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Abstract

We study a stochastic gradient algorithm for performing online a constrained

binary logistic regression in the case of streaming or massive data. Assuming that

observed data are realizations of a random vector, these data are standardized

online in particular to avoid a numerical explosion or when a shrinkage method

such as LASSO is used. We prove the almost sure convergence of a variable

step-size constrained stochastic gradient process with averaging when a varying
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number of new data is introduced at each step. 24 stochastic approximation

processes are compared on real or simulated datasets, classical processes with

raw data, processes with online standardized data, with or without averaging and

with variable or piecewise constant step-sizes. The best results are obtained by

processes with online standardized data, with averaging and piecewise constant

step-sizes. This can be used to update online an event rate score in heart failure

patients.

1 Introduction

Three types of methods can be used to analyze very large datasets. First,

subsampling i.e. analyzing only a subset of data to approximate results that

would be obtained on the whole set. Second, partitioning the dataset in subsets,

performing an analysis on each subset, then aggregating the results of all analyses

when it is possible. Third, online learning which proceeds in successive steps, the

results of the analysis being updated at each step taking into account a batch of

new data.

The third type of method is particularly adapted to data streams. Data

stream online analysis concerns data that arrive continuously such as process

control data, web data, telecommunication data, medical data, financial data....

Recursive stochastic algorithms can be used for observations arriving sequentially

to estimate for example parameters of a linear regression model [1] or principal

components of a factorial analysis [2] or centres of classes in non-hierarchical

clustering [3], whose estimations are updated by each new arriving data batch.

When using such recursive processes, it is not necessary to store the data and,

due to the relative simplicity of the computation involved, much more data than

with classical methods can be taken into account during the same period of time.

For very large datasets, the capacities of statistical learning methods can be
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limited by the computing time. Recursive algorithms can also be used profitably

in this context by randomly drawing at each step a data batch from the dataset.

Why use online standardized data (each continuous variable is standardized

with respect to the estimations at the current step of its expectation and its

standard deviation computed online) and a constrained process?

We have studied in [1] the sequential least square multidimensional linear

regression using a stochastic approximation process, particularly in the case of

a data stream. We have proved the convergence of three processes with online

standardized data instead of raw data used in particular to avoid the phenomenon

of numerical explosion that can be encountered [4]. The experiments conducted

have shown better performance of processes with online standardized data

compared to those with raw data. We use in the present study the same approach

in the case of logistic regression and prove the convergence of a process of the

Robbins-Monro type [5] with a varying number of new observations introduced at

each step and a variable step-size. Moreover, when using a shrinkage method such

as LASSO or ridge, we have first to standardize the explanatory variables. In

the case of a data stream, when the mathematical expectation and the variance

of each variable are a priori unknown, these variables can be standardized online

and a process of the same type can be used but with a projection at each step

on the convex set defined by the constraint on the parameters of the regression

function. More generally this type of process can be used for any convex set, for

example if it is imposed that the parameters associated with the explanatory

variables are positive. Finally we can consider a case where at step n of the

process, when introducing new data, explanatory variables have their expectation

and their variance that may depend on n or on the values of controlled variables

according to a specific model and a logistic regression model with standardized

explanatory variables is defined. Assuming that we can estimate online the
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expectation and the variance of these variables, we can use the same type of

process to estimate the parameters of the logistic regression function. Note

that, when the only objective is to avoid a numerical explosion without use of a

shrinkage method or online estimation of distribution parameters evolving in

time, we can use a pseudo-standardization of the data after a certain step n0,

standardizing the explanatory vatiables with respect to the estimations obtained

at step n0 of their expectation and their standard deviation. This reduces the

computing time since the estimations of expectations and variances are no more

computed online after the sep n0.

A suitable choice of step-size is often crucial for obtaining good performance

of a stochastic gradient process. If the step-size is too small, the convergence

will be slower. Conversely, if the step-size is too large, a numerical explosion

may occur during the first iterations. We do not use here a constant step-size

stochastic gradient process with averaging studied in particular by Bach and

Moulines [6] who have shown that such a process does not converge to the true

value of the parameter because the gradient of the loss function is not linear

in the case of logistic regression and who have defined other processes with

a Newton-approximation scheme. But we use in our experiments a piecewise

constant step-size as suggested in [7] in order that the step-size does not decrease

too quickly and reduces the speed of convergence.

We also consider an averaged stochastic gradient process which may be

trivially computed online.

Section 2 is devoted to the formulation of the problem, Section 3 to the

definition of the stochastic gradient process, Section 4 to a theorem of almost

sure (a.s.) convergence of this process and its proof, Section 5 to results of

experiments where we have compared processes with raw data and with online

standardized data, Section 6 to the presentation of an application to online
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updating of an event score in heart failure patients defined by an ensemble

method [8] that we actually study.

2 Formulation of the problem

Suppose that observed data are realizations of a random vector (R1, ......, Rp, S)

in Rp × {0, 1}.

Let A′ be the transpose of a matrix A and:

R the random column vector
(
R1......Rp 1

)′
,

m the random column vector
(
E
[
R1
]
......E [Rp] 0

)′
,

Rc the random column vector R−m, rc a realization of Rc,

σk the standard deviation of Rk, k = 1, ..., p,

Γ the diagonal (p+ 1, p+ 1) matrix whose diagonal elements are 1
σ1 , ...,

1
σp , 1,

taking by convention σk = 1 for a discrete variable,

Z = ΓRc, whose continuous components are standardized, z = Γrc a

realization of Z,

θ =
(
θ1......θP θP+1

)′
a (p+ 1, 1) column vector of real parameters,

Consider the logistic model with standardized covariates:

P (S = s | R = r) = f(s; z, θ) =

(
ez
′θ

1 + ez′θ

)s(
1

1 + ez′θ

)1−s

=
ez
′θs

1 + ez′θ
.

E [S | R] = h (Z ′θ) with h(u) = eu

1+eu = 1
1+e−u .

Define the loss function -ln f (s; z, x) = −z′xs + ln
(

1 + ez
′x
)

. The cost

function

F (x) = −E [ln f (S;Z, x)] = E
[
−Z ′xS + ln

(
1 + eZ

′x
)]

has θ for unique minimizer since it is a convex function with positive hessian
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F ′′(x) = E

[
ZZ ′

eZ
′x

(1 + eZ′x)
2

]
.

Note that there is no uniform strictly positive lower-bound on F ′′(x), then F is

not strongly convex [6, 9], unless restricted to a convex set {‖x‖ ≤ c} with ‖Z‖

uniformly bounded and no linear relation between the components of Z.

θ is the unique solution of:

F ′(x) = E

[
−ZS +

ZeZ
′x

1 + eZ′x

]
= E [Z (h (Z ′x)− S)] = 0.

The purpose of this study is to recursively estimate θ using a stochastic

gradient algorithm with online standardized data.

Note that if θ0 is the column vector of the parameters of the logistic regression

function of S with respect to R, f(s; z, θ) = f0(s; r, θ0) = er
′θ0s

1+er
′θ0

,

θj0 =
θj

σj
, j = 1, ..., p, θp+1

0 = θp+1 −m1 θ
1

σ1
− ...−mp θ

p

σp

with mj = E[Rj ], j = 1, ..., p⇔ θ0 =



1
σ1

. . .

1
σp

−m
1

σ1 · · · −m
p

σp 1


θ.

3 Definition of a stochastic gradient process

Let
(
(R1

n, ......, R
p
n, S), n > 1

)
be an i.i.d. sample of (R1, ......, Rp, S). Let, for

n > 1:

Rn be the random column vector
(
R1
n......R

p
n 1
)′

,

Rcn the random column vector Rn −m, Zn = ΓRcn,

for k = 1, ..., p, R
k

n the mean of the sample
(
Rk1 , ..., R

k
n

)
of Rk and

6



(
V kn
)2

= 1
n

n∑
i=1

(
Rki −Rkn

)2
its variance, both recursively computed,

Rn the random column vector
(
R1
n......R

p
n 0
)′

and Γn the (p+ 1, p+ 1)

diagonal matrix with diagonal elements

1√
n
n−1V

1
n

, ...,
1√
n
n−1V

p
n

, 1.

Suppose that mn observations (Ri, Si) are taken into account at step n of

the following defined process.

Let µn =
n∑
i=1

mi, In = {µn−1 + 1, ..., µn}, R̂n = Rµn , Γ̂n = Γµn and

for j ∈ In, Z̃j = Γ̂n−1

(
Rj − R̂n−1

)
.

For k = 1, ..., p, each component Rkj of Rj is pseudo-standardized with respect

to the empirical mean R̂kn−1 and to the empirical estimation of σk,
√

n
n−1V

k
µn−1

.

Note that:

Z̃j = Γ̂n−1

(
Rcj − R̂cn−1

)
, with R̂cn−1 = R̂n−1 −m.

Suppose that θ is constrained to belong to a convex subset K of Rp+1. Let

Π be the projection operator on K.

Recursively define the stochastic approximation processes (Xn) and
(
Xn

)
in

Rp+1:

Xn+1 = Π

Xn − an
1

mn

∑
j∈In

Z̃j

(
h
(
Z̃ ′jXn

)
− Sj

) ,

Xn+1 =
1

n+ 1

n+1∑
1

Xi = Xn −
1

n+ 1

(
Xn −Xn+1

)
.

Almost sure convergence of (Xn) and
(
Xn

)
to θ is proved in the next section.
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4 Almost sure convergence of the process

Make the following assumptions:

(H1a) There is no affine relation between the components of R.

(H1b) The moments of order 4 of R exist.

(H2) an > 0,
∞∑
n=1

an =∞,
∞∑
n=1

an√
n
<∞,

∞∑
n=1

a2n <∞.

Theorem 1 Suppose H1a,b and H2 hold. Then (Xn) and
(
Xn

)
converge to θ

a.s.

Let us state the Robbins-Siegmund lemma [10] and another lemma [1] used

in the proof.

Lemma 2 Let (Ω, A, P ) be a probability space and (Tn) a non-decreasing se-

quence of sub-σ-fields of A. Suppose for all n, zn, αn, βn and γn are four

integrable non-negative Tn-measurable random variables defined on (Ω, A, P )

such that:

E [zn+1|Tn] ≤ zn (1 + αn) + βn − γn a.s.

Then, in the set

{ ∞∑
n=1

αn <∞,
∞∑
n=1

βn <∞
}
, (zn) converges to a finite random

variable and
∞∑
n=1

γn <∞ a.s.

Lemma 3 Suppose H1b holds and an > 0,
∞∑
n=1

an√
n
<∞. Then:

∞∑
n=1

an

∥∥∥R̂cn−1∥∥∥ <∞ and
∞∑
n=1

an

∥∥∥Γ̂n−1 − Γ
∥∥∥ <∞ a.s.

Proof

The usual Euclidean norm in Rp+1 and the spectral norm for matrices are

used in this proof.

Part 1
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Let Tn be the σ-field generated by the events before time n: X1, ..., Xn are

Tn-measurable, as R̂n−1 and Γ̂n−1.

‖Xn+1 − θ‖ =

∥∥∥∥∥∥Π

Xn − an
1

mn

∑
j∈In

Z̃j

(
h
(
Z̃ ′jXn

)
− Sj

)−Πθ

∥∥∥∥∥∥
≤

∥∥∥∥∥∥Xn − an
1

mn

∑
j∈In

Z̃j

(
h
(
Z̃ ′jXn

)
− Sj

)
− θ

∥∥∥∥∥∥ .
Taking the conditional expectation with respect to Tn gives a.s.:

E
[
‖Xn+1 − θ‖2 | Tn

]
≤ ‖Xn − θ‖2

−2an

〈
Xn − θ,

1

mn

∑
j∈In

E
[
Z̃j

(
h
(
Z̃ ′jXn

)
− Sj

)
| Tn

]〉

+a2n E


∥∥∥∥∥∥ 1

mn

∑
j∈In

Z̃j

(
h
(
Z̃ ′jXn

)
− Sj

)∥∥∥∥∥∥
2

| Tn

 a.s.

Part 2 Decomposition of E
[
Z̃j

(
h
(
Z̃ ′jXn

)
− Sj

)
| Tn

]
, j ∈ In.

E
[
Z̃j

(
h
(
Z̃ ′jXn

)
− Sj

)
| Tn

]
= E

[
Z̃j

(
h
(
Z̃ ′jXn

)
− E [Sj | Rj ]

)
| Tn

]
−E

[
Z̃j (Sj − E [Sj | Rj ]) | Tn

]
.

E
[
Z̃j (Sj − E [Sj | Rj ]) | Tn

]
= E

[
Γ̂n−1

(
Rj − R̂n−1

)
(Sj − E [Sj | Rj ]) | Tn

]
= Γ̂n−1E [R (S − E [S | R])]− Γ̂n−1R̂n−1E [S − E [S | R]]

= 0 a.s.

Then:

E
[
Z̃j

(
h
(
Z̃ ′jXn

)
− Sj

)
| Tn

]
= E

[
Z̃j

(
h
(
Z̃ ′jXn

)
− h

(
Z ′jθ

))
| Tn

]
a.s.

Consider the decomposition E
[
Z̃j

(
h
(
Z̃ ′jXn

)
− h

(
Z ′jθ

))
| Tn

]
= E

[
Zj
(
h
(
Z ′jXn

)
− h

(
Z ′jθ

))
| Tn

]
+

E [Vj | Tn] with
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Vj =
(
Z̃j − Zj

) (
h
(
Z ′jXn

)
− h

(
Z ′jθ

))
+ Z̃j

(
h
(
Z̃ ′jXn

)
− h

(
Z ′jXn

))
.

For j ∈ In, there exist ξ1j and ξ2j such that:

h
(
Z̃ ′jXn

)
= h

((
Rcj − R̂cn−1

)′
Γ̂n−1Xn

)
= h

((
Rcj − R̂cn−1

)′
ΓXn

)
+
(
Rcj − R̂cn−1

)′ (
Γ̂n−1 − Γ

)
Xnh

′ (ξ1j )
= h

(
Z ′jXn − R̂c′n−1ΓXn

)
+
(
Rcj − R̂cn−1

)′ (
Γ̂n−1 − Γ

)
Xnh

′ (ξ1j )
= h

(
Z ′jXn

)
− R̂c′n−1ΓXnh

′ (ξ2j )+
(
Rcj − R̂cn−1

)′ (
Γ̂n−1 − Γ

)
Xnh

′ (ξ1j ) .
As Z̃j − Zj =

(
Γ̂n−1 − Γ

)
Rcj − Γ̂n−1R̂

c
n−1, it follows that:

Vj =
((

Γ̂n−1 − Γ
)
Rcj − Γ̂n−1R̂

c
n−1

) (
h
(
Z ′jXn

)
− h

(
Z ′jθ

))
+Γ̂n−1

(
Rcj − R̂cn−1

)(
−R̂c′n−1ΓXnh

′ (ξ2j )+
(
Rcj − R̂cn−1

)′ (
Γ̂n−1 − Γ

)
Xnh

′ (ξ1j )) .
Part 3 Application of Robbins-Siegmund lemma.

It follows from Part 1 and Part 2 that:

E
[
‖Xn+1 − θ‖2 | Tn

]
≤ ‖Xn − θ‖2 − 2an

1

mn

∑
j∈In

〈Xn − θ,E [Vj | Tn]〉

+a2n E


∥∥∥∥∥∥ 1

mn

∑
j∈In

Z̃j

(
h
(
Z̃ ′jXn

)
− Sj

)∥∥∥∥∥∥
2

| Tn


−2an

1

mn

∑
j∈In

〈
Xn − θ,E

[
Zj
(
h
(
Z ′jXn

)
− h

(
Z ′jθ

))
| Tn

]〉
a.s.

(a) For j ∈ In, there exists 0 ≤ λj ≤ 1 such that:

h
(
Z ′jXn

)
− h

(
Z ′jθ

)
= Z ′j (Xn − θ)h′ (ξj) ,with ξj = λjZ

′
jXn + (1− λj)Z ′jθ.
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Then as h is an increasing function:

〈
Xn − θ,E

[
Zj
(
h
(
Z ′jXn

)
− h

(
Z ′jθ

))
| Tn

]〉
= E

[∥∥Z ′j (Xn − θ)
∥∥2 h′ (ξj) | Tn] > 0 a.s.

(b) For j ∈ In, by definition of Vj , as 0 < h(x) < 1 and 0 < h′(x) ≤ 1
4 :

E [‖Vj‖ | Tn] ≤
∥∥∥Γ̂n−1 − Γ

∥∥∥E [‖Rc‖] +
∥∥∥Γ̂n−1

∥∥∥∥∥∥R̂cn−1∥∥∥
+

1

4

∥∥∥Γ̂n−1

∥∥∥(E [‖Rc‖] +
∥∥∥R̂cn−1∥∥∥)∥∥∥R̂cn−1∥∥∥ ‖Γ‖ (‖Xn − θ‖+ ‖θ‖)

+
1

2

∥∥∥Γ̂n−1

∥∥∥(E [‖Rc‖2]+
∥∥∥R̂cn−1∥∥∥2)∥∥∥Γ̂n−1 − Γ

∥∥∥ (‖Xn − θ‖+ ‖θ‖) .

As Γ̂n−1 and R̂cn−1 are Tn-measurable and converge respectively to Γ and 0,

as
∞∑
n=1

an

∥∥∥R̂cn−1∥∥∥ <∞ and
∞∑
n=1

an

∥∥∥Γ̂n−1 − Γ
∥∥∥ <∞ a.s. by Lemma 3, it follows

that there exist two non-negative Tn- measurable random variables Dn and En

such that for j ∈ In:

‖E [Vj | Tn]‖ ≤ Dn ‖Xn − θ‖+ En,

∞∑
n=1

anDn <∞,
∞∑
n=1

anEn <∞ a.s.

Then:∣∣∣∣∣∣ 1

mn

∑
j∈In

〈Xn − θ,E [Vj | Tn]〉

∣∣∣∣∣∣ ≤ ‖Xn − θ‖ (Dn ‖Xn − θ‖+ En)

≤ (Dn + En) ‖Xn − θ‖2 + En a.s.

(c) E

[∥∥∥Z̃j (h(Z̃ ′jXn

)
− Sj

)∥∥∥2 | Tn] ≤ E [∥∥∥Z̃j∥∥∥2 | Tn]
≤ E

[∥∥∥Γ̂n−1

(
Rcj − R̂cn−1

)∥∥∥2 | Tn] ≤ 2
∥∥∥Γ̂n−1

∥∥∥2(E [‖Rc‖2]+
∥∥∥R̂cn−1∥∥∥2) a.s.
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By H2, as Γ̂n−1 and R̂cn−1 converge a.s. respectively to Γ and 0, we have:

∞∑
n=1

a2nE


∥∥∥∥∥∥ 1

mn

∑
j∈In

Z̃j

(
h
(
Z̃ ′jXn

)
− Sj

)∥∥∥∥∥∥
2

| Tn

 <∞ a.s.

(d) Conclusion

E
[
‖Xn+1 − θ‖2 | Tn

]
≤ ‖Xn − θ‖2 (1 +Dn + En) + 2anEn

+a2n E


∥∥∥∥∥∥ 1

mn

∑
j∈In

Z̃j

(
h
(
Z̃ ′jXn

)
− Sj

)∥∥∥∥∥∥
2

| Tn


−2an

1

mn

∑
j∈In

E
[∥∥Z ′j (Xn − θ)

∥∥2 h′ (ξj) | Tn] a.s.

Applying Robbins-Siegmund lemma yields that there exists a non-negative

random variable T such that a.s.:

‖Xn − θ‖2 −→ T and

∞∑
n=1

an
1

mn

∑
j∈In

E
[∥∥Z ′j (Xn − θ)

∥∥2 h′ (ξj) | Tn] <∞.
Part 4 Prove that T = 0 a.s.

Let ω be fixed belonging to the intersection of the convergence sets. The

writing of ω will be omitted in the following.

Suppose T 6= 0. There exists 0 < ε < 1 such that ε < ‖Xn − θ‖ < 1
ε .

As for j ∈ In, ξj = λjZ
′
jXn + (1− λj)Z ′jθ = λjZ

′
j (Xn − θ) + Z ′jθ,

|ξj | ≤
∥∥Rcj∥∥ b, with b = ‖Γ‖

(
1
ε + ‖θ‖

)
.

Remember that h′ is an even function, decreasing for x > 0, and h′(x) > 1
4e
−x

for x > 0. Then, h′ (ξj) > h′
(∥∥Rcj∥∥ b) > 1

4e
−‖Rcj‖b.

Therefore, denoting by λmin (A) the lowest eigenvalue of a matrix A, we have

for j ∈ In as Zj = ΓRcj :
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E
[∥∥Z ′j (Xn − θ)

∥∥2 h′ (ξj) | Tn] > 1
4 (Xn − θ)′ ΓE

[
RcjR

c′
j e
−‖Rcj‖b | Tn

]
Γ (Xn − θ)

> 1
4λmin

(
E
[
RcRc′e−‖R

c‖b]) ‖Γ (Xn − θ)‖2

> 1
4λmin

(
E

[
Rce−

1
2‖R

c‖b
(
Rce−

1
2‖R

c‖b
)′])

(λmin (Γ))
2
ε2.

The symmetric matrix E
[
RcRc′e−‖R

c‖b] is positive definite since by H1a

there is no linear relation between the components of Rc, consequently between

the components of Rce−
1
2‖R

c‖b; its lowest eigenvalue is strictly positive. By H2,

it follows that:

∞∑
n=1

an
1

mn

∑
j∈In

E
[∥∥Z ′j (Xn − θ)

∥∥2 h′ (ξj) | Tn]
>

1

4
λmin

(
E
[
RcRc′e−‖R

c‖b
])

(λmin (Γ))
2
ε2
∞∑
n=1

an =∞.

This is a contradiction as ω belongs to the convergence set of this series.

Thus T = 0. We deduce immediately the convergence of
(
Xn

)
to θ.�

5 Experiments

24 stochastic approximation processes were compared, including classic stochastic

gradient descent (SGD), averaged stochastic gradient descent (ASGD) with a

piecewise constant step-size with different level sizes as suggested in [7], and the

same processes but with online standardization of the data (Section 3). The

processes studied and their respective parameters are described in Table 1.

5.1 Step-size

For processes with a variable step-size (processes C1 to C3 and SC1 to SC3), we

have defined

an =
c

(b+ n)α
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Table 1. Description of the processes.

Method type Abbreviation Type of
data

Number of
observa-

tions used
at each

step of the
process

Step-size Levels
size

Use of
the

averaged
process

Classic
C1

Raw data

1
Variable - NoC2 10

C3 100

ASGD with
piecewise
constant
step-size

L11 1

Piecewise
constant

50

Yes

L12 10
L13 100
L21 1

100L22 10
L23 100
L31 1

200L32 10
L33 100

Standardization 1
SC1

Online
standardized

data

1
Variable - NoSC2 10

SC3 100

Standardization 2

SL11 1

Piecewise
constant

50

Yes

SL12 10
SL13 100
SL21 1

100SL22 10
SL23 100
SL31 1

200SL32 10
SL33 100

For processes with a piecewise constant step-size (processes L11 to L33 and

SL11 to SL33), we have chosen

an =
c

(b+ bnτ c)α

where b.c denotes the integer part and τ is the size of the levels. For both

cases, we set α = 2/3 (this value was suggested by Xu [11] in the case of linear

regression), b = 1 and c = 1.

14



Bach and Moulines [6] have shown that averaged processes with constant

step-size do not converge to the true value of the parameter in the case of logistic

regression, therefore we have not tested this type of process.

5.2 Initialization

All processes were initialized with X1 = 0. For processes with online standard-

ization, a random sample of 1000 observations (drawn with replacement from

the dataset) was used to compute a first estimation of the means and standard

deviations of the explanatory variables before the beginning of the iterations.

For averaged processes, the first 1000 iterations were used as a burn-in period

and were not included in the computation of the average.

5.3 Convergence criteria

We used as ”gold standard” the coefficients obtained by classical logistic regres-

sion (using R’s glm function) on a dataset ((r1i , ..., r
p
i , si), i = 1, ..., N) to assess

the convergence of the processes. Let θc be the vector of coefficients obtained

with this method and θ̂n+1 the estimated vector obtained by a tested process

after n iterations.

As θ0 =



1
σ1

. . .

1
σp

−m
1

σ1 · · · −m
p

σp 1


θ, θ̂n+1 =



Γ̂n(1, 1)

. . .

Γ̂n(p, p)

−Γ̂n(1, 1)r̂1n · · · −Γ̂n(p, p)r̂pn 1


x̄n+1,

(x̄n+1, realization of X̄n+1, is the estimation of θ at step n).

The cosine of the angle between θc and θ̂n+1 was used as a convergence

criterion:

cos(θc, θ̂n+1) =
θc′θ̂n+1

‖θc‖‖θ̂n+1‖
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The coefficient of correlation between the predictions obtained with the

classical method and the process as well as the ratio F̂ (θ̂n+1)−F̂ (θc)

F̂ (θc)
, F̂ (θ̂n+1) =

1
N

∑N
i=1

(
−r′iθ̂n+1si + ln(1 + er

′
iθ̂n+1)

)
being an estimation of the cost function

F at θ̂n+1, were also used as criteria (results not shown).

5.4 Datasets

The processes were tested on five datasets ((r1i , ..., r
p
i , si), i = 1, ..., N) available

on the Internet and one dataset derived from the EPHESUS study [12], all

already used to test the performance of stochastic approximation processes with

online standardized data in the case of online linear regression [1]. Twonorm,

Ringnorm, Quantum and Adult are commonly used to test classification methods

(the first two were introduced by Breiman [13]). Table 2 summarizes these

datasets. For each dataset, a data stream was simulated by randomly drawing a

data batch at each step.

Table 2. Description of the datasets.

Dataset name Na N pa p Source

Twonorm 7400 7400 20 20 www.cs.toronto.edu/~delve/data/datasets.html

Ringnorm 7400 7400 20 20 www.cs.toronto.edu/~delve/data/datasets.html

Quantum 50000 15798 78 12 derived from www.osmot.cs.cornell.edu/kddcup

Adult2 45222 45222 14 38 derived from www.cs.toronto.edu/~delve/data/datasets.html

EEG 14980 14977 14 14 https://archive.ics.uci.edu/ml/datasets/EEG+Eye+State

HOSPHF30D 21382 21382 29 13 derived from EPHESUS study

Na: number of available observations; N : number of selected observations; pa: number of available parameters; p: number of

selected parameters.

The following preprocessings were done on the data:

� Twonorm and Ringnorm: no preprocessing.

� Quantum: a stepwise variable selection (using AIC) was performed on the

6197 observations without any missing value. The dataset with complete

observations for the 12 selected variables was used.
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� Adult2: from the Adult dataset, modalities of several categorical variables

were merged (in order to have a larger number of observations for each

modality) and all categorical variables were then replaced by sets of binary

variables, leading to a dataset with 38 variables.

� EEG: Three outliers were excluded.

� HOSPHF30D: 13 variables were selected using stepwise selection.

All processes were applied on all datasets for a fixed number of observations

used and for a fixed processing time (the cumulative time to compute the

process updates, excluding operations such as data sampling, data management,

formatting and recording of results...). For each dataset and at each recording

point (see below), processes were ranked from the best (highest cosine) to the

worst (lowest cosine). The mean rank over all datasets was used to compare the

processes at a given recorded point and globally.

Processing time to treat 10N observations and average number of observations

used per second were also studied. Note that it is preferable to consider only

the order of magnitude of these indicators, as CPU and memory usage by other

applications were not controlled while the processes were running and could

explain small differences.

Processes were implemented with the R 3.5.2 software (64bits version) and

tested on a Windows 10 computer with an Intel Core i7-8650U CPU and 32Go

of memory.

5.5 Comparison for a fixed number of observations

As in [1], the values of criteria for each process were recorded every N observations

used, from 1N to 100N . For the cosine criterion, results for 10N observations

are shown in Table 3. Note that since the number of observations used at each
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step differs from one process to another, the number of iterations is not the same

for each process (e.g. to use 100N observations, C1 will run for 100N iterations

whereas C3 will run for N iterations).

Table 3. Cosines for 10N observations used

Process Twonorm Ringnorm Quantum Adult EEG HOSPHF30D Mean rank

C1 0.9991 0.9990 0.9020 Expl Expl Expl 20.0
C2 0.9979 0.9994 0.8155 Expl Expl Expl 22.8
C3 0.9964 0.9989 0.7023 Expl Expl Expl 26.8
L11 0.9993 0.9997 0.9952 Expl Expl Expl 15.8
L12 0.9997 0.9998 0.9849 Expl Expl Expl 16.2
L13 0.9995 0.9972 0.9566 Expl Expl Expl 25.5
L21 0.9991 0.9995 0.9971 Expl Expl Expl 15.7
L22 0.9997 0.9998 0.9906 Expl Expl Expl 15.3
L23 0.9994 0.9962 0.9745 Expl Expl Expl 24.2
L31 0.9991 0.9993 0.9988 Expl Expl Expl 16.7
L32 0.9997 0.9998 0.9928 Expl Expl Expl 16.2
L33 0.9992 0.9943 0.9836 Expl Expl Expl 25.2
SC1 0.9986 0.9993 0.9500 0.9974 -0.9968 0.9826 16.5
SC2 0.9972 0.9997 0.9575 0.9939 -0.9959 0.9548 17.0
SC3 0.9964 0.9999 0.9484 0.9892 0.9987 0.5511 15.7
SL11 0.9992 0.9998 0.9971 0.9964 0.9994 0.9707 9.0
SL12 0.9996 0.9998 0.9980 0.9993 0.9997 0.9833 4.0
SL13 0.9996 0.9984 0.9727 0.9988 0.9994 0.9843 11.2
SL21 0.9992 0.9998 0.9966 0.9882 0.9992 0.9695 11.2
SL22 0.9997 0.9998 0.9965 0.9987 0.9998 0.9827 5.2
SL23 0.9995 0.9973 0.9703 0.9993 0.9994 0.9893 11.7
SL31 0.9991 0.9997 0.9932 0.9815 0.9985 0.9643 14.3
SL32 0.9997 0.9998 0.9933 0.9968 1.0000 0.9813 6.7
SL33 0.9994 0.9950 0.9664 0.9993 0.9994 0.9727 12.5

Expl: numerical explosion

All tested processes using raw data had a numerical explosion for half of

the datasets (especially datasets with real data and different types of variables).

Over all datasets, the eight processes with the lowest mean rankings are averaged

processes with online standardization and piecewise constant step-sizes, the best

one with levels of size 50 and 10 new observations per step (SL12). The five

processes with the worst mean rankings are processes on raw data and 100 new
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observations at each step. These conclusions remain valid if we use F̂ (θ̂n+1)−F̂ (θc)

F̂ (θc)

as criterion instead of the cosine.

Processing times for 10N observations are shown in Table 4. For all processes,

the processing time decreases as the number of observations used at each step

increases (and therefore as the number of iterations decreases for a given total

number of observation used). A process with online standardization has a 4

to 21 times longer processing time than its equivalent on raw data, the ratio

increasing with the number of observations used at each step of the two processes.

Nevertheless, we will see below that for a fixed processing time the best processes

remain those with online standardization. Thus, the main factors affecting the

processing time are the number of observations used at each step, the online

standardization and the dataset used.

Note that if the estimation of the expectations and standard deviations is

stopped after a certain step and a pseudo-standardization with respect to the

last obtained estimations used afterwards, the processing times improve for all

processes.
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Table 4. Processing time to treat 10N observations (in seconds)

Process Twonorm Ringnorm Quantum Adult EEG HOSPHF30D

C1 2.04 1.94 4.22 Expl Expl Expl
C2 0.23 0.23 0.45 Expl Expl Expl
C3 0.05 0.04 0.05 Expl Expl Expl
L11 2.54 2.04 4.47 Expl Expl Expl
L12 0.24 0.19 0.60 Expl Expl Expl
L13 0.03 0.04 0.06 Expl Expl Expl
L21 2.30 2.03 4.10 Expl Expl Expl
L22 0.25 0.22 0.50 Expl Expl Expl
L23 0.04 0.03 0.07 Expl Expl Expl
L31 2.04 2.12 4.47 Expl Expl Expl
L32 0.27 0.27 0.53 Expl Expl Expl
L33 0.03 0.02 0.06 Expl Expl Expl
SC1 10.84 11.41 20.23 59.75 19.57 26.73
SC2 1.96 2.00 3.65 10.74 3.90 4.63
SC3 0.48 0.49 0.92 2.74 0.83 1.11
SL11 10.52 10.17 20.59 60.36 19.31 26.37
SL12 1.89 1.72 3.84 11.03 3.50 5.00
SL13 0.64 0.46 0.85 2.89 0.85 1.17
SL21 10.83 9.71 19.94 60.37 19.41 27.18
SL22 1.85 1.86 3.56 10.94 3.35 4.91
SL23 0.46 0.48 0.82 2.84 0.87 1.13
SL31 9.64 9.78 20.11 61.79 20.18 27.54
SL32 1.88 1.61 3.51 11.09 3.96 4.74
SL33 0.50 0.41 0.87 2.75 0.91 1.11

Expl: numerical explosion

5.6 Comparison for a varying number of observations

When studying the variation of the rankings with the number of observations

used from N to 100N(Fig. 1), there is instability in the rankings until about

25N observations, after which most processes are in a stable position. Over all

the numbers of observations used, the best process appears to be the averaged

process with online standardization with 100 new observations at each step and

piecewise constant step-size with levels of size 50 (SL13), followed by the same

process with levels of sizes 100 and 200 (SL23 and SL33). Processes with online

standardization are constantly better than processes using raw data.
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Fig 1. Evolution with the number of observations

5.7 Comparison for a fixed processing time

As in [1], the values of the criteria for each process were then recorded every

second of processing time from 1 to 120s. For the cosine criterion, results for 60s

observations are shown in Table 5.

Again, all tested processes using raw data had a numerical explosion for half

of the datasets. Over all datasets, the six processes with the lowest mean rankings

are averaged processes with online standardization and piecewise constant step-

sizes, the best one with levels of size 200 and 100 new observations per step

(SL33). These conclusions remain valid if we use F̂ (θ̂n+1)−F̂ (θc)

F̂ (θc)
as criterion with

the exception that the best process uses levels of size 100 (SL23).

Average number of observations used per second for 60s of processing time are

shown in Table 6. For all processes, the number of observations used by second

increases with the number of observations used at each step. A process with
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Table 5. Cosines for 1 minute of processing time

Process Twonorm Ringnorm Quantum Adult EEG HOSPHF30D Mean rank

C1 0.9999 0.9999 0.9709 Expl Expl Expl 20.8
C2 1.0000 1.0000 0.9683 Expl Expl Expl 21.8
C3 1.0000 1.0000 0.9659 Expl Expl Expl 22.5
L11 1.0000 1.0000 0.9978 Expl Expl Expl 19.3
L12 1.0000 1.0000 0.9960 Expl Expl Expl 18.3
L13 1.0000 1.0000 0.9948 Expl Expl Expl 20.0
L21 1.0000 1.0000 0.9991 Expl Expl Expl 18.0
L22 1.0000 1.0000 0.9972 Expl Expl Expl 17.5
L23 1.0000 1.0000 0.9959 Expl Expl Expl 19.0
L31 1.0000 1.0000 0.9999 Expl Expl Expl 16.8
L32 1.0000 1.0000 0.9981 Expl Expl Expl 16.5
L33 1.0000 1.0000 0.9970 Expl Expl Expl 18.2
SC1 0.9997 0.9998 0.9987 0.9979 0.9988 0.9898 17.5
SC2 0.9996 1.0000 0.9989 0.9968 0.9994 0.9932 15.8
SC3 0.9994 1.0000 0.9992 0.9953 0.9993 0.9840 15.3
SL11 0.9999 1.0000 0.9959 0.9964 0.9993 0.9854 17.2
SL12 1.0000 1.0000 0.9999 0.9998 0.9997 0.9986 8.2
SL13 1.0000 1.0000 0.9999 0.9999 1.0000 0.9999 6.5
SL21 0.9999 1.0000 0.9948 0.9888 0.9992 0.9841 19.2
SL22 1.0000 1.0000 0.9999 0.9998 0.9996 0.9987 8.8
SL23 1.0000 1.0000 0.9999 0.9999 1.0000 0.9999 6.7
SL31 0.9999 0.9999 0.9934 0.9823 0.9987 0.9812 19.8
SL32 1.0000 1.0000 0.9999 0.9996 0.9996 0.9986 8.2
SL33 1.0000 1.0000 0.9999 1.0000 1.0000 0.9999 4.8

Expl: numerical explosion

online standardization treats 4 to 18 times less observations per second than its

equivalent on raw data, the ratio increasing with the number of observations used

at each step of the two processes. Thus, the main factors affecting the average

number of observations used per second are the number of new observations

used at each step and the online standardization.
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Table 6. Average number of observations used per second for 60s of processing time

Process Twonorm Ringnorm Quantum Adult EEG HOSPHF30D

C1 35 657 26 185 32 210 Expl Expl Expl
C2 313 352 279 990 296 649 Expl Expl Expl
C3 2 162 220 1 773 088 1 995 762 Expl Expl Expl
L11 32 264 25 079 33 284 Expl Expl Expl
L12 298 995 273 666 314 852 Expl Expl Expl
L13 2 271 557 1 905 687 2 424 623 Expl Expl Expl
L21 26 591 27 205 34 679 Expl Expl Expl
L22 238 334 249 312 310 214 Expl Expl Expl
L23 1 787 677 1 850 917 2 399 433 Expl Expl Expl
L31 27 101 24 647 33 817 Expl Expl Expl
L32 230 269 264 637 315 603 Expl Expl Expl
L33 1 746 310 2 098 472 2 330 235 Expl Expl Expl
SC1 6 800 5 555 6 591 7 377 5 723 7 478
SC2 39 522 33 279 38 751 38 554 33 236 44 129
SC3 181 780 137 465 172 560 141 615 145 198 184 768
SL11 7 315 5 571 6 925 7 157 5 437 7 329
SL12 41 879 31 104 39 294 39 991 28 847 42 858
SL13 161 653 136 027 187 612 153 328 142 280 186 263
SL21 7 159 4 955 7 144 6 997 5 596 7 207
SL22 41 351 30 742 42 447 37 901 31 831 42 858
SL23 148 013 130 098 195 987 129 703 134 973 186 263
SL31 5 575 5 570 7 398 6 547 5 628 7 293
SL32 30 273 32 825 43 051 38 486 31 186 43 260
SL33 131 130 119 582 194 177 142 552 143 285 190 840

Expl: numerical explosion

5.8 Comparison for a varying processing time

When studying the evolution of the rankings with the processing time from 1 to

120s (Figure 2), two groups of processes appear clearly from the beginning and

remain during all the studied period. The group with the worst rankings contains

all processes using raw data, all processes using only one new observation at

each step, and all ”classic” processes. The group with the best rankings contains

all averaged processes with online standardization and using 10 or 100 new

observations at each step. Within this group, a clear difference appears after

about 10s of processing time between processes using 10 new observations and
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processes using 100 new observations. Over all the processing times recorded, the

best process appears to be the averaged process with online standardization and

piecewise constant step-size with levels of size 200 using 100 new observations at

each step (SL33).
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Fig 2. Evolution with the processing time

6 Application to online updating of a score in

heart failure patients

In [8], we have presented a methodology for constructing a short-term event

(death or hospitalization for heart failure) risk score in heart failure patients,

based on an ensemble predictor built in several steps:

� n1 = 2 classification rules (logistic regression and linear discriminant
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analysis for mixed data) are used.

� n2 bootstrap samples are drawn.

� For each sample, a fixed number of explanatory variables are selected

according to n3 modalities of random selection.

This yields a set of n1n2n3 predictors. As logistic model is a generalized

linear model, a score function that is an affine combination of the explanatory

variables, as in linear discriminant analysis, can be built.

Then the n1n2n3 score functions obtained are aggregated in two steps:

� The n2n3 score functions for each fixed classification rule are aggregated

by averaging and finally reduced on a scale from 0 to 100.

� A single score function is obtained by an optimal weighted averaging of

the two previous reduced score functions.

This methodology has been used for EPHESUS trial [12] patients data on

whom biological, clinical and medical history variables have been measured.

Let us show that this methodology can be adapted to the case of a data

stream.

Suppose that new data for heart failure patients arrive continuously. At step

n of the process, a batch of new data is taken into account and allocated to

bootstrap samples using Poisson bootstrap [14]. The set of randomly selected

variables is fixed for each bootstrap sample; then:

� A predictor based on logistic regression can be updated using the stochastic

gradient algorithm with online standardized data studied here. Thus each

of the n2n3 score functions obtained by logistic regression can be updated

online.
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� In [1], we have studied stochastic algorithms for updating online a predictor

based on linear regression, in particular binary linear discriminant analysis,

when new data arrive which are standardized online. Thus each of the n2n3

score functions obtained by linear discriminant analysis can be updated

online.

� Thus each of the n1n2n3 score functions can be updated online. By

aggregating them according to the method described above, the ensemble

score can be updated online.

7 Conclusion

We have studied an averaged constrained stochastic gradient algorithm for

performing online a constrained binary logistic regression in the case of streaming

or massive data. We have proposed to use an online standardization of the data

to avoid a numerical explosion, or when a shrinkage method (such as LASSO) is

used, or even when expectations or variances of explanatory variables change

(varying with time or depending on the values of controlled variables) and can

be estimated online. We have proposed to use a decreasing piecewise constant

step-size in order that it does not decrease too quickly and consequently reduces

the speed of convergence of the process. We have made experiments on real and

simulated datasets. The results confirm the validity of the choices made: online

standardization of the data, averaged process and piecewise constant step-size.
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