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Abstract

The classic approach to image matching consists in the detection, description and matching
of keypoints. This defines a zero-order approximation of the mapping between two images,
determined by corresponding point coordinates. But the patches around keypoints typically
contain more information, which may be exploited to obtain a first-order approximation of the
mapping, incorporating local affine maps between corresponding keypoints. In this work, we
propose a Local Affine Transform Estimator (LATE) method based on neural networks. We
show that LATE drastically improves the accuracy of local geometry estimation between images
when compared to the state of the art. The second contribution of this paper consists of two
modifications to the RANSAC algorithm, that use LATE to improve the homography estimation
between a pair of images. Our experiments show that these approaches outperform RANSAC
for different choices of image descriptors and image datasets, and permit to increase the number
of correctly matched image pairs in challenging matching databases.

1 Introduction

A physical object with smooth or piecewise smooth boundary captured by real cameras at different
positions undergoes smooth apparent deformations. These regular deformations are locally well
approximated by affine transforms of the image plane; indeed, for any smooth deformation, its first
order Taylor approximation is an affine map. By focusing on local image regions, or patches, the
perspective changes of objects can therefore be modeled by affine image deformations.

This observation has motivated the development of comparison methods based on local descriptors
that are as affine invariant as possible. The problem of constructing affine invariant image descriptors
by using an affine Gaussian scale space, which is equivalent to simulating affine distortions followed by
the heat equation, has a long history starting with [9, 3, 11, 12]. The idea of affine shape adaptation
was used as a basis for the work on affine invariant interest points and affine invariant matching in
[12, 2, 15, 16, 36, 35, 34]. Finally, the detectors MSER (Maximally Stable Extremal Region) [14]
and LLD (Level Line Descriptor) [23, 24, 4] both rely on image level lines.

Yet, the affine invariance of these descriptors in images acquired with real cameras is limited by
the fact that optical blur and affine transforms do not commute, as shown in [22]. To overcome this
limitation, the authors of [22] propose to optically simulate affine transformations. This idea was
also exploited in [25, 18, 29, 31] and more recently by the SIFT-AID method [32], which combines
SIFT keypoints with a CNN-based patch descriptor trained to capture affine invariance. Another
recent possibility to obtain affine invariance is by learning affine-covariant region representations [19],
where a patch is normalized before description. The latter method is the state-of-the-art in image
matching under strong viewpoint changes.

CNN-based geometric matching between images has also been tested for the case of affine and
homography transformations [28, 5]. In [28], the pool4 layer of the VGG-16 network [33] was used
for acquiring features from images and correlation maps fed to a regression network that outputs the
best affine transform that fits the query to the target image. In a direct approach, the authors of [5]
trained a network to estimate the homography relating the query to the target image. Both [28, 5]
were trained on synthetically generated images, but neither of them took into account the blur caused
by camera zoom-out or tilt.
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Figure 1: Some correspondences together with local affine maps estimated by the proposed LATE
network. Patches on the target are warped versions of their corresponding query patch.

Figure 2: Geometric interpretation of equation (1).

In this paper we propose a Local Affine Transform Estimator (LATE) based on neural networks.
The network architecture, which is derived from the one in [5], takes two 60×60 patches as input and
estimates both the direct and inverse affine maps relating the two patches. The two-way estimation
leads to an increase in the robustness of the method. While a set of correspondences represents a
zero-order approximation of the geometry deformation relating two images, when local affine maps
are provided a first-order approximation (i.e. tangent planes) is obtained; see Figure 1. Undoubtedly,
the higher the order in the approximation, the more accurate the representation, therefore leading
to better results.

Robust geometry estimation is one of those areas that can exploit the first-order approximation
proposed by the LATE method. We present two modifications of the RANSAC (RAndom SAmple
Consensus) algorithm [6] that improve the discrimination power in homography estimation from a
set of SIFT-like matches. Briefly, those modifications consist in: first, a new fitting of homographies
from local affine maps where only 2 matches are needed instead of 4 for the zero-order approximation;
second, a reformulation of the consensus set (inliers) relying on the local geometry.

The rest of this paper is organized as follows. Section 2 summarizes a formal methodology for
simulating local viewpoint changes provoked by real cameras, as required for training our network.
The LATE method is introduced in Section 3. Section 4 presents our modified RANSAC algorithm.
The use of the proposed methods is illustrated with experiments in Section 5. Finally, Section 6
present our concluding remarks.

2 On Affine Maps

As stated in [22, 30], a digital image u obtained by any camera at infinity is modeled as u = S1G1Au,
where S1 is the image sampling operator (on a unitary grid), A is an affine map, u is a continuous
image and Gδ denotes the convolution by a Gaussian kernel broad enough to ensure no aliasing by
δ-sampling. This model takes into account the blur incurred when tilting or zooming a view. Notice
that G1 and A generally do not commute.

Let A denote the set of affine maps and define Au(x) = u(Ax) for A ∈ A, where x is a 2D vector
and Ax denotes function evaluation, A (x). We define A+ = {L + v ∈ A| det(L) > 0} where L is a
linear map and v a translation vector. We call S the set of similarity transformations, which are any
combination of translations, rotations and zooms. Finally, we define the set A+

∗ = A+ \ S, where we
exclude pure similarities. As was pointed out in [22], every A ∈ A+

∗ is uniquely decomposed as

A = λR1(ψ)TtR2(φ), (1)
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where R1, R2 are rotations and Tt =

[
t 0
0 1

]
with t > 1, λ > 0, φ ∈ [0, π) and ψ ∈ [0, 2π).

Furthermore, the above decomposition comes with a geometric interpretation (see Figure 2) where
the longitude φ and latitude θ = arccos 1

t characterize the camera’s viewpoint angles (or tilt), ψ
parameterizes the camera roll and λ corresponds to the camera zoom. The so called optical affine
maps involving a tilt t in the z-direction and zoom λ are formally simulated by:

u 7→ S1AGz√t2−1
G√λ2−1Iu, (2)

where I is the Shannon-Whittaker interpolator and the superscript z indicates that the operator
takes place only in the z-direction. We denote by A := S1AGz√t2−1

G√λ2−1I .

The operator A is not always invertible and therefore its application might incur a loss of infor-
mation. We refer to [32] for an example where no optical transformation A is found between two
views. With this in mind, we adopt the same data generation scheme proposed for training the affine
invariant descriptors in [32]. That is, given an image u and a pair of random affine transformations
A1 and A2, we simulate affine views u1 = A1(u) and u2 = A2(u). Simulations involve maximal
viewpoint angles of 75◦ with respect to u. As for [32], the MS-COCO [10] dataset will provide
instances of u in training and validation. Patch pairs seeing the same scene from u1 and u2 are said
to belong to the same class and will be used to train the networks.

2.1 Local affine approximation of homographies

Let H = (hij)i,j=1,··· ,3 be the 3 × 3 matrix associated to the homography η (·). Let x be the

homogeneous coordinates vector associated to the image point x = (x1, x2) around which we want

to determine the local affine map. We denote by y = (y1, y2) =
(

(Hx)1
(Hx)3

, (Hx)2
(Hx)3

)
= η (x) the image of

x by the homography η.
The first order Taylor approximation of η at x leads to

η (x+ z) = v + L (x+ z) + o (‖z‖) , (3)

where a brief computation shows that the vector v and the matrix L are determined through the
following system of equations:[

h11 − y1h31 h12 − y1h32

h21 − y2h31 h22 − y2h32

]
= (h31x1 + h32x2 + h33)L, (4)

v =

[
y1

y2

]
− Lx. (5)

3 Local Affine Transform Estimator

In this section we present the Local Affine Transform Estimator (LATE) network whose architecture
is inspired by [5]. Unfortunately, the network as it is used in [5] often incurs in wrong geometry
estimations in the presence of strong blur or tilt, even when trained for this task. To address this issue,
LATE estimates geometry in both directions (direct and inverse) and aggregates all the information
afterwards. As will be shown in Section 5, this small architectural modification significantly improves
the network performance.

The LATE architecture, see Figure 3, consists of 4 blocks of two convolutional layers each followed
by batch normalization and ReLU activations. The first block receives as input two patches belonging
to the same class in the form of a two channel image. Between each block a max-pooling layer is
introduced. A 2D spatial dropout with a probability 0.5 is applied after the last convolutional layer.
Finally, two fully connected layers are in charge of the final regression steps. The last layer outputs a
vector of dimension 16, corresponding to the coordinates of eight points, the four transformed patch
corners in both directions.

As argued in [32], the affine approximation holds locally, which suggests the use of small patch
sizes; on the other hand, small patches entail less information, leading to insufficient geometry
anchors. As a compromise, we set the patch size to 60× 60, which provides a good balance between
locality and sufficient viewpoint information.
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Figure 3: The proposed LATE network architecture. The last two layers are fully connected.

3.1 Training

The LATE network is trained, as in [5], with pairs of patches belonging to the same class and involving
small differences in translation, rotation and zoom (but not in tilt). In this way, the networks will
specialize in the task of estimating affine maps between patches that ideally incur in high similarity
scores for a perfect matching method based on SIFT-like keypoints. Both networks are trained from
scratch until reaching a plateau for the loss in training and validation. While training we simulate
contrast changes on all input patches.

Let A1, A2 denote two affine maps and A1, A2 their respective optical simulations. We assume A1,
A2 involve small perturbations in terms of similarity transformations. Let P1 and P2 be two square
60 × 60-patches centered at the origin of A1 (u) and A2 (u), respectively. Let X = [x1, x2, x3, x4],
where xi are the 2D coordinates of the four corners of a patch following a fixed order. We also
define 4- and 8-point ground truth parameterizations respectively for the network [5] and the LATE
network,

X4 := A−1
1 A2 (X) ,

X8 :=
[
A−1

1 A2 (X) , A−1
2 A1 (X)

]
,

(6)

where [·, ·] denotes the concatenation of both vectors. Let N k be one of the presented networks with
k-point parameterization. Then the loss is defined by

k∑
i=1

‖N k (P1, P2)i −X
k
i ‖L2 , (7)

where the sub-index i represents the i-th element of the vector.

3.2 From patches in the Gaussian pyramid to local affine maps

The training process described above allows the networks to be coupled with matching methods like
SIFT [13], RootSIFT [1], SIFT-AID [32] among many others. Indeed, a SIFT like patch is simply
the square crop at the origin of some similarity transformation (translation, rotation and zoom)
of the original image; additionally, patches corresponding to matched keypoints should suffer small
similarity deformations but possibly strong tilts.

Let Pq and Pt be two square 60× 60-patches coming respectively from the Gaussian pyramid of
the query and target images. Let cq and ct be their centers expressed in image coordinates. Let
also Aq and At be the affine maps that convert, respectively, from query and target coordinates to
patch coordinates (known from keypoint information). The missing piece to express the local affine
transformation between query and target images centered at cq, is the affine map between Pq and
Pt.

When fully trained, the presented networks are expected to predict the movements of patch
corners. Let (xqi ↔ xti)i=1,...,k be a set of correspondences produced by one of the networks N k,

where xqi and xti denote query and target patch-coordinates, respectively, and k-point determines the
point parameterization. We call A a solution of the linear least squares problem

min
A

k∑
i=1

∥∥Axqi − xti∥∥2

L2
, (8)

the affine map estimated from the correspondences predicted by the network N k. Finally, the local
affine map transforming the query into the target (in image coordinates) around cq is

Aq→t = AtAA
−1
q . (9)

We call LATE method, the method returning Aq→t from the LATE network.
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4 Robust Homography Estimation

The standard RANSAC (RAndom SAmple Consensus) algorithm [6] computes the parameters fitting
a mathematical model from observed data in the presence of outliers. Numerous improvements have
been proposed in the literature for RANSAC, see [20, 21, 26, 27], but the core idea behind them
remains.

In the case of homography estimation, the classic RANSAC algorithm returns the homography ηj
computed in iteration j having the largest consensus of inliers among all iterations. The j-iteration
can be briefly described in two steps:

1. (Fitting) Randomly select s matches (xi ↔ yi)i=1,...,s from the set of all matches (MT ) and
compute the homography ηj that yields the best fit.

2. (Consensus) Count the number of matches from MT that are within a distance threshold of κ
(i.e. counting inliers).

Notice that steps 1-2 only take into account point coordinates. From now on, we call this method
RANSAC. With eight degrees of freedom for a homography matrix and each match defining two
equations, this implies s = 4. The following subsections support the claim that adding the affine
information provided by the LATE network can further improve the performance of the RANSAC
algorithm.

4.1 Homography fitting from local affine maps

From Section 2.1 we know how to locally approximate a homography by an affine map. Conversely,
in this section we address the problem of determining a homography from a set of approximate affine
maps at different locations. Let x↔ y be a match and L = (lij)i,j=1,2 the linear map in Equation 3.
Then, according to Equation 4, the unknown homography η must satisfy

E6×9 · ~h = ~0, (10)

where

E6×9 =


1 −y1 − l11x1 −l11x2 −l11

1 −l12x1 −y1 − l12x2 −l12

1 −y2 − l21x1 −l21x2 −l21

1 −l22x1 −y2 − l22x2 −l22

x1 x2 1 −y1x1 −y1x2 −y1

x1 x2 1 −y2x1 −y2x2 −y2

 , (11)

and ~ht =
[
h11 h12 h13 h21 h22 h23 h31 h32 h33

]
is a vectorized version of the matrix

H associated to η. The first four rows of E6×9 are determined by Equation 4 and the last two are
the classic equations derived from rewriting η (x) = y in terms of Hx = y.

Clearly, two matches with their corresponding local affine maps can over-determine the homog-
raphy matrix. Indeed, putting everything together provides with 12 equations,[

E1

E2

]
12×9

· ~h = ~0 (12)

where Ei denotes the matrix E appearing in Equation 10 for each match. To avoid the solution

~h = ~0 we look for a unitary vector ~h minimizing

∥∥∥∥[ E1

E2

]
· ~h
∥∥∥∥, see [7] for more details.

We call RANSAC2pts, a RANSAC version in which we modify the classic homography fitting of
step 1 by the homography fitting of this section together with the LATE estimator. Remark that
RANSAC2pts only needs two samples at each iteration (s = 2).

4.2 Affine consensus for RANSAC homography

In many practical applications the probability of a false match having coordinates agreeing with the
testing homography just by chance is not necessarily small. The classic consensus in RANSAC could
be dramatically affected if this situation occurs. Using the geometric information around each match
allows us to further reduce the aforementioned probability, thus improving the performance of the
RANSAC algorithm.
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In this section we use the affine information to redefine the consensus set of a model. Inliers are
now defined as those matches whose added affine information go along with the testing homography.
Let AE and AH be, respectively, the estimated affine map by the LATE method and the testing
affine map computed from the testing homography (using Equation 4). Let also [λE , ψE , tE , φE ] and
[λH , ψH , tH , φH ] be, respectively, the corresponding affine decomposition (as in Equation 1) of AE
and AH . We define the α-vector between AE and AH as:

α (AE , AH) =

[
max

(
λE
λH

,
λH
λE

)
, ∠ (ψE , ψH) , max

(
tE
tH

tH
tE

)
, ∠ (φE , φH)

]
, (13)

where ∠(·, ·) denotes the angular difference.
Finally, we propose to add four more thresholds (based on the α-vector) to the classic one on the

Euclidean distance. A perfect match involves an α-vector equal to [1, 0, 1, 0]. These four thresholds
correspond to the four dimensions of the α-vector. If we assume independence on each dimension,
the resulting probability of a match passing all thresholds is the multiplication of probabilities. With
this in mind, we claim that rough thresholds are sufficient to obtain good performances. Thus, we
propose to further refine inliers by accepting only those matches also satisfying

α (AE , AH) <
[
2,
π

4
, 2,

π

8

]
, (14)

where the above logical operation is true if and only if it holds true for each dimension.
We call RANSACaffine the version of RANSAC2pts that includes the affine consensus presented

in this section.

5 Experiments

The network [5] is not precise enough in capturing local point movements in the presence of strong
blur or tilt; Figure 4 visually shows geometric errors incurred by the network [5] (4 points) and ours
(LATE). Four random patch pairs from the validation dataset (synthetic data) start showing the
Achilles heel of network [5]: zoom and translation. This visualization already justifies the use of the
inverse information in the LATE method.

Up until now, the LATE network has only seen optically simulated input patches. The passage
from affine cameras to real cameras is a big gap to fill by both networks. We expect them to generalize
the affine world to all sorts of geometry as long as the Taylor approximation holds. Let us now test
the performance of the LATE network on real data.

As a first evaluation of the precision in a realistic environment we used the viewpoint dataset
from SIFT-AID [32], consisting of five pairs of images with their groundtruth homographies and
3352 true matches. Notice that Equations 4-5 allow us to compute groundtruth local affine maps
around each match. Figure 5 shows the accuracy of the LATE and [5] networks represented by
error density functions with respect to the affine decomposition appearing in Equation 1. Ideally,
we expect a Dirac delta function for a perfect method. Please note the resemblance in the case of
the LATE network. This experiment illustrates the failure of the network [5] in predicting zoom
and translation (as shown in Figure 4). This confirms the choice in LATE of also tracking points
movements incurred by the inverse affine map.

In the previous paragraphs we have shown the capacity of the LATE method to identify local
affine maps. We now highlight the benefit of local geometry in estimating homographies. The
following experiment was conducted on four well known datasets for homography estimation. All
datasets include groundtruth homographies that were used to verify accuracy. First, local features
were detected and matched by RootSIFT [1] with matching ratio set to 0.8 and SIFT-AID [32] with
matching threshold set to 4000. Then, each homography estimator method (RANSAC, RANSAC2pts

and RANSACaffine) was applied and we declared a success if at least 80% of inliers (in consensus with
the estimated homography) were in consensus with the groundtruth homography. Four metrics are
reported: the number of successes; the number of correctly matched image pairs; the average number
of correct inliers; and the average pixel error. Results on this experiment can be found in Table 1.
Both RANSAC2pts and RANSACaffine methods outperform RANSAC in the number of successes and
identified image pairs for both RootSIFT [1] and SIFT-AID [32] in all datasets. This proves that the
affine information, which is the only difference with respect to the baseline RANSAC, systematically
improves the homography estimation. Even if Table 1 is not about comparing matching methods,
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Figure 4: Four pairs of patches selected at random from the validation dataset and used as query
and target input patches (columns 1-2). The three last columns show the drift error depicted by
intense blue or intense green colors. Light blue means no error. Blue and green channels correspond
to the target patch and a warped version of the corresponding query patch (the red line delimits
its borders); The red channel is filled with zeros. 3rd column: groundtruth; 4th column: network
in [5] (4 points); 5th column: LATE network. Input patches are shown without contrast difference
for clear visualization.

EF [37] EVD [18] OxAff [17] SymB [8]

Method S 33 inl. AvE S 15 inl. AvE S 40 inl. AvE S 46 inl. AvE

RootSIFT+RANSAC 2403 26 51 3.2 0 0 0 - 3806 39 580 1.2 2693 31 102 2.8
RootSIFT+RANSAC2pts 2633 28 46 3.7 0 0 0 - 3893 39 566 1.2 3219 34 84 3.3
RootSIFT+RANSACaffine 2805 30 28 3.4 0 0 0 - 3899 39 404 1.1 3297 36 54 3.4

SIFT-AID+RANSAC 879 23 78 6.6 82 1 40 7.8 3600 39 1477 4.8 1014 19 450 6.8
SIFT-AID+RANSAC2pts 1829 27 84 6.1 99 1 72 6.3 3917 40 1459 4.5 1867 30 327 6.5
SIFT-AID+RANSACaffine 1996 30 39 5.8 166 5 37 8.2 3939 40 852 4.0 2341 38 138 6.6

Table 1: Homography estimation performances for RANSAC, RANSAC2pts and RANSACaffine. Each
RANSAC ran for 1000 iterations. Each pair of images was fed 100 times to all RANSACs to obtain
results. Legend: S - the number of successes; the number of correctly matched image pairs; inl. -

the average number of correct inliers; AvE - the average pixel error. The numbers of image pairs
in a dataset are boxed.

we observe that RANSACaffine, and indirectly the LATE method, raises the performance of SIFT-
AID to achieve comparable (and in two datasets better) results than AdHesAffNet [19], reported to
have 33, 4, 40 and 37 correctly matched image pairs in the datasets EF, EVD, OxAff and SymB,
respectively.

6 Conclusions

We proposed a CNN based method to locally estimate affine maps between images. Our experi-
ments show that the LATE method provides accurate first-order approximations in various geomet-
ric scenarios. This information proved to be valuable in the case of homography estimation, for
which we presented two RANSAC versions that systematically improved results in four well known
datasets [37, 18, 17, 8]. The proposed method is generic and its applications to stereo matching, as
well as to guided matching without any global geometry assumption, will be explored in future work.
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λ− λGT ψ − ψGT t− tGT φ− φGT x− xGT y − yGT

Figure 5: Affine error prediction in terms of the affine decomposition (Equation 1), for the network [5]
(4 points) in orange and the proposed LATE method in blue. The used dataset [32] contains 3352
patch pairs with corresponding groundtruth. The sub-index GT means groundtruth, conversely, no
sub-index stands for estimated parameters.
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[4] F. Cao, J.-L. Lisani, J.-M. Morel, P. Musé, and F. Sur. A Theory of Shape Identification.
Springer Verlag, 2008.

[5] D. DeTone, T. Malisiewicz, and A. Rabinovich. Deep image homography estimation. arXiv
preprint arXiv:1606.03798, 2016.

[6] M. A. Fischler and R. C. Bolles. Random sample consensus: a paradigm for model fitting with
applications to image analysis and automated cartography. Communications of the ACM, 24
(6):381–395, 1981.

[7] R. Hartley and A. Zisserman. Multiple view geometry in computer vision. Cambridge university
press, 2003.

[8] D. C. Hauagge and N. Snavely. Image matching using local symmetry features. In 2012 IEEE
Conference on Computer Vision and Pattern Recognition, pages 206–213. IEEE, 2012.

[9] T. Iijima. Basic equation of figure and and observational transformation. Systems, Computers,
Controls, 2(4):70–77, 1971.

[10] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L. Zitnick.
Microsoft coco: Common objects in context. In ECCV, pages 740–755. Springer, 2014.

[11] T. Lindeberg. Scale-Space Theory in Computer Vision. Royal Institute of Technology, Stock-
holm, Sweden, 1993.

[12] T. Lindeberg and J. Garding. Shape-adapted smoothing in estimation of 3-D depth cues from
affine distortions of local 2-D brightness structure. ECCV, pages 389–400, 1994.

[13] D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV, 60(2):91–110, 2004.

[14] J. Matas, O. Chum, M. Urban, and T. Pajdla. Robust wide-baseline stereo from maximally
stable extremal regions. IVC, 22(10):761–767, 2004.

[15] K. Mikolajczyk and C. Schmid. An affine invariant interest point detector. ECCV, 1:128–142,
2002.

[16] K. Mikolajczyk and C. Schmid. Scale and Affine Invariant Interest Point Detectors. IJCV, 60
(1):63–86, 2004.

8



[17] K. Mikolajczyk, T. Tuytelaars, C. Schmid, A. Zisserman, J. Matas, F. Schaffalitzky, R. Kadir,
and L. Van Gool. A comparison of affine region detectors. International journal of computer
vision, 65(1-2):43–72, 2005.

[18] D. Mishkin, J. Matas, and M. Perdoch. MODS: Fast and robust method for two-view match-
ing. CVIU, 141:81–93, 2015. URL http://dblp.uni-trier.de/db/journals/cviu/cviu141.

html#MishkinMP15;http://dx.doi.org/10.1016/j.cviu.2015.08.005.

[19] D. Mishkin, F. Radenovic, and J. Matas. Repeatability is not enough: Learning affine regions
via discriminability. In Proceedings of the European Conference on Computer Vision (ECCV),
pages 284–300, 2018.

[20] L. Moisan, P. Moulon, and P. Monasse. Automatic Homographic Registration of a Pair of
Images, with A Contrario Elimination of Outliers. IPOL, 2:56–73, 2012. ISSN 2105-1232. doi:
10.5201/ipol.2012.mmm-oh. URL http://www.ipol.im/pub/art/2012/mmm-oh/.

[21] L. Moisan, P. Moulon, and P. Monasse. Fundamental Matrix of a Stereo Pair, with A Contrario
Elimination of Outliers. IPOL, 6:89–113, 2016.

[22] J.-M. Morel and G. Yu. ASIFT: A new framework for fully affine invariant image comparison.
SIAM Journal on Imaging Sciences, 2(2):438–469, 2009.
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