André Göbel
email: andre.goebel@continental-corporation.com

Denis Claraz
email: denis.claraz@continental-corporation.com

A Multi-Core Basic Software as Key Enabler of Application Software Distribution

In the last 20 years, functional evolution in the automotive Powertrain has been motivated by three main pillars: low CO2 emissions, low particle emissions and increase of torque throughput. In addition to these permanent objectives (e.g. Euro 7 standard), new constraints are rising up, like integrated transmission systems, electrification, autonomous driving, connectivity as well as changed domain architectures.

Finally, new complexities have to be handled, which require today 6 times as much computation power as 15 years ago, when 32 bits controllers were introduced (e.g. former Motorola MPC 563 @ 40MHz). This demand is answered by the introduction of multi-core micro-controller architectures designed for the automotive environment. And the trend of requiring additional computation power will continue in the future where one might step forward towards more powerful multi-core or even many core systems. But the development of powerful hardware architectures does not release software architecture from careful usage of system resources. This is because a multi-core system can be used in an efficient way only if a high rate of parallelization can be achieved according to Amdahl's law [START_REF]Amdahls law[END_REF].

Even if AUTOSAR [4] allows a partitioning of software components (SWC) across cores, it does simply not consider a multi-core basic software (BSW) until today. Instead it phrases just concept ideas not realized in the standard. So it is the task of this paper to give an overview about the possibilities of the AUTOSAR standard and to sketch an alternate solution based on the AUTOSAR foundation offering a distributable BSW across cores which allows a distribution of not only a SWC but even the individual runnables of it. It will explain how the BSW itself is distributed, and how the access to the peripherals from different cores is made possible. Furthermore a concept of core abstraction will be described, allowing to share even the same task architecture between projects based on different micro-controllers. Consequently, the paper will propose a qualification of the BSW into 3 multi-core conformance classes.

The principles described in this contribution are applied in the daily work in our Powertrain projects, and are already in production since 2016 for a central Powertrain controller of a German OEM, and since 2017 for an engine system of a french OEM. At the date of publication, other engine systems applications and hybrid systems based on this concept are in production, and further ones are planned for 2018.

Index Terms-Multi-core, Real-time system, AUTOSAR, Automotive, Embedded software, BSW, Basic software, CPU-Load, Powertrain

I. MULTI-CORE NEEDS IN THE POWERTRAIN DOMAIN

A. Introduction

After introduction of the first 32bit automotive microcontrollers (e.g. Motorola MPC555, MPC563, Infineon Tricore TC1796) the hardware (HW) vendors answered to the growing computation needs with increasing clock frequencies, optimized architectures and dual controller solutions. Thus the power supplies and cooling efforts were similarly growing and the only way out was the introduction of dual-core and a bit later multi-core micro-controller architectures which offered the desired computation power basing on lower frequencies (e.g. Infineon Aurix TC2xx). In addition the hardware technology went down towards 40nm. In further evolution steps the HW architectures got optimized, but still needs to be optimized for the future again in order to react to the increasing computation demands one can see in a forecast to the next decade of Powertrain applications. So it can be estimated already today that the needed computation power in 2022 will be at least doubled compared to today. Nevertheless, multi-core architectures do not provide automatically a gain of performance, particularly for highly coupled systems with strong HW interaction as well as hard real-time requirements. It might even be counter-productive, if it is not properly handled. So it is essential for the effective usage of these architectures to achieve freely distributable Application SWC along cores by single runnables what has already been presented in a previous ERTS2 edition [START_REF] Claraz | Introducing multi-core at automotive engine systems[END_REF]. But for that a real multi-core BSW is required as a key enabler. Besides the main focus on efficiency, a maximum freedom in the allocation of the ASW runnables is required, knowing that many of them need an access to the HW peripherals. Of course, locking other cores while accessing the peripheral is not an option, like enforcing all ASW components with HW interface to be integrated on one and the same core.

B. The layered Architecture

A classical embedded software (SW), as it is defined for example by the AUTOSAR standard, is typically split into four main parts as shown in Figure 1:

• The high level applicative SW (ASW) which is designed in a way that it can be easily reused across system platforms, and across project configurations, e.g. for 4, 6 cylinders, gasoline, diesel or electric engines. The ASW is named as SWC according to AUTOSAR. • A runtime environment (RTE) which enables the interfacing in between SWC and BSW modules. • The BSW which enables the re-usability of ASW across different HW platforms. For that, the BSW gives access to the core services and peripherals, abstracting different micro-controllers as well as connected peripherals such as ASICs and FPGAs of different vendors. • The micro-controller hardware which is connected by the BSW towards RTE and application. From application point of view, it is a valid wish to run the software on the system independently whether it is a single or multi-core implementation. Anyway, it is not possible to fix a distribution from the beginning of the project, till the start of production, for various reasons. And it is even less possible to force a common core distribution between different projects using different HWs, following different schedules, but nevertheless sharing common SWCs. To reach Figure 2. Real Time Partitioning this goal, the SWCs are designed independently of any core association (but slightly prepared compared to legacy single core context), and a new process cares about the challenging multi-core issues such as increased scheduling complexity (parallelism, chaining, synchronization), increased integration complexity (1500 runnables to be integrated in 100 containers) and concurrent accesses to shared resources. On the one side, the concurrent accesses to shared memory, has been solved in the Powertrain domain of Continental by the introduction of an adequate and optimized process based on an automatic protection, new architectural concepts (like e.g. core synchronized transitions) and protecting the SW by the use of buffers [START_REF] Claraz | Introducing multi-core at automotive engine systems[END_REF]. So a slightly prepared software can be freely distributed across cores, tasks, as well as multiple contexts.

On the other side, the concurrent accesses to the shared HW peripherals is ensured by a well prepared BSW. This means in effect, the ASW will be free to access HW resources from many different places, in one or the other direction (input capture, output control) or sometimes a mixture of both.

D. Distributing Application and Basic Software

For efficient use of single, multi or even many core system it requires a powerful and flexible BSW which provides communication, diagnosis and input/output features to the application and which is scalable to all kinds of core configurations. In a simplified view the BSW connects the ASW to the hardware to allow a re-use of the ASW on different hardware platforms. In case the BSW is not well prepared for multi-core, and is accessible only from one core, one can easily end-up in a situation, where all ASW runnables which directly or indirectly access to a BSW interface and through it to a HW resource have to be located on the same core, where the BSW resides. This results in a long calculation chain and in strong integration constraints on the ASW runnables as already described in the introduction and shown in Figure 3. Furthermore, as many recurrences are required, like described in Figure 2, this may result in difficult interleaving situations. To avoid such inefficient situation, a real prepared BSW is required. But before defining this ideal multi-core BSW, one needs to understand the boundary conditions defined by the AUTOSAR standard. In addition the available micro-controller architectures along the used platform have to be considered.

II. FROM AUTOSAR TO A MULTI-CORE BSW

A. AUTOSAR versus Multi-Core

Originally AUTOSAR [1] was developed for single core control units, even if the standard considered to combine such ECUs with a bus system in between. Each control unit is defined to contain exactly one application running on one operating system (OS) instance. The first extension of the AUTOSAR standard concerning multi core was only supporting the distribution of the ASW to different cores. Thereby at least one OS-Application is allocated to one core and all items of a software component (runnables, non volatile data blocks, exclusive areas) need to be solely implemented with OS resources belonging to exactly this OS-Application. The communication in between should be done using the runtime-environment RTE / Inter OS Communication (IOC) and the BSW was assumed to run on a single core while all accesses shall be performed exactly by this core. The IOC is defined for that use case as highly generic mechanism offering a superset of functionality to cover all possible use cases. In a second evolution step [2] the AUTOSAR standard supports additionally the distribution of the BSW to different cores. With this extension, the Schedule Manager part of the RTE provides features for the cross core inter and intra BSW module communication. Additionally the MemMap specification [START_REF]Specification of memory mapping rev 4.2.2[END_REF] contained in the AUTOSAR standard from version 4.2.2 [3] onwards allows an allocation of symbols on different cores. This is an important prerequisite for a multi-core BSW. A drawback of this second evolution was the low profoundness of standardization. On the one hand this supports various vendor specific extensions but on the other hand it drastically decreases the interoperability and performance of BSW from different vendors in a multi-core ECU. The biggest problem remaining in the AUTOSAR BSW architecture is the synchronous architecture which leads to an interface design where it is expected that the called operations act immediately returning the final status. Instead multi-core requires asynchronous operation to avoid blocking of cores what is contradictive to the synchronous interface architecture of AUTOSAR. As a conclusion a rework of the interfaces towards asynchronous interfaces with according status operations or feedback signals would be required.

B. Capabilities of a pure AUTOSAR Implementation

Looking at the AUTOSAR standard there is a RTE defined to connect application and BSW to allow a mapping of interfaces in between the layers and even OS-Applications. This allows to distribute ASW to different control units to use the available computation power across the car in an efficient way as shown in Figure 4. But what is looking very promising on car level might tempt one to apply it inside a multicore micro-controller. But even if this is technically possible from AUTOSAR perspective by using one OS-Application per core, this shows various drawbacks such as high CPU load consumption, memory overhead or unnecessary blocking of cores or interrupts. Especially when considering a duplicated BSW (see Figure 5) one would cause access conflicts to the hardware as the BSW is simply existing twice. The CPU load would mainly be influenced in this scenario by the load on the bus system at the intersection of the individual cores towards the hardware resources.

To overcome this situation one would need to split the BSW into parts which are assigned to cores with individual OS-Applications still using the RTE provided communication according to Figure 6. This means, that the transfer of requests to the right core towards the BSW would be done using the RTE invoking IOC. This avoids access conflicts on the peripheral side, but still causes a high communication overhead in between the cores. A better alternative would be one of the following ideas:

• Transfer the application call chain to the core where the BSW resides (see Figure 3) • Transfer the call on BSW level as an implementation variant of the AUTOSAR BSW distribution specification The conclusions out of both approaches are on the one hand that the first idea is contradictive in terms of CPU load distribution across cores, causing high task response times until execution chains can be completed. On the other hand the second idea could not be exactly implemented as the standard describes. This is because AUTOSAR requires an identical behaviour of the almost synchronous interface operations independent of the listed call scenarios below:

• call on a single core system • call from the same core than the one the BSW resides • call from a different core than the one the BSW resides As a consequence, the synchronous operations defined in the standard would block several cores when getting called, what again has a high influence on the CPU load. As an example, a simple operation of the AUTOSAR PWM driver shall be used, namely Pwm SetDutyCycle(), what is specified in table Table I. Re-entrant for different channel numbers Description:

Service sets the duty cycle of the PWM channel.

Following the AUTOSAR specification it is mandatory to implement the operation as synchronous. That leads to the drawback that one needs to implement a blocking wait to the Pwm SetDutyCycle(). As shown in Figure 7, the ASW is allocated on Core 1 and needs to trigger a PWM output, using a distributed BSW. The ASW calls the according Pwm SetDutyCycle() operation, which then needs to transfer the control flow to core 2, which is in the given example the BSW core. The operation on core 1 then waits for completing the triggered action on the BSW core which receives and processes the request in parallel. Afterwards an according status will be set to notify the interface operation on core 1 that the operation is finished which then can unlock the "blocking wait" and continues to operate. The drawback is obvious as two cores are blocked and no parallel execution can take place at this time. This is especially difficult in co-operative or partly pre-emptive task environments which are typically used in Powertrain applications. Only pre-emptive environments using extended tasks could help here paying the price with a high CPU load and memory overhead for the additional operating system features reducing the "symptoms" (instead of the root cause) of the blocking wait. Furthermore, extended tasks and therefore wait states, are not an option for robustness reasons. Instead it is better to solve the root cause by generally preventing "blocking waits" by the architecture definition even if the implementation then does not comply to the AUTOSAR standard any more.

C. The ideal Basic Software

Keeping the vision of distributing the application by runnable to different cores one needs to have an ideal BSW which can be called from any core without taking care on which core it is really running on. This for sure needs to be done without duplicating the BSW according to Figure 5 but instead creating a BSW which offers interfaces on any core implementing a kernel on a single core only. In between Figure 8. Access to the ideal Basic Software the interfaces and the kernel the control and data flow can be realized using a module specific implementation for an optimal core resource consumption. Thus the BSW is reachable by any core without the need of routing the transfer by the RTE and bypassing the OS-Application approach. That is as shown in Figure 8. For that purpose it is first of all important to identify which BSW modules have to be reachable across cores and which ones can remain as single core module following the AUTOSAR defined architecture as shown in Figure 9 . This is important as some BSW modules might be finally offered on one core only as these are acting on hardware peripherals which have to be accessed exclusively. For all BSW modules identified as multi-core 1) The first BSW paradigm -A Blockade Free BSW: Generally an ideal realization requires that the BSW runnables can be triggered asynchronously to avoid any kind of spinlock situations. So, all synchronous operation calls need to be considered as a simple buffer access. All asynchronous operation calls need to be treated as requests to be queued to the kernel all blocking synchronized operation calls need to be migrated towards asynchronous operations with an according feedback signal. Out of that considerations the following two generic design patters are derived:

• Direct data (or peripheral) access for synchronous reading and writing of data • Passing control (and data) flow for asynchronous actions with optional feedback While the first design pattern for direct data access shall be applied especially for BSW drivers providing or writing atomic data such as ADC or DIO, what is shown in the Adc ReadGroup() example Figure 10. It can also be applied for drivers writing non atomic data such as SPI where a collision during the write and read is very unlikely. For the SPI case it might be required to introduce a semaphore to avoid data inconsistency in the unlikely case of a collision.

The second design pattern for passing control and data flow with optional feedback is ideal for solving the PWM implementation issue (see Figure 7) as it decouples the ASW control flow from the driver operation performing the final output as shown in Figure 11. As a precondition the ASW SWC calling the Pwm SetDutycycle() shall not perform an action which depends on the finished PWM output. In other words the application shall not expect that the PWM operation Figure 10. Direct Data Access using Adc ReadGroup() is synchronously finished. If the application instead needs to be notified about the finished PWM output an according feedback signal needs to be used which can be generated at the PWM edge the value is transferred to the output peripheral. This feedback signal would then start a system event (task) on a defined core according to Figure 12. 2) The second BSW paradigm -An optimal cross Core Communication: This paradigm requires to implement the design patterns out of the first paradigm to realize a management of data and control flow across cores. The multi-core mechanisms and design patterns derived have to be carefully used as too much protection can again have a negative impact on the overall CPU load and memory consumption. So any multi-core pattern shall be used in a minimal scope only (e.g. just protecting a minimal amount of C instruction inside a function). Furthermore the implementation of the multi-core mechanisms shall cover a small set of use cases only to be optimized for exactly one purpose to gain much better performance than globally designed mechanisms like IOC. As a consequence a set of multiple design patterns and library implementations is required to cover the required use cases of a multi-core BSW. So, as one typical example, a hardware optimized message passing mechanism, named "MEPA" is available in the Powertrain platform as alternate to generic mechanisms such as the AUTOSAR IOC. MEPA offers the following send operations:

• Transfer a control flow to another core • Transfer a control flow extended by a simple 32bit variable • Transfer a control flow extended with a pointer to a user specific data package On receiver side one can either:

• Trigger an interrupt containing the receiver code • Trigger a system event (task)

• Poll the event in a recurrent time grid Thereby the order of incoming messages is kept and so the inputs are serialized. Furthermore the channels are individual for each BSW module, means there exists at least one channel per BSW module. Implementing all user operations on receiver side on the same interrupt or task level one can furthermore save efforts for re-entrancy protection as the tasks or interrupts can not interrupt themselves. So disabling interrupts is simply not required any more.

D. BSW Design for Multi-Core

To map the right functionality on the right core, the BSW has to be analysed following the AUTOSAR stack approach in order to identify which of the BSW modules are interfacing to other clusters or ASW software components. Additionally, it needs to be analysed, which BSW modules are used inside an AUTOSAR stack only. For that purpose the considerations shown in Figure 9 shall be re-used. Doing that, it needs to be respected that clusters or even parts of a functional stack shall be distributable across cores. Out of the analysis the following BSW multi-core types can be derived:

• Type 1: BSW modules with interfaces available on any core and one kernel on a single core (e.g. DEM, FIM, MCAL drivers) • Type 2: BSW modules with a distributed kernel executed per core (e.g. DIO, exception handler, interrupt driver, watchdog) • Type 3: BSW modules available on a single core only (e.g. flash driver), the interfaces are not globally available The transfer of data and control flow in between the BSW interfaces and cores is realized according to the multi-core paradigms inside the relevant BSW modules or at least inside the BSW stack. So any kind of control flow transfer is realized Figure 13. BSW Multi-Core approach as trigger with optional feedback, and any simple data transfer is realized as a kind of atomic (not interruptible) access as sketched in Figure 13. According to that, it is possible that any user can call the BSW directly without taking care about the core on which it is finally executed.

E. BSW Examples

Before giving a set of examples related to the previously defined BSW multi-core types it has to be considered that there is no 1:1 mapping in between a function stack or cluster to exactly one multi-core type. Instead it is typically a combination of multiple types. So it is important to design the function stack or cluster in a way that all interfaces towards other BSW function stacks, BSW clusters or SWC comply to type 1 and 2. Instead type 3 shall be used inside the function stack or cluster only. Finally the following three typical examples shall be given:

1) Example 1 -Memory Stack -Type 1 and Type 3: The Memory Stack (MEM) is required for any kind of memory reprogramming. The non-volatile memory manager (NVM) especially cares about the storage of data for usage during the following driving cycles. The NVM interfaces are required at any core and are provided as global (shared) code. Instead the kernel is in local scope of core 1. The used modules such as FEE and FLS are available on this core exclusively. This ensures that the data flash consistency can be managed on NVM kernel level. The NVM architecture shown in Figure 14 visualizes the usage of the MEPA service which is used to transfer the incoming requests of the consumers to the NVM kernel. The requests then are polled by the kernel in a defined recurrence, e.g. for writing "on the fly data" to the data flash. If desired the consumer can be notified about the finished request by using a MEPA callback, which this time triggers an according feedback task.

2) Example 2 -Communication Stack -Type 1 and Type 3: The communication stack provides communication services towards the application, where the COM interfaces for intersystem-communication need to be provided on any core. The kernel implementation and even specific networks such as 15 the central part is the PDU router which is generated per core, routing the messages in between the different networks, the COM as user interface and the diagnostic communication manager (DCM). The PDU router consists finally of core individual local implementations using the MEPA service in between to cross the core boundaries. The network stacks (e.g. CAN, Flexray, Ethernet) are provided as core local implementations not accessible by other cores as the only interface exists towards the PDU router. The DCM is also connected to the PDU router, but allocated on the same core than the network used for diagnostic communication. This is to reduce the amount of messages and so the CPU load consumption of interrupts which would be required to transfer the calls across core boundaries. The COM module is available as global (shared) code which is scheduled per core with an individual message configuration. So finally the messages are routed via PDU router and COM to the correct SWC. 3) Example 3 -MCAL -Type 2 and Type 3: The MCAL (Micro Controller Abstraction Layer) provides basic functions such as ADC, PWM, Digital I/O etc. which have to provide interfaces to any core (see Figure 16). The ADC module is implemented providing user interfaces as global (shared) code which can be executed on any core providing access to the acquired ADC values. The ADC kernel instead is provided core local and called by a task to recurrently trigger the auto-scan conversion. The PWM instead is implemented basing on MEPA, similarly to the NVM shown in example 1 and is already sketched in the chapter "The first BSW paradigm -A Blockade Free BSW". The DIO driver is a special case, as the overhead of implementing any multi core implementation would cause much more CPU resource overhead as the resulting bus conflicts in case of concurrent accesses in between the cores. So each core calls a global (shared) code of the DIO module which then directly accesses the hardware peripheral, as the peripheral can be accessed in an atomic way.

III. CORE ABSTRACTION AND MULTI-CORE CONFORMANCE CLASSES

A. Abstracting Cores

To make the BSW and application more independent a further valuable step is to introduce a core abstraction approach that allows a core clustering to separate calculation domains, e.g. for the purpose of integrating different products to one box, as engine and transmission control, or to separate computation clusters depending on the HW implementation. Furthermore it helps the ASW and BSW developers to think independent of the core which is typically linked to a hardware implementation as the same core number could have a different meaning and available features on a different HW. To distinguish and identify the cores, the core abstraction defines an own naming scheme consisting of two characters. The first character defines the calculation domain with the values 'A' to 'Z', while the second character defines the abstract core number from '0' to '9'. Typically a multi-core micro-controller consists of one domain 'A', with e.g. 3 cores, but there might be future architectures providing several domains, like caused by a hardware bridge in between two groups of cores. As a typical example of today's multi-core architectures three abstract cores are integrated in one calculation domain with according attributes what are:

• A0 -Safe Core with safe and unsafe partitions for safety related ASW and BSW • A1 -Unsafe communication core • A2 -Unsafe alternate core The application and BSW is assigned to the cores basing on affinities to e.g. distribute the BSW load or to ensure that safety software is calculated on a lock-step CPU. On the ASW side, this abstraction concept allows to share the same architecture (task system) between projects using different controllers, where for example, not all cores have the same level of safety. With the core abstraction one can assign SWC and BSW modules already on platform level and manage a generic project architecture. This enables a good overview about the correctness of ASW and BSW mapping in a given project. The abstract definition now needs to be transferred to the real project HW by assigning abstract to physical cores such as shown in the example below for an Infineon TC29x:

• A0 -mapped to core 1 as this core has a lock-step feature required for safety implementations • A1 -mapped to core 0 • A2 -mapped to core 2 The core abstraction can be used furthermore when integrating several different applications to a multi or many core system such as a combination of a transmission and engine system using for example a calculation domain A and B. So a flexible mean is provided to develop ASW and HW independent BSW services independent of the physical hardware.

B. AUTOSAR Implementation-Conformance-Classes (ICC)

As a starting point of the definition of multi-core conformance classes for BSW the AUTOSAR defined implementation conformance classes (ICC) shall be used, which are defined as follows:

• In an ICC1 BSW, only the interfaces to the SWC (routed via RTE) are defined. The internal architecture is up to the vendor. • In an ICC2 BSW, the architecture down to the function stacks and their interfaces is defined, what allows an exchange of internal solutions with a 3rd party. • In an ICC3 BSW, the architecture is defined down to the implementation of a BSW module what allows an exchange on module level. There is no freedom of implementation.

While the ICC3 level allows more flexibility for the OEM in the selection of SW vendors to have a maximum exchangeability between different software vendors, ICC1 allows more freedom of implementation, and therefore more optimization possibilities for the BSW supplier. For functional domains, with tight real time constraints, the ICC2 approach is a good balance between these contradictive requirements of performance vs. modularity.

C. Multi-Core Conformance Classes

Similarly to the ICC classification, a proposal of multi-core conformance classification (MCC) is made: It corresponds to different implementation levels of multi-core concepts, from low to high level of achievement. The objective here is not on modularity / re-usability point of view like the implementation conformance classes (ICC), but rather on the efficiency and abstraction, for the "customers" of the BSW layer (e.g. ASW SWC, BSW Complex Device Drivers (CDD)) towards their multi-core constraints. Basically, if the AUTOSAR approach is motivated by a better reuse and exchange of SW-components, across OEMs, across suppliers, across ECUs as well as across domains it is not acceptable that these components have any core related configuration. For instance, it is not acceptable that a SWC has any requirement vs. a given core identifier or architecture. Even for pure internal reuse across projects of the same domain (e.g. engine control), it must be possible that a component is reusable between a low end system based on a dual core (e.g. Infineon Aurix TC26x) and a high end system based on a 6 core controller (e.g. Infineon Aurix TC39x). As in a functional domain like engine control, the functions are highly coupled, ahead of the individual components, one also needs to share the same overall ASW architecture across these different platforms: The coupling, and therefore the integration constraints between the functions are independent of the underlying HW and BSW. Therefore, the following levels are defined:

1) MCC1 -Core specific BSW: The complete BSW is allocated on one Core, and accessible only there. An operating system (OS) and some basic services are nevertheless available on the other cores, so that ASW can already be scheduled on these other cores, under the condition that it does not use BSW services. Depending on the typology of the application, this could be an acceptable constraint or not. For applications highly decoupled with the HW, with limited and localized BSW interfaces, relaxed real time control, but high computation power need, this MCC1 level might be sufficient. When many different and coupled functions are interfacing the BSW (for inputs, outputs, diagnosis, etc...), this is more difficult, and leads to a lot of chaining across cores (Figure 3), as the BSW "affinity" conflicts with the "sequence constraints" between functions. Obviously, this ends-up in a strong constraint on the ASW integration, and an inefficient SW. A phase concept has been developed (see Figure 17), which Figure 17. Phases in a 10ms Task standardizes sequences and fix acquisition and command phases [START_REF] Claraz | Deterministic Execution Sequence in Component Based Multi-Contributor Powertrain Control Systems[END_REF]. It could fit to such MCC1 architecture, but it is more a functional view, and in reality exchanges with the BSW are distributed over the complete sequence. But note that there could be a MCC1 case, where only one core, out of all cores of the controller, can be used by the ASW. This might be an intermediate step in the introduction of multi-core, or even an architectural choice, when a high end controller is used for e.g. increased ROM demands rather than computation power. 2) MCC2 -Distributable BSW: The BSW can be distributed across cores, and the BSW interfaces are available on all cores. In this case, the ASW components can be located on any core, reaching to a high level of flexibility: Typically, an ASW component controlling a PWM does not need to be integrated on the same core, where the PWM driver is integrated. Furthermore, two different ASW components controlling two different valves through PWMs do not need to be integrated on the same core, although they are addressing the same driver and the same HW. The Figure 19. MCC2 BSW with Focus on Functional Coupling excluding BSW driver takes care of the possible conflicts. With such a MCC2 BSW, the freedom for ASW runnables integration is high, and one can concentrate on the pure functional and data flow constraints. Of course, the level of freedom one can achieve here, depends on the underlying cross core communication overhead (e.g. buffering, interaction, locking, synchronization, ...) or an acceptable asynchronism. For the majority of cases, like PWM commands, ADC inputs, and many more, this overhead, or asynchronism is fully acceptable. For some others, not. For the more complex real time functions like the acquisition of the engine speed (precision required in a time resolution of a few microseconds), the decoupling is not affordable. For other functions the link to the HW is not motivated by the real-time constraints, but by the availability of some HW feature on a given core: such as cores equipped with a double precision floating point unit, cores with lock-step (checker) capability for safety implementations etc.

3) MCC3 -Abstracted BSW:

The BSW provides an abstraction of the cores, which eases the handling of diversity between cores, and controllers. For instance, even in the same controller family (e.g. Infineon Aurix), the cores are not equivalent (not full symmetric architecture): one core is usually more suited to access the HW peripherals, one is more suited to computation, not all may reach the same frequency, have the same performance index. It ends up in a situation where the best location for the BSW interrupts is core 0 for one controller, but core 1 for another controller of the same family. Similarly, safety relevant functions which have to be executed under the control of a checker core have to be located on core 0 on one controller, but core 1 on another one. The consequence of such situation (i.e. diversity of controller architectures) is a variety of ASW architectures, as the core allocation of the ASW functions finally might get influenced by the controller architecture. Therefore, to reduce this effect, a core abstraction concept as shown before allows to share the same ASW Architecture (i.e. task system) for different projects based on different controllers. Abstract cores (SW cores) are decoupled from real physical cores (HW cores), and a mapping is established between them. Out of the defined MCC one can easily apply the definition • MCC1 is applied to all BSW modules which are intended for the purpose of raw access to memory devices such as flash drivers, memory tests etc. So it is required that one interface level above performs the core abstraction. • MCC2 is applied to BSW which needs to access HW peripherals or core registers and therefore needs to know on which core it is operating such as typical MCAL drivers. Call-outs and interrupts need to be configured to the correct physical core. • MCC3 is applied to BSW which does not access HW and so does not need to know on which core it is integrated to. Call-outs and interrupts are routed to the according core defined by the core abstraction set-up of the project.

Figure Figure 21 shows the assignment of MCC to the AUTOSAR architecture.

D. Achievements with Core Abstraction and MCC

Of course, the shown ideas of core abstraction and multicore conformance classes (MCC) is standardized in our organization, but may be adapted to answer a particular project request. This approach allows also to handle the diversity across HW families and controller suppliers. The same principle applies for all new families, and allows an extension to upcoming hardware architectures with 6 or even more cores. As an ultimate goal of the core abstraction, it is intended that the ASW is more and more integrated according to recurrence 17), more and more independently of core considerations. "Meta"-containers are defined, which contain a chain of tasks executed in sequence and on different cores. In some rare cases, core affinities can be specified which may influence the targeted task (core). In this exceptional case, an affinity versus a specific feature of the core is specified, not to a special core identifier (which may not apply on a different controller). For instance, affinity to an active checker core, to a double precision FPU, etc. may be specified.

IV. SUMMARY AND OUTLOOK

A. Conclusion

Using efficiently multi-core micro-controllers one can not directly apply the AUTOSAR standard to all ASW SWCs and BSW modules. This is because the standard does not allow a proper distribution of software across cores what would decrease the degree of parallelization according to Amdahl's law [START_REF]Amdahls law[END_REF]. But to distribute the software one needs first an ASW which allows a core distribution by SWC runnable to keep calculation chains, and second a BSW which is accessible on all cores with an identical interface behaviour. This BSW architecture replaces several synchronous operations by asynchronous ones exactly at the point the core boundary needs to be crossed. Doing this the BSW also takes care about serialization of requests coming from runnable sequences of different cores which could request concurrent access to the BSW. The price for that is to leave the ICC2 interface compliance which then needs to be resolved by a kind of interface abstraction if the exact AUTOSAR behaviour is demanded by the user software, e.g. in case of 3rd party or OEM solutions. At the end, both kinds of software can be found inside the Powertrain platform of Continental used in current products which are already used in series production of several OEMs with well balanced ECUs regarding core resource consumption according to Figure 22.

Besides the final implementation and the performance optimal solution it is important to provide an architecture which is understandable and re-usable. For that purpose the core abstraction is introduced to stop the thinking in certain cores but instead understanding the needs a software has towards the system it is running on, which are mainly functionally driven. So it is obvious to introduce so called "Multi-Core Conformance Classes" (MCC) to be assigned to BSW modules or stacks what indicates to the "customers" of the BSW what the BSW is able to offer in terms of multi-core compliance. Such is especially interesting as sometimes 3rd party BSW solutions have to be applied which are -unfortunately -mostly usable on single cores only. So one can easily equip the AUTOSAR architecture with a MCC tag to describe the needs and multi-core compliance of a given platform.

B. Future Steps

Unfortunately today there still exists a restricted vision of what can be done with multi-core micro-controller and software architectures. Thus only a few software vendors acting in the domain of Powertrain including the ones offering shared services such as operating systems and communication solutions provide according multi-core solutions to the market. Therefore it is highly appreciated that the AUTOSAR consortium launched a work group in the work package architecture (WP-A) with the goal to rework the multi-core distribution of BSW (WP-A MCBD) where the concepts of a real multi-core implementation shall be brought up to the standard. This shall be done by driving the standard introducing the ideas sketched within this paper.

Figure 1 .

 1 Figure 1. The ICC3 AUTOSAR BSW

Figure 3 .

 3 Figure 3. A possible but inefficient Solution

Figure 4 .Figure 5 .

 45 Figure 4. Software Distribution across Control Units using AUTOSAR

Figure 6 .

 6 Figure 6. Software Distribution across Cores using AUTOSAR RTE

Figure 7 .

 7 Figure 7. Blocking Behaviour of AUTOSAR PWM

Figure 9 .

 9 Figure 9. Core Scope of BSW Modules relevant one needs to decide for an according implementation behind the user interface which ensures a suitable cross core communication. For that purpose, a set of generic libraries is offered which provides a generic implementation of according multi-core mechanisms to the BSW modules. But for what kind of implementation one shall decide? And what paradigms shall be used as basis for the design choice?

Figure 11 .

 11 Figure 11. Pwm SetDutyCycle() as Fire & Forget

Figure 14 .

 14 Figure 14. Memory Stack -NVM Architecture (simplified)

Figure 15 .

 15 Figure 15. COM Stack Architecture (simplified)

Figure 16 .

 16 Figure 16. MCAL Peripheral Driver Example (simplified)

Figure 18 .

 18 Figure 18. Distribution of a Calculation Sequence on a MCC1 BSW

Figure 20 .

 20 Figure 20. MCC3 BSW with Core Abstraction for free Core Distribution to the AUTOSAR architecture following the listed rules:

Figure 21 .

 21 Figure 21. AUTOSAR Architecture with assigned MCC

Figure 22 .

 22 Figure 22. Core Performance of current Projects

Table I AUTOSAR

 I PWM SETDUTYCYCLE OPERATION

	Service Name:	Pwm SetDutyCycle
	Reference:	SWS Pwm 00097
	Syntax:	Pwm SetDutyCycle(
		Pwm ChannelType ChannelNumber,
		uint16 DutyCycle)
	Sync/Async:	Synchronous
	Re-entrancy: