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Introduction

A physical object with smooth or piecewise smooth boundary captured by real cameras at different positions undergoes smooth apparent deformations. These regular deformations are locally well approximated by affine transforms of the image plane; indeed, for any smooth deformation, its first order Taylor approximation is an affine map. By focusing on local image regions, or patches, the perspective changes of objects can therefore be modeled by affine image deformations.

This observation has motivated the development of image comparison methods based on local descriptors that are as affine invariant as possible. The problem of constructing affine invariant image descriptors by using an affine Gaussian scale space, which is equivalent to simulating affine distortions followed by the heat equation, has a long history starting with [START_REF] Iijima | Basic equation of figure and and observational transformation[END_REF][START_REF] Blom | Topological and Geometrical Aspects of Image Structure[END_REF][START_REF] Lindeberg | Scale-Space Theory in Computer Vision[END_REF][START_REF] Lindeberg | Shape-adapted smoothing in estimation of 3-D depth cues from affine distortions of local 2-D brightness structure[END_REF]. The idea of affine shape adaptation was used as a basis for the work on affine invariant interest points and affine invariant matching in [START_REF] Lindeberg | Shape-adapted smoothing in estimation of 3-D depth cues from affine distortions of local 2-D brightness structure[END_REF][START_REF] Baumberg | Reliable feature matching across widely separated views[END_REF][START_REF] Mikolajczyk | An affine invariant interest point detector[END_REF][START_REF] Mikolajczyk | Scale and Affine Invariant Interest Point Detectors[END_REF][START_REF] Tuytelaars | Content-based image retrieval based on local affinely invariant regions[END_REF][START_REF] Tuytelaars | Matching Widely Separated Views Based on Affine Invariant Regions[END_REF][START_REF] Tuytelaars | Wide baseline stereo matching based on local, affinely invariant regions[END_REF], including the Harris-Affine and Hessian-Affine region detectors [START_REF] Mikolajczyk | An affine invariant interest point detector[END_REF][START_REF] Mikolajczyk | Scale and Affine Invariant Interest Point Detectors[END_REF]. Finally, the detectors MSER (Maximally Stable Extremal Region) [START_REF] Matas | Robust wide-baseline stereo from maximally stable extremal regions[END_REF] and LLD (Level Line Descriptor) [START_REF] Musé | Unsupervised thresholds for shape matching[END_REF][START_REF] Musé | An A Contrario Decision Method for Shape Element Recognition[END_REF][START_REF] Cao | A Theory of Shape Identification[END_REF] both rely on image level lines. Yet, the affine invariance of these descriptors in images acquired with real cameras is limited by the fact that optical blur and affine transforms do not commute, as shown in [START_REF] Morel | ASIFT: A new framework for fully affine invariant image comparison[END_REF]. To overcome this limitation, the authors of [START_REF] Morel | ASIFT: A new framework for fully affine invariant image comparison[END_REF] proposed to optically simulate affine transformations. This idea was also exploited in [START_REF] Pang | Fully affine invariant SURF for image matching[END_REF][START_REF] Mishkin | MODS: Fast and robust method for two-view matching[END_REF][START_REF] Rodriguez | Affine invariant image comparison under repetitive structures[END_REF][START_REF] Rodriguez | Fast affine invariant image matching[END_REF] and more recently by the SIFT-AID method [START_REF] Rodriguez | Siftaid: boosting sift with an affine invariant descriptor based on convolutional neural networks[END_REF], which combines SIFT keypoints with a CNN-based patch descriptor trained to capture affine invariance. Another recent possibility to obtain affine invariance is by learning affine-covariant region representations [START_REF] Mishkin | Repeatability is not enough: Learning affine regions via discriminability[END_REF], where a patch is normalized before description. The latter method together with the HardNet [START_REF] Mishchuk | Working hard to know your neighbor's margins: Local descriptor learning loss[END_REF] descriptor was reported to be the state of the art in image matching under strong viewpoint changes for all detectors.

Image matching usually refers to estimating a global homographic transform between two images. An established approach [START_REF] Hartley | Multiple view geometry in computer vision[END_REF] consists in computing local image matches, which are then aggregated using the RANSAC (RANdom SAmple Consensus) algorithm [START_REF] Fischler | Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography[END_REF] to estimate an homography. The same procedure is also used for fundamental matrix estimation.

Recently, CNN-based image matching approaches have been proposed for directly estimating global affine and homographic transformations [START_REF] Rocco | Convolutional neural network architecture for geometric matching[END_REF][START_REF] Detone | Deep image homography estimation[END_REF]. In [START_REF] Rocco | Convolutional neural network architecture for geometric matching[END_REF], the pool4 layer of the VGG-16 network [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] was used for acquiring features from images and correlation maps fed to a regression network that outputs the best affine transform that fits the query to the target image. In a direct approach, the authors of [START_REF] Detone | Deep image homography estimation[END_REF] trained a network to estimate the homography relating the query to the target image. Both [START_REF] Rocco | Convolutional neural network architecture for geometric matching[END_REF][START_REF] Detone | Deep image homography estimation[END_REF] were trained on synthetically generated images, but neither of them took into account the blur caused by camera zoom-out or tilt.

The objective of this work is to improve image matching by refining two stages of its pipeline. The improvement of homography estimation can be accomplished, on the one hand, by increasing the number of keypoint correspondences as well as their accuracy, and on the other hand by improving the RANSAC aggregation step. The contributions of this paper, detailed below, address all these issues:

1. We propose a LOCal Affine Transform Estimator (locate) based on a neural network which estimates both the direct and inverse affine maps relating two patches, leading to a more accurate local geometry estimation.

2.

To increase the number of correspondences we use the local affine information provided by locate to guide the discovery of new candidates.

3. We introduce a reformulation of the consensus set (inliers) in RANSAC, incorporating the richer information provided by locate, leading to an increase in the probability of success.

A prevalent element in this work is the locate method, which yields a first-order approximation of the local geometry relating pairs of image patches, i.e, local affine maps or tangent planes, see Figure 1. The network architecture of locate is a variation from the one in [START_REF] Detone | Deep image homography estimation[END_REF] that provides a twoway estimation, which leads to an increase in robustness relative to the former network. Another difference with respect to [START_REF] Detone | Deep image homography estimation[END_REF] is the use of affine simulated patches to train the networks. This simulation incorporates a realistic optical model that takes into account the blur caused by camera tilt and zoom [START_REF] Morel | ASIFT: A new framework for fully affine invariant image comparison[END_REF]. This procedure allows to easily generate an arbitrarily large training set.

The affine information was already been used [START_REF] Farhan | Geometric expansion for local feature analysis and matching[END_REF][START_REF] Farhan | Local Region Expansion: a Method for Analyzing and Refining Image Matches[END_REF] to predict location and pose from affine detectors like MSER [START_REF] Matas | Robust wide-baseline stereo from maximally stable extremal regions[END_REF], Harris-Affine [START_REF] Mikolajczyk | An affine invariant interest point detector[END_REF] or Hessian-Affine [START_REF] Mikolajczyk | Scale and Affine Invariant Interest Point Detectors[END_REF]. We propose to complement the SIFT detector with a guided matching [START_REF] Hartley | Multiple view geometry in computer vision[END_REF] step that increases the number of correct matches by sampling new keypoints surrounding the initial ones. locate's accuracy in location, orientation and scale (i.e. rotation and position in the Gaussian pyramid) results in a drastic increase in the number of correspondences.

When estimating homographies from sets of correspondences with RANSAC, the use of first-order approximations allows to increase the performance in homography estimation. This has already been proposed in [START_REF] Raposo | Theory and practice of structure-from-motion using affine correspondences[END_REF] by composing normalized affine maps provided by the Hessian Laplace detector. This detector can be replaced with Affnet [START_REF] Mishkin | Repeatability is not enough: Learning affine regions via discriminability[END_REF] since it has been shown to produce more accurate affine maps. The locate method can be used as well for the same purpose. In addition, we propose a modification in the RANSAC consensus step. Instead of defining inliers only by location agreement, we also consider the agreement in tilt, rotations and scale of the local affine maps. We will show how these modifications improve homography estimation from a set of SIFT-like matches.

The rest of this paper is organized as follows. Section 2 summarizes a formal methodology for simulating local viewpoint changes induced by real cameras, as required for training our network. The locate method is introduced in Section 3. Section 4 and Section 5 present the proposed guided matching and our modified RANSAC step, respectively. The use of the proposed methods is illustrated with experiments in Section 6. Finally, Section 7 presents our concluding remarks.

Affine Maps and Homographies

As stated in [START_REF] Morel | ASIFT: A new framework for fully affine invariant image comparison[END_REF][START_REF] Rodriguez | Covering the space of tilts. application to affine invariant image comparison[END_REF], a digital image u obtained by any camera at infinity is modeled as u = S 1 G 1 Au, where S 1 is the image sampling operator (on a unitary grid), A is an affine map, u is a continuous image and G δ denotes the convolution by a Gaussian kernel broad enough to ensure no aliasing by δ-sampling. This model takes into account the blur incurred when tilting or zooming a view. Notice that G 1 and A generally do not commute.

Let A denote the set of affine maps and define Au(x) = u(Ax) for A ∈ A, where x is a 2D vector and Ax denotes function evaluation, A (x). We define the set of invertible orientation preserving affinities A + = {L + v ∈ A| det(L) > 0} where L is a linear map and v a translation vector. We call S the set of similarity transformations, which are any combination of translations, rotations and zooms. Finally, we define the set A + * = A + \ S, where we exclude pure similarities. As it was pointed out in [START_REF] Morel | ASIFT: A new framework for fully affine invariant image comparison[END_REF], every A ∈ A + * is uniquely decomposed as

A = λR 1 (ψ)T t R 2 (φ), (1) 
where R 1 , R 2 are rotations and T t = t 0 0 1 with t > 1, λ > 0, φ ∈ [0, π) and ψ ∈ [0, 2π).

Furthermore, the above decomposition comes with a geometric interpretation (see Figure 2) where the longitude φ and latitude θ = arccos 1 t characterize the camera's viewpoint angles (or tilt), ψ parameterizes the camera roll and λ corresponds to the camera zoom. The so-called optical affine maps involving a tilt t in the z-direction and zoom λ are formally simulated by:

u → S 1 AG z √ t 2 -1 G √ λ 2 -1 Iu, (2) 
where I is the Shannon-Whittaker interpolator and the superscript z indicates that the operator takes place only in the z-direction. We denote by

A := S 1 AG z √ t 2 -1 G √ λ 2 -1 I . (3) 
The operator A is not always invertible and therefore its application might incur a loss of information. We refer to [START_REF] Rodriguez | Siftaid: boosting sift with an affine invariant descriptor based on convolutional neural networks[END_REF] for an example where no optical transformation A is found between two views. With this in mind, we adopt the same data generation scheme proposed for training the affine invariant descriptors in [START_REF] Rodriguez | Siftaid: boosting sift with an affine invariant descriptor based on convolutional neural networks[END_REF]. That is, given an image u and a pair of optical affine maps A 1 and A 2 , we simulate affine views u 1 = A 1 (u) and u 2 = A 2 (u). Our simulations involve maximal viewpoint angles of 75 • with respect to u. As for [START_REF] Rodriguez | Siftaid: boosting sift with an affine invariant descriptor based on convolutional neural networks[END_REF], the MS-COCO [START_REF] Lin | Microsoft coco: Common objects in context[END_REF] dataset will provide instances of u in training and validation. Patch pairs seeing the same scene from u 1 and u 2 are said to belong to the same class and will be used to train the networks.

Local affine approximation of homographies

Let H = (h ij ) i,j=1,...,3 be the 3 × 3 matrix associated to the homography η (•). Let x be the homogeneous coordinates vector associated to the image point x = (x 1 , x 2 ) around which we want
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2@60x60 64@60x60 64@60x60 64@30x30 64@30x30 64@30x30 64@15x15 128@15x15 128@15x15 128@7x7 128@7x7 128@7x7 1x1024 1x16 to determine the local affine map. We denote by y = (y 1 , y 2 ) = (Hx)1 (Hx)3 , (Hx)2 (Hx)3 = η (x) the image of x by the homography η.

The first order Taylor approximation of η at x leads to

η (x + z) = v + L (x + z) + o ( z ) , (4) 
where a brief computation shows that the vector v and the matrix L are determined through the following system of equations:

L =   h11-y1h31 h31x1+h32x2+h33 h12-y1h32 h31x1+h32x2+h33 h21-y2h31 h31x1+h32x2+h33 h22-y2h32 h31x1+h32x2+h33   , (5) 
v = y 1 y 2 -Lx. (6) 
This derivation allows us to compute the exact local affine approximation for a given homography. This will be useful to assess the accuracy of our method when using annotated datasets.

The Local Affine Transform Estimator

In this section we present the LOCal Affine Transform Estimator (locate) network whose architecture is adopted from [START_REF] Detone | Deep image homography estimation[END_REF]. Unfortunately, the network as it is used in [START_REF] Detone | Deep image homography estimation[END_REF] often incurs in wrong geometry estimates in the presence of strong blur or tilt, even when trained for this task. To address this issue, locate estimates the affine transform that maps query to target and target to query. As it will be shown in Section 6, the simultaneous estimation of both, the direct and inverse maps, significantly improves the network performance.

The locate architecture, shown in Figure 3, consists of 4 blocks of two convolutional layers each followed by batch normalization and ReLU activations. The first block receives as input two patches in the form of a two channel image. Between each block a max-pooling layer is introduced. A 2D spatial dropout with a probability 0.5 is applied after the last convolutional layer followed by 2 fully connected layers. The last layer outputs a vector of dimension 16, corresponding to the coordinates of eight points, the four transformed patch corners in both directions. We also tested a network trained to directly estimate the six parameters of local affine maps (translation plus the parameters in Equation 1) but we observed that this choice led to worse performances.

As argued in [START_REF] Rodriguez | Siftaid: boosting sift with an affine invariant descriptor based on convolutional neural networks[END_REF], the affine approximation holds locally, which suggests the use of small patch sizes; on the other hand, small patches contain less information, leading to insufficient geometry anchors. As a compromise, we set the patch size to 60 × 60, which provides a good balance between locality and sufficient viewpoint information.

Training

The locate network, as well as the network in [START_REF] Detone | Deep image homography estimation[END_REF], were trained with data generated as described in Section 2; more specifically with pairs of patches belonging to the same class and involving small differences in translation, rotation and zoom, but possibly large tilts. The resulting networks will lead to an affine approximation of the exact transformation relating two observations. Both networks are trained from scratch until reaching a plateau for the loss in training and validation. While training we also simulate contrast changes on all input patches. Let A 1 , A 2 denote two random affine maps and A 1 , A 2 their respective optical simulations. We assume A 1 and A 2 involve small perturbations in terms of similarity transformations. Let P 1 and P 2 be two square 60 × 60-patches simulated from a randomly chosen initial patch P by A 1 and A 2 , respectively. Let X = [x 1 , x 2 , x 3 , x 4 ], where x i are the 2D coordinates of the four corners of a patch following a fixed order. We also define 4-and 8-point ground truth parameterizations respectively for the network [START_REF] Detone | Deep image homography estimation[END_REF] and the locate network,

X 4 := A 1 A -1 2 (X) , X 8 := A 1 A -1 2 (X) , A 2 A -1 1 (X) , (7) 
where [•, •] denotes the concatenation of both vectors. Let N k be one of the presented networks with k-point parameterization. Then the loss is defined as sum of the Euclidean norm between corresponding points:

k i=1 N k (P 1 , P 2 ) i -X k i L2 , (8) 
where the sub-index i denotes the i-th element of the vector.

From patches in the Gaussian pyramid to local affine maps

The training process described above allows the networks to be easily coupled with matching methods based on the SIFT [START_REF] Lowe | Distinctive image features from scale-invariant keypoints[END_REF] detector. Indeed, a SIFT-like patch is simply the square crop at the origin of some similarity transformation (translation, rotation and zoom) of the original image; additionally, patches corresponding to matched keypoints should suffer small similarity deformations but possibly strong tilts. Consider two 60 × 60-patches, P q and P t , coming from the Gaussian pyramid of the query and target images, respectively. Let c q and c t be their centers expressed in image coordinates. Let also A q be the affine map that converts from the query image domain to patch coordinates; likewise A t converts from target to patch coordinates. Note that the affinities A q and A t are pure similarities, combining just the translation, rotation and zoom corresponding to the location, orientation and scale associated to SIFT-like keypoints. Finally, in order to locally approximate the transformation between query and target images (centered at c q and c t ), we only need the affine map relating P q and P t .

When fully trained, the presented networks are expected to predict the movements of patch corners. Let (x q i ↔ x t i ) i=1,...,k be a set of correspondences produced by one of the networks N k , where x q i and x t i denote query and target patch-coordinates, respectively, and k-point determines the point parameterization. Due to imprecisions in the prediction, these k correspondences are not necessarily related by an affinity. Then, the affine map A is estimated from the correspondences predicted by the network N k as the solution of the linear least squares problem min

A k i=1 Ax q i -x t i 2 L2 . (9) 
Finally, around c q , the local affine map transforming the query into the target (in image coordinates) is

A q→t = A -1 t AA q . ( 10 
)
We call locate the method returning A q→t from the locate network. Figure 4 visually shows estimated affine maps by the network [START_REF] Detone | Deep image homography estimation[END_REF] (4 points) and locate, as well as their respective incurred geometric errors. Four random patch pairs from the validation dataset (synthetic data) reveal the Achilles heel of network [START_REF] Detone | Deep image homography estimation[END_REF]: zoom and translation. This visualization already justifies the use of the inverse information in the locate method.

Refinement and Guided Matching

In this section, we present an iterative procedure that applies locate to refine a set of existing matches, and then retrieves new ones by propagating the estimated local geometry. Think of the initial set of matches as correspondences resulting from a matching method, that includes both inliers Query patch Target patch Ground truth

Network in [START_REF] Detone | Deep image homography estimation[END_REF] (4 points) locate and outliers. Each query and target keypoints have an associated location, orientation and scale (i.e. rotation and position in the Gaussian pyramid). The precise affine approximations between query and target obtained from locate, allows to refine the matching by reducing the error in these three similarity parameters. Furthermore, using the full affine transformations associated to the refined matches, allows to infer new match candidates by propagating the local geometry. The idea of propagating the local geometry from a set of matches was already proposed in the literature [START_REF] Farhan | Geometric expansion for local feature analysis and matching[END_REF][START_REF] Farhan | Local Region Expansion: a Method for Analyzing and Refining Image Matches[END_REF]. In these cases the location and pose are derived from affine detectors like MSER [START_REF] Matas | Robust wide-baseline stereo from maximally stable extremal regions[END_REF], Harris-Affine [START_REF] Mikolajczyk | An affine invariant interest point detector[END_REF] or Hessian-Affine [START_REF] Mikolajczyk | Scale and Affine Invariant Interest Point Detectors[END_REF]. Despite the fact that SIFT keypoints are more robust to similarities (see [START_REF] Rey-Otero | Comparing feature detectors: A bias in the repeatability criteria[END_REF]) than the previously mentioned ones, no SIFT-like affine guided matching procedure was proposed yet. The reason for this is that the first method allowing to infer affine maps between SIFT-like patches is Affnet, which was very recently proposed. As we will see in Section 6, locate reaches higher accuracy than Affnet. Therefore, in this work we introduce guided matching based on the locate method.

The procedure is as follows. For each query keypoint from a refined match, four new keypoints are generated at the NE, NW, SE, SW corners of the query patch domain. These points are then mapped into the target image domain with rotations and positions in the target Gaussian pyramid inferred from the affine decomposition in Equation 1. These four pairs of points will represent new tentative matches, and each tentative match is validated by computing a similarity score between corresponding patches. For this task, we use the BigAID descriptor [START_REF] Rodriguez | Siftaid: boosting sift with an affine invariant descriptor based on convolutional neural networks[END_REF] and the cosine proximity to measure the similarity.

This process can be iterated until some criteria is satisfied (e.g., a fixed number of iterations, the number of matches is stable, etc). In this paper, we fix the number of iterations to 4. Each keypoint information is refined only once. To avoid redundancy, new matches falling nearby existing matches are removed (a threshold of 4 pixels was used). Therefore, any valid match proposal will cover new areas connecting the query and target images.

Robust Homography Estimation

The standard RANSAC algorithm computes the parameters fitting a mathematical model from observed data in the presence of outliers. Numerous improvements have been proposed in the literature for RANSAC, see [START_REF] Moisan | Automatic Homographic Registration of a Pair of Images, with A Contrario Elimination of Outliers[END_REF][START_REF] Moisan | Fundamental Matrix of a Stereo Pair, with A Contrario Elimination of Outliers[END_REF][START_REF] Raguram | USAC: a universal framework for random sample consensus[END_REF][START_REF] Rais | Accurate motion estimation through random sample aggregated consensus[END_REF], but the core idea remains the same.

In the case of homography estimation, the classic RANSAC algorithm returns the homography η j computed in iteration j having the largest consensus of inliers among all iterations. The j-iteration can be described in two steps:

1. (Fitting) Randomly select s matches (x i ↔ y i ) i=1,...,s from the set of all matches (M T ) and compute the homography η j that yields the best fit.

2. (Consensus) Count the number of matches from M T that are within a distance threshold of κ (i.e. counting inliers).

Notice that steps 1-2 only take into account point coordinates. From now on, we call this method RANSAC. With eight degrees of freedom for a homography matrix and each match defining two equations, this implies s = 4. The following subsections support the claim that incorporating the local affine information can further improve the performance of the RANSAC algorithm.

Homography fitting from local affine maps

From Section 2.1 we know how to locally approximate a homography by an affine map. Conversely, the problem of determining a homography from a set of affine maps at different locations was addressed in [START_REF] Barath | Novel ways to estimate homography from local affine transformations[END_REF][START_REF] Raposo | Theory and practice of structure-from-motion using affine correspondences[END_REF]. Let x ↔ y be a match and L = (l ij ) i,j=1,2 the linear map in Equation 4. Then the unknown homography η must satisfy

E 6×9 • h = 0, (11) 
where E 6×9 is the matrix

        1 -y1 -l11x1 -l11x2 -l11 1 -l12x1 -y1 -l12x2 -l12 1 -y2 -l21x1 -l21x2 -l21 1 -l22x1 -y2 -l22x2 -l22 x1 x2 1 -y1x1 -y1x2 -y1 x1 x2 1 -y2x1 -y2x2 -y2         , ( 12 
)
and h = [h T is a vectorized version of the matrix H associated to η. The first four rows of E 6×9 are determined by Equation 5and the last two are the classic equations derived from rewriting η (x) = y in terms of Hx = y.

Clearly, two matches with their corresponding local affine maps can over-determine the homography matrix. Indeed, putting everything together provides with 12 equations

E 1 E 2 12×9 • h = 0,
where E i denotes the matrix E appearing in Equation 11for each match. To avoid the solution h = 0 we look for a unitary vector h minimizing [START_REF] Hartley | Multiple view geometry in computer vision[END_REF] for more details.

E 1 E 2 • h , see
We call RANSAC 2pts a RANSAC version in which the classic homography fitting of step 1 is replaced by the homography fitting of this section together with the locate estimator. Note that RANSAC 2pts only needs two samples at each iteration (s = 2).

Affine consensus for RANSAC homography

When matching two image patches, the transformation that relates them may not be consistent with the global transformation of the scene. This can be due to the presence of symmetric objects or even to failures in the matching process. For instance, suppose that two patches centered at the same scene location but with incoherent rotations are identified by a matching method. The symmetry issue is easy to address as usually we should have encountered as many keypoints as degrees of symmetry around the center; so at least two rotations will correspond. However, aberrant matches are not treated by the matching method nor by RANSAC. This problem can be circumvented by imposing consistency between the local affine maps and the proposed RANSAC model. 1(namely zoom λ, camera rotation ψ, tilt t, tilt direction φ, and translation x, y), for the proposed locate method, the network [6] (4 points), the Affnet method [START_REF] Mishkin | Repeatability is not enough: Learning affine regions via discriminability[END_REF] and the identity map method. The used dataset [START_REF] Rodriguez | Siftaid: boosting sift with an affine invariant descriptor based on convolutional neural networks[END_REF] contains 3352 patch pairs with corresponding groundtruth. The sub-index GT means groundtruth, conversely, no sub-index stands for estimated parameters. To impose local geometry consistency, most existing works [START_REF] Zheng | Robust point matching for nonrigid shapes by preserving local neighborhood structures[END_REF][START_REF] Mishkin | MODS: Fast and robust method for two-view matching[END_REF] propose to measure the incurred error in mapping keypoints of a match x ↔ y, e.g. y -A(x) + x -A -1 (y) . Unlike them we propose to enforce geometry consistency directly on the transformations parameters given by Equation 1. In other words, we use the affine information to redefine the consensus set of a model.

λ -λ GT ψ -ψ GT t -t GT φ -φ GT x -x GT y -y GT
Inliers are now defined as follows. Let A E and A H be, respectively, the estimated affine map by the locate method and the testing affine map computed from the testing homography (using Equation 5). Let also [λ E , ψ E , t E , φ E ] and [λ H , ψ H , t H , φ H ] be, respectively, the affine parameters of A E and A H . We define the α-vector between A E and A H as:

α (A E , A H ) = max λ E λ H , λ H λ E , ∠ (ψ E , ψ H ) , max t E t H t H t E , ∠ (φ E , φ H ) , (13) 
where ∠(•, •) denotes the angular difference. To test consistency between A E and A H we add to the classic threshold on the Euclidean distance, four more thresholds on the α-vector. A perfect match would result in an α-vector equal to [1, 0, 1, 0]. If we assume independence on each dimension, the resulting probability of a match passing all thresholds is the multiplication of individual probabilities. With this in mind, we claim that rough thresholds are enough to obtain good performances and that there is no need to optimize them. Thus, we propose to further refine inliers by accepting only those matches also satisfying

α (A E , A H ) < 2, π 4 , 2, π 8 , (14) 
where the above logical operation is true if and only if it holds true for each dimension.

We call RANSAC affine the version of RANSAC 2pts that includes the affine consensus presented in this section.

Experiments

To the best of our knowledge, the most suitable and effective means of estimating affine maps connecting two patches are: Affnet [START_REF] Mishkin | Repeatability is not enough: Learning affine regions via discriminability[END_REF], the network [START_REF] Detone | Deep image homography estimation[END_REF], and now the locate method. The procedure described in Subsection 3.2 works for both networks: [START_REF] Detone | Deep image homography estimation[END_REF] and locate. On the other hand, Affnet was conceived to predict normalizing ellipse shapes for single patches based on a 3-variable parametrization. The connection provided by two Affnet-normalizing affine maps for the query and target SIFT-AID dataset [START_REF] Rodriguez | Siftaid: boosting sift with an affine invariant descriptor based on convolutional neural networks[END_REF] EVD dataset [START_REF] Mishkin | MODS: Fast and robust method for two-view matching[END_REF] OxAff Viewpoint dataset [START_REF] Mikolajczyk | A comparison of affine region detectors[END_REF] Matching method 1: Guided matching and refinement performances on three viewpoint datasets with seed correspondences from two affine invariant matching methods: SIFT-AID [START_REF] Rodriguez | Siftaid: boosting sift with an affine invariant descriptor based on convolutional neural networks[END_REF] and SIFT-Affnet [START_REF] Mishkin | Repeatability is not enough: Learning affine regions via discriminability[END_REF]-HardNet [START_REF] Mishchuk | Working hard to know your neighbor's margins: Local descriptor learning loss[END_REF] (SIFT-Affnet). After refinement and guiding on each image pair, RANSAC-USAC [START_REF] Raguram | USAC: a universal framework for random sample consensus[END_REF] is run 100 times to measure its probability of success in retrieving corresponding ground truth homographies. Legend: S -the number of successes (bounded by 100× number ); the number of correctly matched image pairs; inl. -the average number of correct inliers; AvE -the average pixel error; Rthe ratio of inliers/total. The numbers of image pairs in a dataset are boxed.

Guiding

patches is richer than each normalizing transformation. Indeed, for different choices of A 1 = T 1 R 1 and A 2 = T 2 R 2 one would need the four parameters (zoom, camera rotation, tilt and tilt direction) in Equation 1in order to express A 2 A -1 1 . However, Affnet does not estimate translations. We claim that the locate method out-performs the other two state-of-the-art methods in terms of precision.

Please note that the networks were trained exclusively with simulated patches, let us now try on real patches. The passage from affine cameras to real cameras is a big gap to fill by both [START_REF] Detone | Deep image homography estimation[END_REF] and locate networks. We expect them to generalize the affine world to all sorts of geometry as long as the Taylor approximation holds.

Does precision really matter? As a first evaluation of the precision in a realistic environment we used the viewpoint dataset from SIFT-AID [START_REF] Rodriguez | Siftaid: boosting sift with an affine invariant descriptor based on convolutional neural networks[END_REF], consisting of five pairs of images with their groundtruth homographies and 3352 true matches. Notice that Equations 5-6 allow us to compute groundtruth local affine maps around each match. Figure 5 shows the accuracy of Affnet [START_REF] Mishkin | Repeatability is not enough: Learning affine regions via discriminability[END_REF], the 4 points network [START_REF] Detone | Deep image homography estimation[END_REF] and locate, represented by error density functions with respect to the affine decomposition appearing in Equation 1. Ideally, we expect a Dirac delta function centered at 0 for a perfect method. This is approximately true for the locate method. The experiment also illustrates the failure of the network [START_REF] Detone | Deep image homography estimation[END_REF] in predicting zoom and translation (as shown in Figure 4). Note in Figure 5 that translations from the Affnet [START_REF] Mishkin | Repeatability is not enough: Learning affine regions via discriminability[END_REF] method do not quite match those from the Identity method; this difference can be explained by the connecting mapping itself as

A 1→2 (x) = A 2 A -1 1 x -A -1 1 c + c is different from A 2 A -1 1 
x, where c denotes the center of patch domain and A i are the estimated affine maps by Affnet. locate, with the only addition of tracking points movements associated to the inverse affine map, obtains better result than [START_REF] Detone | Deep image homography estimation[END_REF]. As expected, both [START_REF] Detone | Deep image homography estimation[END_REF] and locate perform better than Affnet [START_REF] Mishkin | Repeatability is not enough: Learning affine regions via discriminability[END_REF]. Indeed, Affnet analyzes one patch at a time, whereas [START_REF] Detone | Deep image homography estimation[END_REF] and locate have access to both patches simultaneously. However, in practice, using Affnet involves less computations.

The following experiment shows that the precision improvement of locate indeed results in better guided image matching performance. Table 1 shows that locate has the overall best performance of all methods. locate usually boost the number of inliers as well as the ratio of inliers while always being the lowest or close to lowest average pixel error. By construction, this boost in inliers means that new areas are connected between the image pairs, see Figure 6 for an example. Moreover, the probability of success of RANSAC USAC [START_REF] Raguram | USAC: a universal framework for random sample consensus[END_REF] is not diminished with respect to the matching method itself, this is observed in the "None" rows of Table 1. We remark the capacity of our guided matching method to expand true matches while keeping the number of false matches low.

Can RANSAC affine improve homography estimation? In the previous paragraphs we established the precision of the local affine maps provided by the locate method. We now focus on the evaluation of the three variants of RANSAC. In order to highlight the benefits of local geometry in estimating homographies, we drop all the improvements in RANSAC USAC [START_REF] Raguram | USAC: a universal framework for random sample consensus[END_REF] and head back EF dataset [START_REF] Zitnick | Edge foci interest points[END_REF] EVD dataset [START_REF] Mishkin | MODS: Fast and robust method for two-view matching[END_REF] OxAff dataset [START_REF] Mikolajczyk | A comparison of affine region detectors[END_REF] SymB dataset [START_REF] Hauagge | Image matching using local symmetry features[END_REF] Matching method Table 2: Homography estimation performances for RANSAC, RANSAC 2pts and RANSAC affine for three matching methods: RootSIFT [START_REF] Arandjelovic | Three things everyone should know to improve object retrieval[END_REF], SIFT-AID [START_REF] Rodriguez | Siftaid: boosting sift with an affine invariant descriptor based on convolutional neural networks[END_REF], and SIFT-Affnet [START_REF] Mishkin | Repeatability is not enough: Learning affine regions via discriminability[END_REF]-HardNet [START_REF] Mishchuk | Working hard to know your neighbor's margins: Local descriptor learning loss[END_REF] (SIFT-Affnet). Each RANSAC ran for 1000 internal iterations. To measure probability of success, all RANSACs were run 100 times on resulting matches from each pair of images. Legend: S -the number of successes (bounded by 100× number ); the number of correctly matched image pairs; inl.

Homography

-the average number of correct inliers; AvE -the average pixel error. The numbers of image pairs in a dataset are boxed.

to the base RANSAC. But notice that most improvements proposed in RANSAC USAC [START_REF] Raguram | USAC: a universal framework for random sample consensus[END_REF] can also be applied to RANSAC 2pts and RANSAC affine . The following experiment was conducted on four well known datasets for homography estimation. All datasets include groundtruth homographies that were used to verify accuracy. First, local features were detected and matched, then each homography estimation method (RANSAC, RANSAC 2pts and RANSAC affine ) was applied and we declared a success if at least 80% of inliers (in consensus with the estimated homography) were in consensus with the groundtruth homography. The two steps of RANSAC (fitting and consensus) are iterated a 1000 times for each of the three variants. Therefore, the processing time spent in applying locate could be compensated later on by decreasing the number of internal iterations. For equal settings, rows 'None' in Table 1 and rows 'RANSAC' in Table 2 do not correspond; this is because RANSAC USAC [START_REF] Raguram | USAC: a universal framework for random sample consensus[END_REF] was used in the former while baseline RANSAC in the latter.

Conclusions

We proposed a CNN based method to locally estimate affine maps between images. Our experiments show that the locate method provides accurate first-order approximations of local geometry. This information proved to be valuable for two applications: Guided matching of SIFT keypoints with precise locations, orientations and scales; and homography estimation, for which we presented a RANSAC version that systematically improved results in four well known datasets [START_REF] Zitnick | Edge foci interest points[END_REF][START_REF] Mishkin | MODS: Fast and robust method for two-view matching[END_REF][START_REF] Mikolajczyk | A comparison of affine region detectors[END_REF][START_REF] Hauagge | Image matching using local symmetry features[END_REF].

Training locate to handle occlusions as well as applications to stereo matching will be explored in future work.

Figure 1 :

 1 Figure 1: Some correspondences together with local affine maps estimated by the proposed locate network. Patches on the target are warped versions of their corresponding query patch.

Figure 2 :

 2 Figure 2: Geometric interpretation of equation (1).

Figure 3 :

 3 Figure 3: The proposed locate network architecture. The last two layers are fully connected.

Figure 4 :

 4 Figure 4: Four pairs of patches selected at random from the validation dataset and used as query and target input patches (columns 1-2). The three last columns show the drift error depicted by intense blue or intense green colors. Light blue means no error. Blue and green channels correspond to the target patch and a warped version of the corresponding query patch (the red line delimits its borders); the red channel is filled with zeros. 3rd column: groundtruth; 4th column: network in [6] (4 points); 5th column: locate network. Input patches are shown without contrast difference for clear visualization.

Figure 5 :

 5 Figure 5: Affine error prediction in terms of the affine decomposition of Equation1(namely zoom λ, camera rotation ψ, tilt t, tilt direction φ, and translation x, y), for the proposed locate method, the network [6] (4 points), the Affnet method[START_REF] Mishkin | Repeatability is not enough: Learning affine regions via discriminability[END_REF] and the identity map method. The used dataset[START_REF] Rodriguez | Siftaid: boosting sift with an affine invariant descriptor based on convolutional neural networks[END_REF] contains 3352 patch pairs with corresponding groundtruth. The sub-index GT means groundtruth, conversely, no sub-index stands for estimated parameters.

  (a) Initial correct matches from SIFT-AID. (b) Homography consistent matches after guiding with locate.

Figure 6 :

 6 Figure 6: Guided matching for the adam pair, EVD [22].
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