
HAL Id: hal-02156233
https://hal.science/hal-02156233

Submitted on 14 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Multi-Core Fault Tolerance Approach Based on
Coded-Processing

Lukas Osinski, Ralph Mader, Jens Harnisch, Jürgen Mottok

To cite this version:
Lukas Osinski, Ralph Mader, Jens Harnisch, Jürgen Mottok. A Multi-Core Fault Tolerance Approach
Based on Coded-Processing. ERTS 2018, Jan 2018, Toulouse, France. �hal-02156233�

https://hal.science/hal-02156233
https://hal.archives-ouvertes.fr


A Multi-Core Fault Tolerance Approach Based on
Coded Processing

Lukas Osinski∗, Ralph Mader†, Jens Harnisch‡ and Jürgen Mottok∗
∗Laboratory for Safe and Secure Systems - LaS3

Technical University of Applied Sciences Regensburg, Germany,
{lukas.osinski, juergen.mottok}@oth-regensburg.de

†Continental AG, Regensburg, Germany,
ralph.mader@continental-corporation.com
‡Infineon AG, Munich, Germany,

jens.harnisch@infineon.com

Abstract—Development trends for computing platforms moved
from increasing the frequency of a single processor to increasing
the parallelism with multiple cores on the same die. Multiple
cores have strong potential to support cost-efficient fault tolerance
due to their inherent spatial redundancy. This work makes
a step towards software-only fault tolerance in the presence
of permanent and transient hardware faults. Our approach
utilizes software-based spatial triple modular redundancy and
coded processing on a shared memory multi-core controller. We
evaluate our approach on an Infineon AURIX TriBoard TC277
and provide experimental evidence for error resistance by fault
injection campaigns with an iSystem iC5000 On-chip Analyzer.

Index Terms—Fault Detection, Triple Modular Redundancy
(TMR), Fault Tolerance, Multi-Core, Coded Processing, Shared
Memory, Spatial Redundancy

I. INTRODUCTION

Development trends for computing platforms moved from
increasing the frequency of a single processor to increasing
the parallelism with multiple cores on the same die [1].
Although, chip-multiprocessors (CMP) present new develop-
ment challenges, they have strong potential to support cost-
efficient fault tolerance due to their inherent spatial redun-
dancy. Suitable approaches could counteract the rising fre-
quency of transient and permanent errors in memories [2] and
CPUs [3]. Fault tolerance requires at least error detection and
recovery [4]. In gerneal, detection and recovery from random
hardware faults is realized by combinations of information
redundancy (e.g. ECC), temporal redundancy (e.g. rollback)
and spatial redundancy (e.g. triple modular redundancy) [5].
Classic and effective hardware-based approaches for detect-
ing random hardware faults exploit fully replicated cycle-by-
cycle synchronized hardware components (e.g. lockstepping)
or specifically hardened hardware components. However, these
approaches introduce higher costs and do not allow a flexible
program execution environment where legacy binary code
and redundant code can co-exist depending on the required

The authors gratefully acknowledge the financial funding from the Bay-
erische Forschungsstiftung (BayFor), research initiative FORMUS3IC ”Multi-
Core safe and software-intensive Systems Improvement Community” under
funding code AZ-1165-15.

level of reliability. Software-based approaches could lower
costs and increase flexibility by achieving fault tolerance via
software-only methods. However, in spite of experimental
studies clearly indicating the occurrence of permanent and
intermittent errors, most concepts assume only transient errors.

II. OUR CONTRIBUTION

We present a software-based redundancy approach which
provides resilience against soft errors and makes a step towards
fault tolerance in case of permanent random hardware faults at
application level. Our approach utilizes software-based triple
modular redundancy and coded processing while taking in the
advantage of the inherent spatial redundancy of CMPs. The
key contributions of this paper are:

• A performance optimized-software only fault tolerance
approach for shared memory multi-core controller based
on coded processing

• A fault tolerance approach which attains real-time re-
quirements by utilizing the inherent spatial redundancy
of CMPs

• A conept towards detection (and recovery) of permanent
hardware faults

III. SOFTWARE-BASED FAULT TOLERANCE APPROACH

Coded processing is an encoding scheme based on the
theory of arithmetic codes and is in general limited to integer
arithmetic. Arithmetic codes exploit information redundancy,
i.e., additional bits are required to store an encoded integer.
There exist different strategies and coding rules for the imple-
mentation of arithmetic encoding which differ mainly in their
supported arithmetic operations and their coverage with regard
to the fault model. The simplest representative of arithmetic
codes is called AN-encoding. With AN-encoding, an integer
n is encoded by multiplying it by a constant A. The resultant
integer n̂ = A ∗ n is called a code word. If a hardware error
alters the code word n̂, it becomes an invalid word with high
probability. If n̂ still represents a code word, n̂ mod A equals
0; if the result of the operation is unequal to 0, a hardware
error is detected. To decode the code word, a division n̂/A



TABLE I
STATE OF THE ART - GAP ANALYSIS

Source-Level Task-Level Proposal

Fault Model
Transient X X X

Intermittent X X X

Permanent X X X2

No Protection Gaps X X X

Realtime Requirements X X1 X

Negligible Overhead X X3 X

Fault Diagnosis X X X

Fault Tolerance
Error Detection X X X

Recovery X X1 X2

Spatial redundancy X X X
1 Increase of the Worst Case Execution Time due to rollback recovery and
sequential task exeuction
2 Conceptual work in progress
3 In terms of execution time overhead

is performed. AN-encoding supports all relevant operations
including the division. However, some operations (e.g. bit-
wise operations) require more sophisticated implementations
which can hamper performance and/or require intermediate
decoding of operands. Furthermore, with AN-encoding control
flow errors and erroneous or lost data access is not detected.
To detect these types of errors, variants of AN-encoding
were developed, namely ANB- and ANBD-encoding. ANB-
encoding introduces the static signature B which allows the
determination of the identity of the data [6]. As a result,
swapped data/operations and control flow errors can be de-
tected. As a drawback ANB-encoding loses the support for
the division operation due to the associated complex signature
calculation. To allow the detection of a lost update, i.e., in
case a store operation was omitted, the additional dynamic
signature D is introduced. ANBD-encoding provides very high
fault coverage, but if applied on source-level, it incurs very
high penalties regarding execution time since more computa-
tional effort is required for execution the encoded operations.
Execution time penalties range form 6x (AN-encoding) [7]
up to 250x (ANBD-encoding) [8] compared to unencoded
execution. This fact makes encoding on source-level - in
combination with further drawbacks (see Table 1) impractical
for most use cases with real-time requirements.

A key mechanism to achieve fault tolerance, i.e., error detec-
tion and recovery within a system, is redundancy respectively
the replication of components in e.g. hardware: processors,
memory; or software: entire programs or parts of it [5]. A
widely used paradigm for fault tolerance is represented by the
triple modular redundancy (TMR) pattern. TMR uses three
identical elements which perform the same operation. After
completing the operation, a voting element compares the three
results and selects the correct one by majority [5]. TMR is -
besides the higher costs in terms of resources - a powerful
approach because it not only detects that a fault occurred,

t

Core 3

Core 2

Core 1 T 1
1,1 T 1

2,1 T3,1

T 2
1,1 T 2

2,1

T 3
1,1 T 3

2,1

V 1
1,1D C D C

D C D C

D C D C

V 1
1,2

Fig. 1. Spatial Triple Modular Redundancy in Combination with Coded
Processing

but is also capable of identifying the faulty component [5].
Furthermore, it contributes to a higher system availability,
since the system can continue the execution by masking the
faulty element. The weak spot of TMR, if realized completely
in software, is the majority voter. It depicts a single point
of failure (SPOF) and therefore has to meet high reliability
requirements. To eliminate this SPOF, Ulbrich et al. describe
a Combined Redundancy (CoRed) approach for single-core
systems [9]. CoRed protects an application by software-based
triple modular redundancy on task-level and applying ANBD-
encoding to increase the reliability of the software voting.
Computational tasks are executed sequentially on a single core,
followed by a voting task. On task entrance, the previously
encoded values are decoded to reduce execution time penalties
- caused by encoded operations - to a negligible level. On task
exit the values are encoded and the voting is performed. Dur-
ing the time-span where values are processed unencoded, the
execution is protected by redundant task execution. The voting
is performed on encoded values to enable error detection
during the voting process and fault tolerance by subsequent
rollback recovery. Experimental evaluation by fault injection
showed full single and dual bit-flip coverage [9]. Drawbacks
of this approach are e.g. increased Worst Case Execution Time
due to temporal redundancy (sequential task execution) and the
lack of permanent fault coverage due to a single-core approach
(see Table 1).

In our approach (see Figure 1), we extend the CoRed
scheme, to exploit the inherent spatial redundancy of multi-
core systems to meet realtime requirements and make a step
towards permanent fault coverage. Similar to CoRed, task
values are decoded on task entrance, encoded on task exit
and voting is performed on encoded values. We distinguish
ourselves from CoRed by executing the computational tasks on
a multi-core controller in parallel. This minor adaption leads
to extensive changes in the encoding and execution scheme:

• Static and dynamic signature handling in tasks and voter
• Memory partitioning for storage of encoded values
• Introduction of fault diagnosis for tasks and voters
• Recovery mechanism for errors in the voting procedure
In the full paper we will describe our concepts as well as the

necessary adaptions and mechanisms in detail. Furthermore,
extensive evaluation results will be presented.

IV. EVALUATION

To evaluate the effectiveness of our approach we realized it
on an Infineon AURIX TriBoard TC277 with Erika Enterprise
2.7.0 running. In the full paper we provide experimental



evidence for the fault detection and recovery capabilities
by presenting extensive results of fault injection campaigns
performed with an iSystem iC5000 On-chip Analyzer. The
On-chip Analyzer injects single bit fault in CPU registers and
memory cells which trigger the software-level symptoms of
our fault model. For demonstration purposes our approach will
be applied to an automotive architecture.

REFERENCES

[1] G. Macher, A. Höller, E. Armengaud, and C. Kreiner, “Automotive
embedded software: Migration challenges to multi-core computing plat-
forms,” in 2015 IEEE 13th International Conference on Industrial Infor-
matics (INDIN), Jul. 2015, pp. 1386–1393.

[2] E. B. Nightingale, J. R. Douceur, and V. Orgovan, “Cycles, Cells
and Platters: An Empirical Analysisof Hardware Failures on a Million
Consumer PCs,” in Proceedings of the Sixth Conference on Computer
Systems, ser. EuroSys ’11. New York, NY, USA: ACM, 2011, pp. 343–
356.

[3] M.-L. Li, P. Ramachandran, S. K. Sahoo, S. V. Adve, V. S. Adve, and
Y. Zhou, “Understanding the Propagation of Hard Errors to Software
and Implications for Resilient System Design,” in Proceedings of the
13th International Conference on Architectural Support for Programming
Languages and Operating Systems, ser. ASPLOS XIII. New York, NY,
USA: ACM, 2008, pp. 265–276.

[4] A. Avizienis, J. C. Laprie, B. Randell, and C. Landwehr, “Basic concepts
and taxonomy of dependable and secure computing,” IEEE Transactions
on Dependable and Secure Computing, vol. 1, no. 1, pp. 11–33, Jan.
2004.

[5] K. Echtle, Fehlertoleranzverfahren, 1990.
[6] U. Wappler and M. Muller, “Software Protection Mechanisms for De-

pendable Systems,” in 2008 Design, Automation and Test in Europe, Mar.
2008, pp. 947–952.

[7] D. Kuvaiskii and C. Fetzer, “Delta-Encoding: Practical Encoded Pro-
cessing,” in 2015 45th Annual IEEE/IFIP International Conference on
Dependable Systems and Networks, Jun. 2015, pp. 13–24.

[8] U. Schiffel, “Hardware error detection using AN-codes,” 2010.
[9] P. Ulbrich, “Ganzheitliche Fehlertoleranz in eingebetteten Softwaresyste-

men,” Ph.D. dissertation, 2014.


	Introduction
	Our Contribution
	Software-based fault tolerance approach
	Evaluation
	References

