
used at each
step of the
process

Step-size Levels
size

Use of the
averaged
process

CR1V
Classical (C)

Raw data (R)

1
Variable (V) - NoCR10V 10

CR100V 100
AR1P50

Averaged (A) SGD

1

Piecewise
constant (P)

50

Yes

AR10P50 10
AR100P50 100
AR1P100 1

100AR10P100 10
AR100P100 100
AR1P200 1

200AR10P200 10
AR100P200 100
CS1V

Classical (C)

Online
Standardized

data (S)

1
Variable (V) - NoCS10V 10

CS100V 100
AS1P50

Averaged (A) SGD

1

Piecewise
constant (P)

50

Yes

AS10P50 10
AS100P50 100
AS1P100 1

100AS10P100 10
AS100P100 100
AS1P200 1

200AS10P200 10
AS100P200 100

Then, for each dataset, a data stream was simulated by randomly sampling with
replacement a data batch of 1, 10 or 100 observations (depending on the process
studied) at each step of the process.

Processes were implemented with the R 3.6.1 software (64-bit version).

3.3. Convergence criteria

The coefficients obtained by the usual ”offline” logistic regression (using R’s glm func-
tion) on a dataset ((r1i , ..., r

p
i , si), i = 1, ..., N) were used as ”gold standard” to assess

the convergence of the processes. Let θc be the vector of coefficients obtained with this
method and θ̂n+1 the estimated vector obtained by a tested process after n iterations.

As θ0 =


1
σ1

. . .
1
σp

−m1

σ1 · · · −mp

σp 1

 θ, θ̂n+1 =


Γ̂n(1, 1)

. . .

Γ̂n(p, p)

−Γ̂n(1, 1)r̂1n · · · −Γ̂n(p, p)r̂pn 1

 x̄n+1

(22)

(x̄n+1, realization of X̄n+1, is the estimation of θ at step n).

The relative norm of the difference between θc and θ̂n+1,
‖θc−θ̂n+1‖
‖θc‖ , was used as a

convergence criterion.

The cosine of the angle between θc and θ̂n+1,
θc′θ̂n+1

‖θc‖‖θ̂n+1‖
, the coefficient of correlation

between the predictions obtained with the usual method and the process, as well
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as the ratio F̂ (θ̂n+1)−F̂ (θc)

F̂ (θc)
, F̂ (θ̂n+1) = 1

N

∑N
i=1

(
−r′iθ̂n+1si + ln(1 + er

′
iθ̂n+1)

)
being an

estimation of the cost function F at θ̂n+1, were also used as criteria (results not shown).

3.4. Datasets

The processes were tested on four datasets available on the Internet and one dataset
derived from the EPHESUS study [20]1, all of which have already been used to
test the performance of stochastic approximation processes with online standard-
ized data in the case of online linear regression [10]. Twonorm, Ringnorm, Quantum

and Adult datasets are commonly used to test classification methods. Twonorm2 and
Ringnorm3, introduced by Breiman [5], contain simulated data with homogeneous vari-
ables. Quantum contains observed ”clean” data, without outliers and with most of its
variables on a similar scale. Adult and HOSPHF30D contain observed data with out-
liers, heterogeneous variables of different types and scales. Table 2 summarizes these
datasets.

Table 2. Description of the datasets.

Dataset name Na N pa p Source

Twonorm 7400 7400 20 20 www.cs.toronto.edu/ delve/data/datasets.html
Ringnorm 7400 7400 20 20 www.cs.toronto.edu/ delve/data/datasets.html
Quantum 50000 15798 78 12 derived from www.osmot.cs.cornell.edu/kddcup
Adult2 45222 45222 14 38 derived from www.cs.toronto.edu/ delve/data/datasets.html
HOSPHF30D 21382 21382 29 13 derived from EPHESUS study [20]

Na: number of available observations; N : number of selected observations; pa: number of available parameters;
p: number of selected parameters.

The following preprocessings were performed on the data:

• Twonorm and Ringnorm: no preprocessing.
• Quantum: a stepwise variable selection (using AIC) was performed on the 6197

observations without any missing value. The dataset with complete observations
for the 12 selected variables was used.
• Adult2: from the Adult dataset, modalities of several categorical variables were

merged (in order to obtain a larger number of observations for each modality) and
all categorical variables were then replaced by sets of binary variables, leading
to a dataset with 38 variables.
• HOSPHF30D: 13 variables were selected using stepwise selection.

All processes were applied on all datasets for a fixed number of 100N observations
used and for a fixed processing time of 60s (the cumulative time to compute the process
updates, excluding operations such as data sampling, data management, formatting
and recording of results, etc.).

For each dataset and at each recording point (see below), processes that did not
explode were ranked from the best (lowest relative norm) to the worst (highest relative

1Due to legal restrictions, data from the EPHESUS study are only available upon request. Interested re-
searchers may request access to data upon approval from the EPHESUS Executive Steering Committee of the

study.
2Twonorm ”is 20 dimension, 2 class data. Each class is drawn from a multivariate normal distribution with

unit covariance matrix. Class 1 has mean (a,a, ... ,a) and class 2 has mean (-a,-a, ... ,-a).”(extract from [5])
3Ringnorm ”is 20 dimension, 2 class data. Class 1 is multivariate normal with mean zero and covariance

matrix 4 times the identity. Class 2 has unit covariance matrix and mean (a,a, ...,a).”(extract from [5])
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norm). The mean rank over all datasets was used to compare the global performance
of the processes without any numerical explosion.

Processing time to treat 100N observations and average number of observations
used per second were also studied. Note that it is preferable to consider only the order
of magnitude of these indicators, since CPU and memory usage by other software were
not controlled during the running of the processes which may explain small differences.

3.5. Comparison for a fixed number of observations

As in [10], the criteria values for each process were recorded every N observations used,
from 1N to 100N , N being the number of selected observations after preprocessing in
the studied dataset. For the relative norm criterion, results for 100N observations are
shown in Table 3. Note that since the number of observations used at each step differs
from one process to another, the number of iterations is not the same for each process
(e.g. to use 100N observations, CR1V will run for 100N iterations whereas CR100V
will run for N iterations).

Table 3. Relative norms for 100N observations used

Process Twonorm Ringnorm Quantum Adult HOSPHF30D Mean rank

CR1V 0.085 0.026∗ 0.304 EXPL EXPL -
CR10V 0.206 0.017∗ 0.500 EXPL EXPL -
CR100V 0.335 0.019∗ 0.661 EXPL EXPL -
AR1P50 0.028∗ 0.037∗ 0.087 EXPL EXPL -
AR10P50 0.010∗ 0.013∗ 0.118 EXPL EXPL -
AR100P50 0.034∗ 0.006∗ 0.191 EXPL EXPL -
AR1P100 0.035∗ 0.061 0.065 EXPL EXPL -
AR10P100 0.010∗ 0.021∗ 0.102 EXPL EXPL -
AR100P100 0.014∗ 0.007∗ 0.144 EXPL EXPL -
AR1P200 0.040∗ 0.102 0.041∗ EXPL EXPL -
AR10P200 0.012∗ 0.034∗ 0.090 EXPL EXPL -
AR100P200 0.009∗ 0.011∗ 0.123 EXPL EXPL -
CS1V 0.108 0.016∗ 0.074 0.057 0.088 10.2
CS10V 0.234 0.011∗ 0.041∗ 0.085 0.260 9.8
CS100V 0.364 0.009∗ 0.138 0.120 0.629 10.6
AS1P50 0.016∗ 0.015∗ 0.027∗ 0.035∗ 0.064 6.6
AS10P50 0.011∗ 0.008∗ 0.024∗ 0.011∗ 0.060 3.2
AS100P50 0.048∗ 0.006∗ 0.024∗ 0.021∗ 0.067 5.8
AS1P100 0.018∗ 0.023∗ 0.035∗ 0.040∗ 0.062 7.6
AS10P100 0.010∗ 0.010∗ 0.024∗ 0.014∗ 0.060 3.8
AS100P100 0.021∗ 0.006∗ 0.023∗ 0.013∗ 0.065 4.2
AS1P200 0.026∗ 0.036∗ 0.049∗ 0.055 0.057 8.0
AS10P200 0.011∗ 0.015∗ 0.028∗ 0.018∗ 0.059 5.2
AS100P200 0.010∗ 0.007∗ 0.022∗ 0.011∗ 0.066 3.0

∗ denotes a criterion value < 0.05.
EXPL: numerical explosion.
Process type: C for classical SGD, A for ASGD. Data type: R for raw data, S for online standardized data.
First number: number of new observations at each step.
Step-size: V for variable, P for piecewise constant (second number denotes the level size).

Globally, processes R and S converged similarly on simulated datasets with ho-
mogeneous data (especially Twonorm which already contains standardized variables).
However, it was not verified for observed datasets for which processes S yielded better
results, especially with heterogeneous data (Adult2, HOSPHF30D): all tested processes
R had a numerical explosion for these two datasets.

Over all datasets, the processes S with the lowest mean rankings were averaged
processes with piecewise constant step-sizes, the best being AS100P200 (Table 4).
Among these AS.P. processes, those with the highest mean rankings were processes
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with one observation per step (AS1P. ). Note that for HOSPHF30D, all AS.P. processes
had a criterion value lower than 0.05 after 300N observations used (Appendix Table
B1).

Table 4. Processes S ordered by mean ranks for 100N observations used

Process AS100P200 AS10P50 AS10P100 AS100P100 AS10P200 AS100P50
Mean rank 3.0 3.2 3.8 4.2 5.2 5.8

Process AS1P50 AS1P100 AS1P200 CS10V CS1V CS100V
Mean rank 6.6 7.6 8.0 9.8 10.2 10.6

Additional results for both fixed and varying numbers of observations are available
as Supplemental online material.

3.6. Comparison for a fixed processing time

As in [10], the values of the criteria for each process were then recorded every second
of processing time from 1 to 120s. Results for the relative norm criterion after 60s of
processing time are shown in Table 5.

Table 5. Relative norms for 60s of processing time

Process Twonorm Ringnorm Quantum Adult HOSPHF30D Mean rank

CR1V 0.055 0.019∗ 0.288 EXPL EXPL -
CR10V 0.061 0.005∗ 0.310 EXPL EXPL -
CR100V 0.073 0.002∗ 0.333 EXPL EXPL -
AR1P50 0.011∗ 0.019∗ 0.086 EXPL EXPL -
AR10P50 0.002∗ 0.002∗ 0.095 EXPL EXPL -
AR100P50 0.001∗ 0.001∗ 0.102 EXPL EXPL -
AR1P100 0.015∗ 0.029∗ 0.064 EXPL EXPL -
AR10P100 0.002∗ 0.003∗ 0.079 EXPL EXPL -
AR100P100 0.001∗ 0.001∗ 0.090 EXPL EXPL -
AR1P200 0.018∗ 0.052 0.040∗ EXPL EXPL -
AR10P200 0.002∗ 0.005∗ 0.064 EXPL EXPL -
AR100P200 0.001∗ 0.001∗ 0.076 EXPL EXPL -
CS1V 0.139 0.023∗ 0.173 0.134 0.153 10.0
CS10V 0.182 0.011∗ 0.057 0.101 0.228 9.0
CS100V 0.227 0.004∗ 0.071 0.108 0.326 9.0
AS1P50 0.027∗ 0.025∗ 0.042∗ 0.389 0.095 8.6
AS10P50 0.006∗ 0.005∗ 0.014∗ 0.020∗ 0.053 4.8
AS100P50 0.009∗ 0.002∗ 0.007∗ 0.017∗ 0.014∗ 3.2
AS1P100 0.032∗ 0.037∗ 0.071 0.386 0.087 9.2
AS10P100 0.005∗ 0.006∗ 0.014∗ 0.025∗ 0.050∗ 4.8
AS100P100 0.004∗ 0.002∗ 0.007∗ 0.011∗ 0.011∗ 1.8
AS1P200 0.046∗ 0.060 0.121 0.498 0.112 10.6
AS10P200 0.005∗ 0.008∗ 0.017∗ 0.035∗ 0.049∗ 5.4
AS100P200 0.003∗ 0.002∗ 0.007∗ 0.009∗ 0.012∗ 1.6

∗ denotes a criterion value < 0.05.
EXPL: numerical explosion.
Process type: C for classical SGD, A for ASGD. Data type: R for raw data, S for online standardized data.
First number: number of new observations at each step.
Step-size: V for variable, P for piecewise constant (second number denotes the level size).

Again, all tested processes R had a numerical explosion for the same two datasets
(Adult2 and HOSHF30D).

Over all datasets, processes S with the lowest mean rankings were averaged processes
with piecewise constant step-sizes (Table 6), except AS1P100 and AS1P200 with one
observation per step (which use few observations per second, see Table 7). The best
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process was AS100P200. Of note, for HOSPHF30D, processes AS10P. and AS100P. had
a criterion value lower than 0.05 at 120s (Appendix Table B2).

Table 6. Processes S ordered by mean ranks for 60s of processing time

Process AS100P200 AS100P100 AS100P50 AS10P50 AS10P100 AS10P200
Mean rank 1.6 1.8 3.2 4.8 4.8 5.4

Process AS1P50 CS10V CS100V AS1P100 CS1V AS1P200
Mean rank 8.6 9.0 9.0 9.2 10.0 10.6

The average numbers of observations used per second for 60s of processing time
are shown in Table 7. For all processes, the number of observations used per second
increased with the number of observations used at each step. Due to the online up-
dating of expectations and variances, processes S treated less observations per second
than their equivalent on raw data, the ratio nR/nS increasing with the number of
observations used at each step (nR, resp. nS , the number of observations treated per
second by a process R, resp. S).

These results combined with those of Table 5 indicate that processes S with piecewise
constant step-sizes, particularly AS100P. and AS10P., achieved a better performance
using less observations.

Table 7. Average number of observations used per second for 60s of processing time

Process Twonorm Ringnorm Quantum Adult HOSPHF30D

CR1V 32 464 31 661 32 632 EXPL EXPL
CR10V 307 385 291 475 292 206 EXPL EXPL
CR100V 2 189 952 2 016 338 2 248 173 EXPL EXPL
AR1P50 32 019 29 106 30 247 EXPL EXPL
AR10P50 273 377 303 805 283 962 EXPL EXPL
AR100P50 2 169 318 2 226 950 2 189 662 EXPL EXPL
AR1P100 31 433 33 362 30 591 EXPL EXPL
AR10P100 282 423 292 126 283 747 EXPL EXPL
AR100P100 2 127 127 2 248 095 2 210 533 EXPL EXPL
AR1P200 29 100 30 919 29 420 EXPL EXPL
AR10P200 271 102 275 657 273 606 EXPL EXPL
AR100P200 2 077 237 2 019 090 2 129 145 EXPL EXPL
CS1V 5 970 6 061 6 162 5 799 6 715
CS10V 33 469 34 216 35 776 29 430 41 679
CS100V 142 573 141 815 154 233 119 468 169 937
AS1P50 5 862 5 856 5 635 5 613 6 560
AS10P50 33 780 34 336 35 548 31 498 43 315
AS100P50 139 907 142 993 154 767 119 863 190 613
AS1P100 6 030 6 031 5 994 5 819 7 059
AS10P100 33 884 34 075 34 904 32 019 42 846
AS100P100 141 037 144 380 151 340 121 745 180 893
AS1P200 5 819 5 871 5 978 5 606 7 016
AS10P200 34 032 34 474 34 638 31 910 44 620
AS100P200 133 773 140 265 149 313 108 710 193 833

EXPL: numerical explosion.
Process type: C for classical SGD, A for ASGD. Data type: R for raw data, S for online
standardized data.
First number: number of new observations at each step.
Step-size: V for variable, P for piecewise constant (second number denotes the level size).

3.7. Comparison of processes S for a varying processing time

When studying the evolution of the mean rankings of processes S with processing times
from 1 to 120s (Figure 1), two groups of processes clearly appeared from the outset and
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remained apparent throughout the entire studied period. The group with the worst
rankings contains all processes using only one new observation at each step as well
as all ”classical” processes. The group with the best rankings contained all averaged
processes S using 10 or 100 new observations at each step. Within this group, a clear
difference appeared after approximately 10s of processing time between processes using
10 new observations and those using 100 new observations. Of all the processing times
recorded, the two best processes S appeared to be AS100P100 and AS100P200.

3

6

9

12

0 25 50 75 100 125
t

M
ea

n 
ra

nk

Process

Classical

ASGD (piecewise constant, 50)

ASGD (piecewise constant, 100)

ASGD (piecewise constant, 200)

New observations per step

1

10

100

Figure 1. Evolution according to processing time

4. Conclusion

In the present analysis, we studied a constrained averaged stochastic gradient al-
gorithm with online standardized data for performing an online constrained binary
logistic regression in the case of streaming or massive data. The proposed approach
included using an online standardization of the data to avoid a numerical explosion,
or when using a shrinkage method (such as LASSO), or even when expectations or
variances of explanatory variables change (varying with time or depending on the
values of controlled variables) and can be estimated online. We also proposed using
a decreasing piecewise constant step-size in order for the latter to not decrease too
quickly and therefore not reduce the speed of convergence of the process. The results of
the experiments conducted on real and simulated datasets confirm the validity of the
choices made: online standardization of the data, averaged process and piecewise con-
stant step-size. This work will be applied in an ongoing study to update an ensemble
score online to detect adverse events in the case of heart failure [8, 9].
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Appendix A. Proof of the convergence theorem

The usual Euclidean norm in Rp+1 and the spectral norm for matrices are used in
this proof. Let us state the Robbins-Siegmund lemma [22] and another lemma ([10],
Lemma 5) used in this proof. This proof is also valid in the case of linear regression.

Lemma A.1. Let (Ω, A, P ) be a probability space and (Tn) a non-decreasing sequence
of sub-σ-fields of A. Suppose for all n, zn, αn, βn and γn are four integrable non-
negative Tn-measurable random variables defined on (Ω, A, P ) such that:

E [zn+1|Tn] ≤ zn (1 + αn) + βn − γn a.s.

Then, in the set

{ ∞∑
n=1

αn <∞,
∞∑
n=1

βn <∞
}

, (zn) converges a.s. to a finite random

variable and
∞∑
n=1

γn <∞ a.s.

Lemma A.2. Suppose H1b holds and an > 0,
∞∑
n=1

an√
n
<∞. Then:
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∞∑
n=1

an

∥∥∥R̂cn−1∥∥∥ <∞ and
∞∑
n=1

an

∥∥∥Γ̂n−1 − Γ
∥∥∥ <∞ a.s.

Proof. Part 1. Let Tn be the σ-field generated by the events before time n: X1, ..., Xn

are Tn-measurable, as R̂n−1 and Γ̂n−1.

‖Xn+1 − θ‖ =

∥∥∥∥∥∥Π

Xn − an
1

mn

∑
j∈In

Z̃j

(
h
(
Z̃ ′jXn

)
− Sj

)−Πθ

∥∥∥∥∥∥
≤

∥∥∥∥∥∥Xn − an
1

mn

∑
j∈In

Z̃j

(
h
(
Z̃ ′jXn

)
− Sj

)
− θ

∥∥∥∥∥∥ .
Taking the conditional expectation with respect to Tn yields a.s.:

E
[
‖Xn+1 − θ‖2 | Tn

]
≤ ‖Xn − θ‖2

− 2an

〈
Xn − θ,

1

mn

∑
j∈In

E
[
Z̃j

(
h
(
Z̃ ′jXn

)
− Sj

)
| Tn

]〉

+ a2nE

∥∥∥∥∥∥ 1

mn

∑
j∈In

Z̃j

(
h
(
Z̃ ′jXn

)
− Sj

)∥∥∥∥∥∥
2

| Tn

 a.s. (A1)

Part 2. Decomposition of E
[
Z̃j

(
h
(
Z̃ ′jXn

)
− Sj

)
| Tn

]
, j ∈ In.

E
[
Z̃j

(
h
(
Z̃ ′jXn

)
− Sj

)
| Tn

]
= E

[
Z̃j

(
h
(
Z̃ ′jXn

)
− E [Sj | Zj ]

)
| Tn

]
+E

[
Z̃j (Sj − E [Sj | Zj ]) | Tn

]
.

E
[
Z̃j (Sj − E [Sj | Zj ]) | Tn

]
= E

[
Γ̂n−1

(
Rj − R̂n−1

)
(Sj − E [Sj | Zj ]) | Tn

]
= Γ̂n−1E [R (S − E [S | Z])]− Γ̂n−1R̂n−1E [S − E [S | Z]]

= 0 a.s.

Then: E
[
Z̃j

(
h
(
Z̃ ′jXn

)
− Sj

)
| Tn

]
= E

[
Z̃j

(
h
(
Z̃ ′jXn

)
− h

(
Z ′jθ
))
| Tn

]
a.s.

Consider the decomposition

E
[
Z̃j

(
h
(
Z̃ ′jXn

)
− h

(
Z ′jθ
))
| Tn

]
= E

[
Zj
(
h
(
Z ′jXn

)
− h

(
Z ′jθ
))
| Tn

]
+ E [Vj | Tn]

(A2)

with Vj =
(
Z̃j − Zj

) (
h
(
Z ′jXn

)
− h

(
Z ′jθ
))

+ Z̃j

(
h
(
Z̃ ′jXn

)
− h

(
Z ′jXn

))
(A3)

For j ∈ In, there exist 0 ≤ λj ≤ 1, ξ1j and ξ2j such that:
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a) h
(
Z ′jXn

)
− h

(
Z ′jθ
)

= Z ′j (Xn − θ)h′ (ξj), with ξj = λjZ
′
jXn + (1− λj)Z ′jθ,

Zj = ΓRcj ;

b) h
(
Z̃ ′jXn

)
= h

((
Rcj − R̂cn−1

)′
Γ̂n−1Xn

)
= h

((
Rcj − R̂cn−1

)′
ΓXn

)
+
(
Rcj − R̂cn−1

)′ (
Γ̂n−1 − Γ

)
Xnh

′ (ξ1j )
= h

(
Z ′jXn − R̂c′n−1ΓXn

)
+
(
Rcj − R̂cn−1

)′ (
Γ̂n−1 − Γ

)
Xnh

′ (ξ1j )
= h

(
Z ′jXn

)
− R̂c′n−1ΓXnh

′ (ξ2j )+
(
Rcj − R̂cn−1

)′ (
Γ̂n−1 − Γ

)
Xnh

′ (ξ1j ) .
Since Z̃j − Zj =

(
Γ̂n−1 − Γ

)
Rcj − Γ̂n−1R̂

c
n−1, it follows that:

Vj =
((

Γ̂n−1 − Γ
)
Rcj − Γ̂n−1R̂

c
n−1

)
Rc′j Γ (Xn − θ)h′ (ξj)

+ Γ̂n−1

(
Rcj − R̂cn−1

)(
−R̂c′n−1ΓXnh

′ (ξ2j )+
(
Rcj − R̂cn−1

)′ (
Γ̂n−1 − Γ

)
Xnh

′ (ξ1j )) .
(A4)

Part 3. For 0 < h′ (x) ≤ c (c = 1
4 for logistic regression, c = 1 for linear regression),

for j ∈ In:

1

c
E [‖Vj‖ | Tn] ≤

∥∥∥Γ̂n−1 − Γ
∥∥∥E [‖Rc‖2] ‖Γ‖ ‖Xn − θ‖+

∥∥∥Γ̂n−1

∥∥∥∥∥∥R̂cn−1∥∥∥E [‖Rc‖] ‖Γ‖ ‖Xn − θ‖

+
∥∥∥Γ̂n−1

∥∥∥(E [‖Rc‖] +
∥∥∥R̂cn−1∥∥∥)∥∥∥R̂cn−1∥∥∥ ‖Γ‖ (‖Xn − θ‖+ ‖θ‖)

+
1

2

∥∥∥Γ̂n−1

∥∥∥(E [‖Rc‖2]+
∥∥∥R̂cn−1∥∥∥2)∥∥∥Γ̂n−1 − Γ

∥∥∥ (‖Xn − θ‖+ ‖θ‖) a.s.

Since Γ̂n−1 and R̂cn−1 are Tn-measurable and converge respectively to Γ and 0, since
∞∑
n=1

an

∥∥∥R̂cn−1∥∥∥ <∞ and
∞∑
n=1

an

∥∥∥Γ̂n−1 − Γ
∥∥∥ <∞ a.s. by Lemma A.2, it follows that

there exist two non-negative Tn-measurable random variables Dn and En such that
for j ∈ In:

‖E [Vj | Tn]‖ ≤ Dn ‖Xn − θ‖+ En,

∞∑
n=1

anDn <∞,
∞∑
n=1

anEn <∞ a.s.

Then

∣∣∣∣∣∣ 1

mn

∑
j∈In

〈Xn − θ,E [Vj | Tn]〉

∣∣∣∣∣∣ ≤ ‖Xn − θ‖ (Dn ‖Xn − θ‖+ En)

≤ (Dn + En) ‖Xn − θ‖2 + En a.s. (A5)

Part 4. For |h (x)| ≤ d |x|+ e (d = 0, e = 1 for logistic regression, d = 1, e = 0 for
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linear regression):

E

[∥∥∥Z̃j (h(Z̃ ′jXn

)
− Sj

)∥∥∥2 | Tn] ≤ E [∥∥∥Z̃j∥∥∥2 (d∥∥∥Z̃j∥∥∥ (‖Xn − θ‖+ ‖θ‖) + e+ 1
)2
| Tn

]
≤ 3d2E

[∥∥∥Z̃j∥∥∥4 | Tn](‖Xn − θ‖2 + ‖θ‖2
)

+ 3 (e+ 1)2E

[∥∥∥Z̃j∥∥∥2 | Tn] a.s.

For γ > 1,

E
[∥∥∥Z̃j∥∥∥γ | Tn] = E

[∥∥∥Γ̂n−1

(
Rj − R̂n−1

)∥∥∥γ | Tn] ≤ 2γ−1
∥∥∥Γ̂n−1

∥∥∥γ (E [‖R‖γ ] +
∥∥∥R̂n−1∥∥∥γ) a.s.

Since Γ̂n−1 and R̂n−1 are Tn-measurable and converge respectively to Γ and m and

since
∞∑
n=1

a2n <∞, there exist two non-negative Tn-measurable random variables Fn

and Gn such that for j ∈ In:

E

[∥∥∥Z̃j (h(Z̃ ′jXn

)
− Sj

)∥∥∥2 | Tn] ≤ Fn ‖Xn − θ‖2 +Gn,

∞∑
n=1

a2nFn <∞,
∞∑
n=1

a2nGn <∞,

then E

∥∥∥∥∥∥ 1

mn

∑
j∈In

Z̃j

(
h
(
Z̃ ′jXn

)
− Sj

)∥∥∥∥∥∥
2

| Tn

 ≤ Fn ‖Xn − θ‖2 +Gn a.s. (A6)

Part 5. Application of Robbins-Siegmund lemma (Lemma A.1).
By (A1) and (A2):

E
[
‖Xn+1 − θ‖2 | Tn

]
= ‖Xn − θ‖2 − 2an

1

mn

∑
j∈In

〈Xn − θ, E [Vj | Tn]〉

+ a2nE

∥∥∥∥∥∥ 1

mn

∑
j∈In

Z̃j

(
h
(
Z̃ ′jXn

)
− Sj

)∥∥∥∥∥∥
2

| Tn


− 2an

1

mn

∑
j∈In

〈
Xn − θ,E

[
Zj
(
h
(
Z ′jXn

)
− h

(
Z ′jθ
))
| Tn

]〉
a.s.

(A7)

Since h is an increasing function:〈
Xn − θ,E

[
Zj
(
h
(
Z ′jXn

)
− h

(
Z ′jθ
))
| Tn

]〉
= E

[∥∥Z ′j (Xn − θ)
∥∥2 h′ (ξj) | Tn] > 0 a.s.

(A8)
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By (A5,A6,A7,A8):

E
[
‖Xn+1 − θ‖2 | Tn

]
≤ ‖Xn − θ‖2

(
1 + 2anDn + 2anEn + a2nFn

)
+ 2anEn + a2nGn

− 2an
1

mn

∑
j∈In

E
[∥∥Z ′j (Xn − θ)

∥∥2 h′ (ξj) | Tn] ,
∞∑
n=1

anDn <∞,
∞∑
n=1

anEn <∞,
∞∑
n=1

a2nFn <∞,
∞∑
n=1

a2nGn <∞ a.s. (A9)

Applying Robbins-Siegmund lemma yields that there exists a non-negative random
variable T such that :

‖Xn − θ‖2 −→ T,

∞∑
n=1

an
1

mn

∑
j∈In

E
[∥∥Z ′j (Xn − θ)

∥∥2 h′ (ξj) | Tn] <∞ a.s. (A10)

Part 6. Prove that T = 0 a.s.
Let ω be fixed belonging to the intersection of the convergence sets. The writing of

ω will be omitted in the following.
Suppose T 6= 0. There exists 0 < ε < 1 such that ε < ‖Xn − θ‖ < 1

ε .
Since for j ∈ In, ξj = λjZ

′
jXn+(1− λj)Z ′jθ = λjZ

′
j (Xn − θ)+Z ′jθ with Zj = ΓRcj ,

|ξj | ≤
∥∥∥Rcj∥∥∥ b, with b = ‖Γ‖

(
1
ε + ‖θ‖

)
.

For logistic regression, h′ (u) = eu

(1+eu)2
is an even positive function, decreasing for

u > 0, then h′ (ξj) > h′
(∥∥∥Rcj∥∥∥ b) > 0. For linear regression, h′ (u) = 1.

Let λmin (A) denote the lowest eigenvalue of a matrix A; we have for j ∈ In:

E
[∥∥Z ′j (Xn − θ)

∥∥2 h′ (ξj) | Tn] > (Xn − θ)′ ΓE
[
RcjR

c′
j h
′ (∥∥Rcj∥∥ b) | Tn]Γ (Xn − θ)

> λmin

(
E
[
RcRc′h′

(∥∥Rcj∥∥ b)]) ‖Γ (Xn − θ)‖2 > λmin

(
E
[
RcRc′h′

(∥∥Rcj∥∥ b)]) (λmin (Γ))2 ε2.

The symmetric matrix E
[
RcRc′h′

(∥∥∥Rcj∥∥∥ b)] is positive definite since by H1a there

is no linear relationship between the components of Rc, thus between the components

of Rc
(
h′
(∥∥∥Rcj∥∥∥ b)) 1

2

; its lowest eigenvalue is strictly positive. By H2, it follows that:

∞∑
n=1

an
1

mn

∑
j∈In

E
[∥∥Z ′j (Xn − θ)

∥∥2 h′ (ξj) | Tn]
> λmin

(
E
[
RcRc′h′

(∥∥Rcj∥∥ b)]) (λmin (Γ))2 ε2
∞∑
n=1

an =∞.

This is a contradiction since ω belongs to the convergence set of this series. Thus
T = 0. We deduce immediately the convergence of

(
Xn

)
to θ.
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Appendix B. Additional results regarding HOSPHF30D

For HOSPHF30D, all processes AS.P. have a criterion value lower than 0.05 after 300N
observations used (Table B1).

Table B1. Evolution of the relative norms for HOSPHF30D after

100N observations used

Process 100N 200N 300N 400N 500N

CS1V 0.088 0.045∗ 0.034∗ 0.021∗ 0.023∗

CS10V 0.260 0.178 0.115 0.098 0.088
CS100V 0.629 0.499 0.406 0.357 0.322
AS1P50 0.064 0.049∗ 0.013∗ 0.016∗ 0.009∗

AS10P50 0.060 0.051 0.013∗ 0.016∗ 0.010∗

AS100P50 0.067 0.056 0.019∗ 0.018∗ 0.013∗

AS1P100 0.062 0.045∗ 0.013∗ 0.016∗ 0.009∗

AS10P100 0.060 0.048∗ 0.012∗ 0.015∗ 0.009∗

AS100P100 0.065 0.055 0.015∗ 0.016∗ 0.011∗

AS1P200 0.057 0.040∗ 0.015∗ 0.015∗ 0.011∗

AS10P200 0.059 0.045∗ 0.012∗ 0.015∗ 0.008∗

AS100P200 0.066 0.053 0.013∗ 0.016∗ 0.010∗

∗ denotes a criterion value < 0.05.

For HOSPHF30D, processes AS10P. and AS100P. have a criterion value lower than
0.05 at 120s (Table B2).

Table B2. Evolution of the relative norms for

HOSPHF30D after 60s of processing time

Processus 60s 120s 180s 240s

CS1V 0.153 0.161 0.125 0.064
CS10V 0.228 0.158 0.103 0.087
CS100V 0.326 0.231 0.167 0.141
AS1P50 0.095 0.088 0.064 0.073
AS10P50 0.053 0.034∗ 0.018∗ 0.010∗

AS100P50 0.014∗ 0.010∗ 0.012∗ 0.014∗

AS1P100 0.087 0.086 0.062 0.063
AS10P100 0.050∗ 0.032∗ 0.017∗ 0.009∗

AS100P100 0.011∗ 0.009∗ 0.014∗ 0.015∗

AS1P200 0.112 0.081 0.062 0.050∗

AS10P200 0.049∗ 0.027∗ 0.010∗ 0.009∗

AS100P200 0.012∗ 0.005∗ 0.015∗ 0.012∗

∗ denotes a criterion value < 0.05.
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