Lukas Osinski
email: lukas.osinski@oth-regensburg.de

Tobias Langer
email: tobias.langer@oth-regensburg.de

Ralph Mader
email: ralph.mader@continental-corporation.com

Jürgen Mottok
email: juergen.mottok@oth-regensburg.de

Challenges and Opportunities with Embedded Multicore Platforms A Spotlight on Real-Time and Dependability Concepts

Keywords: Multicore, dependability, scheduling, real-time, parallelism, arithmetic encoding

Multi-and many-core systems on chip provide an even share of opportunities and challenges regarding the design of modern embedded systems. The FORMUS 3 IC research group is dedicated to investigate these problems and provide novel holistic ideas and solutions for the design process of automotive and avionic applications alike.

An extract on new concepts conceived in the context of this project regarding real-time systems and dependability is presented. Furthermore, follow up steps in the development process of these concepts are discussed.

In the domain of scheduling, the application of a gangbased scheduling concept for real-time systems is proposed and discussed. This concept aims to allow multithreading in the context of real-time system.

Regarding dependability, a fault-tolerance concept based on triple modular redundancy and arithmetic encoding is described. Furthermore, evaluation via fault injection is described and the conceptional work for the fault injection back-end is provided.

I. INTRODUCTION

The availability of affordable and highly reliable multi-and many-core processors has impacted embedded system design considerably. In particular the automotive domain benefits from these great possibilities. Powerful systems, perfectly equipped for the radical changes the automotive industry by emerging topics such as autonomous driving, sensor fusion and new powertrain technologies can be realized.

Simultaneously, the availability of well-established programming languages and frameworks for parallel platforms render the development of parallel software quite attractive.

The authors gratefully acknowledge the financial funding from the Bayerische Forschungsstiftung (BayFor), research initiative FORMUS 3 IC "Multi-Core safe and software-intensive Systems Improvement Community" under funding code AZ-1165-15.

The universities OTH Amberg-Weiden, Friedrich-Alexander-Universität at Erlangen-Nürnberg, TH Ingolstadt, HS München, TH Nürnberg and OTH Regensburg are the network scientific partners of the Laboratory for Safe and Secure Systems (LaS 3) community.

Industrial partners are Airbus, Audi, Continental, Elektrobit, Infineon, iNTENCE, Timing Architects and XKRUG Using languages, such as OpenMP [START_REF] Dagum | OpenMP: An industry standard API for shared-memory programming[END_REF], the development of new parallel software systems and the parallelization of existing software get less time intensive and error prone than manual parallelization approaches, thus, promising performance gains by a reasonable price.

The availability of dependable processing power and its subsequent exploitation, come with their own share of challenges regarding the whole process of system and software design, alike. Besides well-known and studied difficulties inherent to parallelism and multi-threading in particular, such as race conditions and need for data consistency across the cores of the system, additional challenges must be solved in respect to design of highly reliable and dependable embedded systems:

• Synchronization and data flow dependencies have to be considered by the scheduling systems • Concurrent access to shared data must be considered explicitly when addressing system safety • Algorithmic design for the exploitation of the processing resources in respect to domain specific problems. • Suitable, cost-efficient concepts to provide fault tolerance • Means to increase the aspects of dependability, in particular reliability and availability

The FORMUS 3 IC research community (Multi-Core safe and software-intensive Systems Improvement Community), funded under the grant of the Bavarian Research Foundation, is an incorporation of six universities and eight industrial partners from the automotive and avionic domains. The research interests of the FORMUS 3 IC community thus is twofold: First, the research community is dedicated to address challenges emerging with the application of heterogeneous multi-and many-core processors in embedded system design. Second, new chances provided by parallel execution are to be investigated and addressed by novel design and development techniques. The vision of the project is a holistic approach to the system design cycle taking parallelism into account at every step. In particular, the sub-projects engage the effects of multi-and many-core platforms in the domains of system design and modelling languages, real-time support, safety and security mechanisms, parallelization techniques, verification and simulation and communication.

In this paper we'd like to put the focus on state of the current research efforts of the FORMUS 3 IC community with particular focus to novel dependability mechanisms and realtime scheduling approaches suited for parallel embedded systems. Based on this description, we'd like to shed light on the newly developed concepts, as well as their expected impact. Furthermore, we'd like to give a perspective and motivation on the upcoming developments of our research ambitions.

This paper therefore limits to the motivation and description of developed concepts. Investigation regarding performance and behaviour of the presented concepts will then be the topic of later publications.

A. Challenges for Parallel Real-Time Scheduling Systems

Real-time capabilities are an integral concept for a large share of embedded platform applications. In comparison to ordinary general purpose computers, they play a key role in these devices: Besides the proper calculation of results, their timely calculation of key interest for system correctness [START_REF] Kopetz | Real-Time Systems: Design Principles for Distributed Embedded Applications[END_REF]. This means results generated by a real-time system are only of value, if provided by or before a given deadline. Depending on the field of application, the consequences of failing to do so range from interference in the systems quality of service to catastrophic events, as the loss of human life or the destruction of the system itself [START_REF] Kopetz | Real-Time Systems: Design Principles for Distributed Embedded Applications[END_REF].

Coming from this system definition, the purpose of real-time scheduling therefore is, to guarantee application completion by their deadline. It is of no interest whether, or to what degree applications finish before their deadlines i.e. how fast they are executed, as long as they finish at their deadline.

From this perspective, it may appear paradoxical to focus on parallelization since the concern in parallelization is the applications' speedup. However, in order to evaluate real-time system properties, one often chosen metric is the application response time. The response time describes the amount of time which passes between the release of an event, which triggers the execution of an application, e.g. hitting the brakes in a car, and the point in time where the results of the application are available, e.g. control the actuators to initiate the braking process. This amount of time is critical as it decides whether a given algorithm is suitable for application in a given real-time system. Certain external events require system reaction within a given time span. If the execution time of a piece of code is too long to respond in time, it becomes impractical.

The response time of an application is influenced by the scheduling system itself, the applications' length in instructions, the number of synchronization points, and by the total utilization of the computer system. It determines whether an algorithm can be implemented in an embedded system. Taking advantage of the parallel structure of an application therefore is an appropriate way to reduce its response time, thus making it suitable in an embedded real-time system.

B. Challenges for Fault Tolerance

Today in the automotive industry most fault reactions of automotive systems lead to a fail-safe operation as there is still a person driving the vehicle who can react and manage the loss of e.g. propulsion in a safe manner. For applications in the powertrain domain, combustion engine control, transmission control units, converter control units and domain controller, the hardest real-time requirements for the applicative software are in the range of 200 microseconds deadline. For a fail-safe reaction the required maximum reaction time today is 500 ms while the reaction time for electrical motors is much lower, in the area of a few milliseconds due to the torque characteristics of the electric engine. In this domain multicore controllers with up to six cores are widely used with a flash size up to 16 MB and a clock speed of 300 MHz. They are equipped with specific hardware mechanisms to ensure an ASIL D compliant execution of the software. As this domain is quite cost sensitive the efficient usage of the available controller resources is a must for successful business. Meanwhile, with new vehicle architectures other types of control systems, socalled vehicle control units, are developed. Some of them are equipped with microprocessors which are lacking specific hardware mechanisms for a safety support. It is expected that those microprocessors will play an important role when implementing the features for autonomous driving. Therefore, also fail operational modes have to be performed on those devices.

Development trends for computing platforms moved from increasing the frequency of a single processor to increasing the parallelism with multiple cores on the same die [START_REF] Macher | Automotive embedded software: Migration challenges to multi-core computing platforms[END_REF]. Although, chip-multiprocessors (CMP) present new development challenges, they have strong potential to support costefficient fault tolerance for autonomous driving scenarios due to their inherent spatial redundancy. Suitable approaches on CMPs could counteract the rising frequency of transient and permanent errors in memories [START_REF] Nightingale | Cycles, Cells and Platters: An Empirical Analysisof Hardware Failures on a Million Consumer PCs[END_REF] and CPUs [START_REF] Li | Understanding the Propagation of Hard Errors to Software and Implications for Resilient System Design[END_REF].

Software techniques at different architecture level such as instruction-, thread-, process-and virtual machine level are under active research and could lower costs and increase flexibility by achieving fault tolerance via software-only methods. Furthermore, these approaches could allow a flexible program execution environment where legacy binary code and the redundant code can co-exist depending on the required level of reliability. However, in spite of experimental studies indicating the occurrence of permanent errors in memories [START_REF] Kim | Flipping bits in memory without accessing them: An experimental study of DRAM disturbance errors[END_REF], [START_REF] Schroeder | DRAM errors in the wild: A large-scale field study[END_REF] most concepts assume only transient errors.

C. Structure

The paper, therefore, is structured, as follows: In section II, the novel scheduling concepts developed in the FORMUS 3 IC project are introduced. First the problem of scheduling parallel applications in real-time systems is discussed. Based on this, the newly developed gang scheduling scheme is motivated, and detailed. Later, the necessary steps for evaluating the proposed concept are shown. The section concludes with a comparison to other approaches to these problems, as well as an outlook to the future results which are to be expected from the project. In section III, a fault tolerance concept for automotive applications is motivated and introduced. Subsequent the background of the applied technologies is explained and gaps of similar approaches are identified and compared with regard to target requirements. Later, the necessary step for enhancement and evaluation are described.

II. PARALLEL REAL-TIME SCHEDULING SYSTEMS

Reducing the response time of real-time applications is vital for the application of more complex algorithms in embedded systems. Exploiting the parallelism of applications has successfully been tried and tested in other fields of computation. In order to apply known techniques for real-time systems, the parallel structure of applications has to been taken into account into the scheduling process.

A. Structure and Properties of Parallel Real-Time Applications

The problem of scheduling sequential applications on single-core machines is a well studied and understood topic, both, from theoretical and practical perspective. Different approaches have been proposed and discussed in the recent decades. Investigations regarding the (optimal) scheduling of sequential real-time applications in systems with multiple cores has also already been the topic of various publications. A thorough overview of the key findings in this domain is presented by Davis and Burns in [START_REF] Davis | A survey of hard real-time scheduling for multiprocessor systems[END_REF].

In principle, multi-core scheduling can be distinguished as partitioned and global scheduling, where in the former, the to-be-scheduled applications are assigned to fixed cores, and then scheduled as single-core system, while in the latter all tasks are managed by a global queue, from which they are assigned to free cores, at run time. While there are ongoing discussions and unsolved questions regarding multi-core realtime scheduling, different publications suggest that partitioned scheduling outperforms global scheduling approaches, both from practical perspective (see Brandenburg et al. in [9] for the description of the problem and Brandenburg et al. for [START_REF] Brandenburg | Global Scheduling Not Required: Simple, Near-Optimal Multiprocessor Real-Time Scheduling with Semi-Partitioned Reservations[END_REF] implementations), due to the fact that global scheduling implementations suffer from operating system overheads, massively degrading the overall system performance.

Both, sequential single-core and multi-core scheduling assume that each application consists of a single thread of execution, only. This assumption, however, no longer holds for parallel applications. Parallel, or multi-threaded applications consist of multiple threads of execution, or simple threads, which are executed in the context of a single application. Each thread has an own set of work registers and an own stack for execution, besides these data structures, all threads of an application share common data, where they operate on. This implies that means of synchronization must be provided in order to guarantee mutual exclusion between the threads, when accessing the shared data. The advantage of this strategy is, that context switches between threads cost less than context switches between applications. The threads of an application can in principle be executed in parallel. However, since threads operate on a set of shared data, they are subject to data flow dependencies which mandate the order in which they must be executed. In the short C++ listing in fig. 1 and in the abstract representation in fig. 2 this fact is conducted exemplary. In the listing, an array of data is received, processed in parallel by three threads, and finally, the results are provided to other system components via send command. The threads v 2 to v 4 require the data to be received before they can start processing them. Thread v 5 in return has to wait for the array to be processed by threads v 2 to v 4 before it can be executed. A real-time scheduler taking care of the executing of this program has to make sure that these execution order constraints are held, in order for the parallel programs to work correctly.

To summarize, the problem scheduling parallel real-time applications is extended by a higher number of execution units which are to be scheduled and may trigger scheduling events, themselves, but also has to consider a multitude of dependencies among those execution units.

In current research, this problem is addressed under the term directed acyclic graph-scheduling (DAG-scheduling). See [START_REF] Baruah | Multiprocessor Scheduling for Real-Time Systems, ser. Embedded Systems[END_REF] for a theoretical introduction to these class of problems. Multiple different scheduling approaches taking into account the internal structure of the DAG have since been proposed. These discussions, however, are mostly of theoretical nature, provide no benchmarks using real systems and make unpractical assumptions about the system. Finally, no discussion regarding system overheads introduced by interrupt and preemption based delays are provided.

One particular class of approaches, are scheduling concepts based on gang scheduling. Gang scheduling has first been proposed by Ousterhout [START_REF] Ousterhout | Scheduling Techniques for Concurrent Systems[END_REF] for high performance computing system. Since then, it has been topic of many discussions, especially in this domain. As a matter of fact, many early investigations regarding real-time scheduling of parallel applications covered gang-scheduling, see [START_REF] Berten | Gang fixed priority scheduling of periodic moldable real-time tasks[END_REF], [START_REF] Kato | Gang EDF Scheduling of Parallel Task Systems[END_REF], [START_REF] Lee | Real-time gang schedulings with workload models for parallel computers[END_REF], to name just a few. To the best of our knowledge, there have not been any investigations regarding implementations of gang scheduling in real-time systems.

The principle of gang scheduling is that the threads of parallel applications are executed simultaneously. A single thread can only be executed if all threads of the application are executed in parallel.

Consider an application consisting of three threads. Applying a gang scheduling strategy, the application requires exactly three cores in order to be executed. Each of the applications threads is mapped to one of the cores. The threads are then started simultaneously. If one of the threads is interrupted or preempted, this results in an interrupt of all other threads of the application. The application can only be continued later on, if all of its threads can be scheduled for execution. From thread perspective, the whole application is executed on an exclusive machine.

A downside of the gang scheduling approach, obviously is that this scheduling scheme is not work-conserving in the sense that situations may arise, in which cores idle, while executable applications are available. Suppose a system consisting of five cores. On four of these five cores applications are scheduled for execution. Should there be another application ready for execution, but require two cores in order to do so, it cannot be scheduled due to lack of available cores. This results in keeping the remaining core idle. Another downside to gangbased scheduling approaches is, that they result in increased overheads for the synchronous activation and preemption of all threads.

However, the mode of execution in gang scheduling is especially beneficial for applications with a high degree of internal synchronization and communication, as it is the case with frequent fork and join operations or synchronisation points at barriers. Feitelson and Rudolph conduct in [START_REF] Feitelson | Gang scheduling performance benefits for fine-grain synchronization[END_REF] an simulation based investigation regarding the efficiency of the chosen implementation and synchronization frequency based on artificial applications. They find that when application threads communicate high frequencies, they can executed twice as fast using a gang scheduling policy and busy waiting than threads using blocking for synchronization. These numbers, however, have to be taken with caution, since here a synchronization frequency of 0.16 ms is assumed.

This addresses exactly one of the key issues of parallel applications in real-time systems: The preemption of a thread translates into further delay of for threads depending on the threads completion. This relationship, of course, is transitive. Since progress is guaranteed for all threads of an application, as long as the application is executed, the blocking synchronization between the threads is no longer required. Synchronization can efficiently be implemented using spinlocks [START_REF] Feitelson | Gang scheduling performance benefits for fine-grain synchronization[END_REF].

B. Approach

With the scheduling concept proposed by us, we'd like to address a number of issues, we found to be crucial for the application of multithreading in the context of real-time systems: First, we expect the increase in the number of cores, as well as in the to-be-schedules threads to severely impact the performance of the operating system. Shared operating system resources will increasingly become a bottleneck, thus restricting the scalability of the real-time system. Second, the application of multithreading results in an increased complexity within parallel applications. Increased synchronization will therefore ultimately result in higher response times, if not taken care of, carefully.

We suggest therefore a two-staged scheduling system, integrating the core allocation scheme provided by gang scheduling and threading support by an application layer threading library: In order to schedule applications, gang scheduling is implemented at operating system side. For the thread level scheduler, parallel applications are extended by the gang runtime system (GRS).

For our scheduling concept, we extend each parallel application with a core requirements description. This core requirement dictates the number of cores, which is necessary to execute the application. The gang scheduler at operating system side takes care of assigning the matching number of cores to the application, whenever it is scheduled.

These cores are then assigned to the applications exclusively. The applications in return, are in charge of using the cores assigned to it, in order to execute its parallel threads. Thus, the responsibility to manage threads lies completely at application side, the application threads become invisible to the operating system: The operating system only sees and manages applications, which are assigned to one or multiple cores. The number of applications to be managed by the operating system is by far smaller, than the absolute number of threads active at a given point in time. Thus, the workload to be managed at operating system resources decreases. Furthermore, this scheme effectively allows the threads of a single application to be executed in isolationthreads of different applications don't interfere with each other. Thus, the execution of threads of a single application becomes predictable.

The GRS is implemented as a library linked against every parallel application. The runtime system provides a basic threading API, which provides and implements the interfaces for the creation and synchronization of threads via synchronization primitives such as barriers and semaphores.

Another task handled by the GRS is the scheduling and execution of threads. Any thread, which is created in the context of an instance of the GRS is stored in a core local scheduling queue. Threads waiting for their execution are serviced by so called worker threads. There are as many worker threads, as the number of cores, the application is running on. Each worker thread is exclusively mapped to a single core. The worker threads are executed over the whole lifetime of their application.

During their execution, the worker threads poll their scheduling queues of its corresponding core for threads ready for execution. Once a ready thread is polled from the schedul-ing queue, it is executed. In case there are no pending threads available in the cores scheduling queue, the worker thread polls at the ends of the other cores scheduling queues for ready threads. Thereby a work-stealing scheduling policy is implemented. This furthermore allows the GRS scheduling queues to be implemented with locking free algorithms.

The described mode of thread processing allows run-tocompletion semantics to be applied for the execution of threads of a single application, reducing the number of context switches and thus further overheads.

From application perspective, exclusive access to the machine is granted and since all threads of the application have to be terminated, there is no need for priority assignment among its threads, work-stealing scheduling is sufficient. This also implies that the threads of a single application don't compete with each other for the systems resources. Thus, preemption is unnecessary at thread scheduling level.

C. Evaluation

For the implementation and future evaluation of the described gang scheduling concept, the Erika Enterprise realtime operating system, version 2.8.0, has been chosen, running on an Infineon AURIX TC277 embedded platform. Erika Enterprise by Evidence is a OSEK/VDX compliant and certified open-source real-time operating system, which has already been subject to different research and commercial projects. The system is not AUTOSAR compliant, yet, however, there is work on this support, as well.

In order to implement the gang scheduling scheme, the existing fixed priority scheduler of Erika Enterprise is currently extended. This extended version of the fixed priority scheduler will allow allocation of multiple cores to single applications. Furthermore, it allows synchronous preemption and continuation of applications.

For a first performance estimation, we plan to apply the recently released STR2RTS benchmark suite, described in [START_REF] Rouxel | STR2RTS: Refactored StreamIT Benchmarks into Statically Analyzable Parallel Benchmarks for WCET Estimation & Real-Time Scheduling[END_REF] by Rouxel and Puaunt. This benchmark suite consists of various digital signal processing applications and has been developed in order to assess the performance of WCET analysis software and real-time schedulers, alike. The applications provided in the benchmark suite consist of varying degree parallelism from approximately 3 to over 400 possible parallel executable threads of an application. The single tasks of each of these applications communicate via shared memory and push / pop operations. The applications provided by this benchmark suite rely on a high degree of internal communication and synchronization, which is why we expect to experience a decrease in their response time. We plan on verifying this by means of experiment in our Infineon AURIX TC277 platform.

Regarding the implementation of the gang runtime system, currently a GNU/Linux based test bed is used. This test bed emulates the actual system from perspective of threads in a parallel application. The test bed therefore provides a basic implementation of the Erika Enterprise application layer API. This allows the runtime system to be developed and tested regarding functional requirements. In later steps, the runtime system will be ported to the Erika Enterprise system.

We expect that the proposed modifications and developments will, of course, come with a cost. Therefore, the resulting system must be subject to a series of evaluations, in order to prove its applicability and to show whether it meets expectations. In the following, we will discuss the identified points where such investigations have to take place.

1) Gang Scheduler: The implementation of the gang scheduling scheme as part of the operating system will likely result in higher overheads and communication overheads when the scheduler dispatches tasks. Since applications may occupy multiple cores, additional inter-process communication is necessary, in order to implement synchronous start, preemption and continuation of them. Therefore, these latencies and the additional communication overheads have to be taken into account, when comparing the scheduling system.

2) Gang Runtime System: Since the runtime system adds additional indirection to the scheduling and execution process, it has to be implemented as lightweight, as possible. In particular, an efficient implementation of the runtime system stands and falls with the implementation of the threading API operations, such as thread creation, but also the thread scheduling system. Having this in mind, our investigations will therefore focus on the performance comparison of the named operations.

3) Scheduling System Benchmark: As stated above, multithreaded computation is only slowly adopted in real-time systems and in automotive industry in particular. The current AUTOSAR standard does provide support applications executed concurrently. Indeed, some workarounds have been developed in order to counter this fact, however, currently there are almost no thread parallel applications for real-time systems, qualifying as benchmarks, available. In current research this fact is considered by using artificial workloads. One recently release benchmark suite for parallel real-time systems developed to counter these short comings and to establish a common reference system is the STR2RTS benchmark suite, as described above.

4) System Performance: One of the key points motivating the application of gang scheduling are reduced synchronization latencies. Therefore, additional investigations have to be performed regarding the performance of synchronization and communication operations in state-of-the-art systems, in contrast to our suggested solutions. Finally, the system load achievable under the proposed scheduling scheme has to be investigated. Since gang scheduling requires an all-or-none policy for the execution of threads, situations may arise, in which one or more cores run idle even though there are applications with high core requirements ready for execution. Existing scheduling schemes won't suffer from this problem. In order to evaluate the suitability of the gang based scheduling scheme, these cases have to be taken into account and compared.

D. Related Work

Real-time scheduling of inherently parallel applications has only recently shifted into focus of the research community. Even though first considerations date back as early as the mid 90s, increased interest taking into account different system and task properties can only be recognized in the last couple years.

Vargas et al. discuss in [START_REF] Vargas | OpenMP and Timing Predictability: A Possible Union?[END_REF] to what degree the current OpenMP specifications are suitable for timing predictability and therefore real-time scheduling in general. Outgoing from the source code, they describe in how so called task scheduling constraints can be derived. These task scheduling constraints describe the order in which certain parts of the code (and thus threads) are to be executed. The applied scheduling system has to take these constraints into account, when scheduling an OpenMP task. The short paper, however, does not address how such a scheduling system has to look like. These proposals were later backed by theoretical investigations regarding the schedulability of OpenMP DAGs in [START_REF] Serrano | Timing Characterization of OpenMP4 Tasking Model[END_REF]. These findings are bundled in the P-SOCRATES project, where application threads are distributed to operating system threads, which in return take care of processing them. This approach is in parts similar to our approach. However, in the P-SOCRATES project [START_REF] Pinho | P-SOCRATES: A parallel software framework for time-critical many-core systems[END_REF], there is a fixed mapping of operating system threads to the systems cores. Furthermore, a single operating system thread is only mapped to a single core at all times.

Practical considerations regarding the performance of different real-time scheduling algorithms, designed for parallel task systems, have been made by Qamhieh and Midonnet in [START_REF] Qamhieh | Simulation-based Evaluations of DAG Scheduling in Hard Real-time Multiprocessor Systems[END_REF]. The authors use discrete event based simulation, in order to get metrics regarding the schedulability of two EDF based scheduling approaches. For their simulations, they consider randomly generated, periodic, parallel tasks. These investigations, however, neglect any overhead costs introduced by preemption and context switches, as well as task migration. Furthermore, though working theoretical, the tested algorithms require significant changes in order to be implemented in actual systems.

E. Outlook

We propose a two stage, gang scheduling based scheduling system for parallel applications in hard real-time systems. Within our scheduling system, the scheduling and execution of parallel applications is the responsibility of each application. This way establishing a logical separation between threads of different applications.

We expect our approach to help to reduce response times of parallel applications integrating a high amount of internal synchronization and communication. Furthermore, we believe that by applying our two stage scheduling scheme, we are able to reduce the number of bottlenecks in our operating system, thus providing better scalability for our system.

Since implementing the proposed gang-based scheduling concept comes with additional costs by synchronization needs, additional indirection and possible underutilization, the resulting solutions have to be examined thoroughly regarding resulting overheads. Furthermore, we are currently quite optimistic, that the chosen benchmark suite provides a suitable example for gang scheduling systems. However, we will have to address the question whether there are other application classes, also benefiting from gang scheduling. Furthermore, it must be analyzed whether systems relying on gang scheduling only are practical. Maybe the proposed scheduling scheme has to be applied in a mixed scheduling system in order to experience its benefits.

Our future steps will include the completion of our implementation and thorough evaluation of the factors named in evaluation. After successful evaluation the scheduling system is planned to be tested in actual automotive systems. In order to achieve this goal, further problems have to be addressed: Our scheduling system expects the extension of the operating system scheduler in such a way that it allows the allocation of multiple cores to single applications. Currently, it is subject to discussions whether this can be implemented in compliance to the AUTOSAR standard. If this should not be the case, ways must be found to realize the scheduling scheme with as less changes, as possible.

III. FAULT TOLERANCE

Our focus is the development of software-only fault tolerance mechanisms which provide resilience against transient and permanent random hardware faults on application level. The proposed concept utilizes software-based triple modular redundancy and arithmetic encoding on process-level while taking in the advantage of the inherent spatial redundancy of shared memory multicore controller. As a result of our investigation we want to answer the following question: What is the expected overhead for a pure software driven approach to get an ASIL D compliant. On one side in the micro controller area to be able to balance the additional silicon cost for the required performance with the costs for the today's safety features implemented in hardware. On the other side are those software detection and recovery mechanisms good enough to allow software with higher ASIL levels to be executed on those microprocessors. Furthermore, are the associated software mechanisms for detection and recovery themselves resilient against permanent and transient faults?

A. Background and Related Work 1) Arithmetic Encoding: Information redundancy describes a type of redundancy to achieve error detection (and recovery) and includes all additional data used in a program. The simplest way is e.g. to provide different memory spaces in order to store the replicated data redundantly. A more enhanced technique is to add extra data to the original one instead of replicating them by using error detection codes (EDC) or errorcorrection codes (ECC). Error detection codes such as parity bits allow checks whether the final data has the same amount of bits with a defined value (1 or 0) or not. Error correction codes such as hamming code where a code word is partitioned in groups and each group has its own parity bit, allow the correction of a defined amount of error in the code word. A further approach for error detection codes are arithmetic codes such as AN-BD codes. Arithmetic codes were already applied by several error detection techniques [START_REF] Kuvaiskii | Delta-Encoding: Practical Encoded Processing[END_REF], [START_REF] Braun | The Myths of Coded Processing[END_REF], [START_REF] Wappler | Software Protection Mechanisms for Dependable Systems[END_REF], [START_REF] Wappler | Hardware Failure Virtualization Via Software Encoded Processing[END_REF].

Coded processing is a non-systematic encoding scheme based on the theory of arithmetic codes and in general is limited to integer arithmetic. Arithmetic codes exploit information redundancy, i.e., additional bits are required to store an encoded integer. There exist different strategies and coding rules for the implementation of arithmetic encoding which differ mainly in their supported arithmetic operations and their coverage with regard to the fault model. The simplest representative of arithmetic codes is called AN-encoding: n = A * n. With AN-encoding, an integer n is encoded by multiplication with a constant A. The resultant integer n = A * n is called a code word. Due to the multiplication by the constant the distance between two valid codewords is increased. The original domain of 2 n words is extended by k check bits which results in 2 n+k possible codewords. As a consequence, if a hardware error alters the code word n, it gets an invalid word with high probability. If n still represents a code word, n mod A equals 0; if the result of the modulo operation is unequal to 0, a hardware error is detected. To decode the code word, a division is performed. The number of tolerable fault (e.g. bit-flips) depends on the encoding constant A. On first thought, a high value for A should result in a high hamming distance. This was proved to be wrong by Braun et. al [START_REF] Braun | The Myths of Coded Processing[END_REF] and Ulbrich [START_REF] Ulbrich | Ganzheitliche Fehlertoleranz in eingebetteten Softwaresystemen[END_REF]. Ulbrich identified five suitable value for A in an 32-bit AN-encoding scheme namely 58659, 59665, 63157, 63859, 63877. These values are characterized by their hamming distance of six and therefore allow the detection of up to five bit-flips in a code word. ANencoding supports all relevant operations including the division on the encoded values. However, some operations (e.g. bitwise operations) require more sophisticated implementations which can hamper performance and/or require intermediate decoding of operands. Furthermore, with AN-encoding control flow errors and erroneous or lost data access is not detected. To detect these types of errors, variants of AN-encoding were developed, namely ANB-and ANBD-encoding.

ANB-encoding introduces the static signature B which allows the determination of the identity of the data [START_REF] Wappler | Software Protection Mechanisms for Dependable Systems[END_REF]: n = A * n + B. B represents a unique signature for each operation (e.g constant value) or data value (e.g memory address [START_REF] Wappler | Hardware Failure Virtualization Via Software Encoded Processing[END_REF]). As a result, swapped data/operations and control flow errors can be detected during the decoding phase. As a drawback ANB-encoding loses the support for the division operation of two encoded values due to the associated complex signature calculation. To allow the detection of a lost update, i.e., in case a store operation was omitted, the additional dynamic signature D is introduced:

n = A * n + B + D
where D is represented by a variable which e.g counts the updates of the considered variable.

ANBD-encoding provides very high fault coverage, but if applied on source-level by code-transformation tools, it incurs very high penalties regarding execution time since more computational effort is required for executing the encoded operations and performing complex signature calculations. Execution time penalties range form 6x (AN-encoding) [START_REF] Kuvaiskii | Delta-Encoding: Practical Encoded Processing[END_REF] up to 250x (ANBD-encoding) [START_REF] Schiffel | Hardware error detection using AN-codes[END_REF] compared to uncoded execution. This fact makes encoding on source-level -in combination with further drawbacks (see table I) -impractical for most use cases.

2) Redundancy/Replication: A key mechanism to achieve fault tolerance of a system is the replication of components in e.g. hardware: processors, memory; or software: entire programs or parts of it [START_REF] Echtle | Fehlertoleranzverfahren[END_REF]. A widely used replication paradigm is represented by the N-modular redundancy (NMR) pattern, where N characterizes the number of replicated components which process the same data. A well-know representative is dual modular redundancy (DMR) where elements are duplicated and connected to a comparator element. DMR allows the detection of errors but it is impossible for the comparator to decide which result is the correct one. Therefore, DMR is only suitable for error detection e.g. in a fail-safe system design. An example for DMR in hardware is represented by the lockstep configuration where two hardware components are cycle-by-cycle synchronized [START_REF] Aggarwal | Configurable Isolation: Building High Availability Systems with Commodity Multi-core Processors[END_REF].

Extending the DMR approach by another replica leads to triple modular redundancy (TMR). TMR uses three elements and replaces the comparator of DMR by a majority voter. After completing the operation, a voting element compares the three results and selects the correct one by majority [START_REF] Echtle | Fehlertoleranzverfahren[END_REF]. TMR is -besides the higher costs in terms of resourcesa powerful approach because it not only detects that a fault occurred, but is also capable of identifying the faulty element [START_REF] Echtle | Fehlertoleranzverfahren[END_REF]. Furthermore, it contributes to a higher system availability, since the system can continue the execution by masking the faulty element (forward recovery) and depending on the type of realization the number of replicas can be increased as long as the necessary resources are available. TMR can be implemented as a temporal or spatial design. While spatial redundancy performs the same operation on distinct hardware components, temporal redundancy indicates that the same operation is independently performed sequentially on the same hardware. In both designs the voting is performed after the replicas finished the execution. The weak spot of TMR, if implemented purely in software, is the majority voter. It depicts a single point of failure (SPOF) and therefore has to meet high reliability requirements. To eliminate this SPOF in software, Ulbrich proposes a Combined Redundancy (CoRed) approach for single-core systems [START_REF] Ulbrich | Ganzheitliche Fehlertoleranz in eingebetteten Softwaresystemen[END_REF]. CoRed protects an application by sequential software-based triple modular redundancy on task-level and applying ANBD-encoding to increase the reliability of the software voter. Computational tasks are executed sequentially on a single core, followed by an encoded voting task. On task entrance, the previously encoded values are decoded to reduce execution time penalties -caused by arithmetic encoded operations -to a negligible level. On task exit the values are encoded and the voting is performed. During the time-span where values are processed uncoded, the Spatial Redundancy X X Toolchain Requirements X 4 1 Increase of the worst case execution time due to backwards recovery and increase of response time due to sequential task execution 2 Backward recovery of voter failure in presence of transient faults 3 In terms of execution time overhead 4 Code transformation tooling required execution is protected by redundant task execution. The voting is performed on encoded values to enable error detection during the voting process and fault tolerance by subsequent rollback recovery. Experimental evaluation by fault injection showed full single and dual bit-flip coverage [START_REF] Ulbrich | Ganzheitliche Fehlertoleranz in eingebetteten Softwaresystemen[END_REF]. Drawbacks of this approach are e.g. increased response time due to temporal redundancy (sequential task execution) as well as worst case execution time due to re-execution of the voting task in case of a failure. Furthermore, the concept does not consider permanent fault coverage due to a single-core approach (see table I).

t Core 3 Core 2 Core 1 T 1 1,1 T 1 2,1 T3,1 T 2 1,1 T 2 2,1 T 3 1,1 T 3 2,1 V 1 1,1 D C D C D C D C D C D C V 1 1,2

B. Approach

In the subsequent paragraphs we describe our extensions to known concepts and discuss how our requirements represented in table I are met.

1) Fault Assumption: Most concepts assume only transient faults in their fault assumption. Although the permanent fault rate is lower than the fault rate of transient faults, we consider this extended assumption in our concept and evaluate by fault injection in e.g. CPU registers to which extent fault tolerance against permanent faults could be achieved. We aim to inject faults based on the stuck-at model, i.e. one bit of the register is selected randomly, and its value is set either to 1 (stuck-at-1) or 0 (stuck-at-0) repeatedly for a pre-defined time e.g. until a task is terminated. Another possible scenario for a permanent fault on a higher abstraction level is blocking the execution of a task completely by altering the control flow to induce an infinite loop.

2) Real-time Requirements: Arithmetic encoding deployed on source level leads to high execution overheads since all operations are performed in the encoded domain and complex signature calculations have to be performed at runtime. Higher execution times of single tasks or system designs where replicated tasks are executed sequentially, induce negative impact on the response time. Furthermore, task level concepts which utilize backwards recovery in presence of a failure, require higher WCET estimations, which can hamper the compliance with real-time requirements. We aim to reduce the response time and worst case execution time by executing the replicated tasks in parallel (on different cores) and applying forward recovery in case of a task (computation/voting) failure. Due to the parallel execution we expect to cut the response time to approx. 1/3 of the time stated in comparable task level approaches. Due to forward recovery, e.g. a repeated execution of the voting task in case of a failure is not required. Therefore, the worst case execution time will drop to the total of the corresponding WCET values of the task, voter and the required time for the forward recovery (which is lower than re-execution of the voting task).

3) Fault Tolerance: In the presence of transient and permanent faults adequate recovery or repair strategies for task (computation/voting) failures have to be available. Depending on system requirements (e.g. fail-safe/fail-operational), system design (e.g. static, dynamic) and optimization goals (e.g. memory consumption, number of available cores) different variants of the concept regarding the system configuration have to be explored and evaluated. In a case where system design requires only a fail-safe operation, the concept could be scaled to dual modular redundancy with an encoded comparison instead of voting and thus decrease the maximum overall CPU load. The other way, depending on optimization goals, in an TMR configuration an additional core could be designated as a spare core for reconfiguration or for the time-span of repair in case of permanent faults. Furthermore, if memory consumption is crucial, a trade-off between reliability gain and number of replicated data in memory could be pursued. In dynamic kernel designs where e.g. the application is loaded from persistent memory into RAM, recovery or repair mechanisms could require a re-fetching of the application code from persistent memory due to a fault.

4) Floating Point Support: Internal studies showed that arithmetic encoding on source level in combination with floating-point arithmetic lead to high execution overheads (e.g. an ANBD-encoded addition is about 390x slower compared to the uncoded execution) and complex error-prone signature calculations with a high number of special cases which must be handled. Therefore, it makes it unpractical for our targeted use cases. In contrast, in an approach where only the voting on result values is performed in the encoded domain, the usage of floating-point arithmetic during uncoded execution is possible with no impact on execution times. For our approach we evaluate the possibly necessary changes in the voting algorithm to enable encoded majority voting on float values and thereby dissolve the current application restrictions on integer values and the loss of precision which comes along with conversion.

5) Negligible Overhead: Arithmetic encoding implemented on source level leads to high execution overhead since all operations are performed in the encoded domain and most (complex) signature calculations have to be performed at runtime. Due to the execution of the replicated task in the uncoded domain, execution overheads can be minimized to a negligible level.

6) Spatial Redundancy: In contrast to other approaches we exploit the inherent spatial redundancy (see fig. 3) of multicore systems. Due to this design change the compliance to real-time requirements can be eased and -depending on the system configuration -permanent fault coverage can be introduced to a certain degree. We evaluate how signature calculation of the encoding scheme has to be adapted as well as where and in which manner (e.g redundancy or spatial distribution) signatures have to be stored in memory to increase the gain in reliability. Furthermore, we evaluate which online strategies for task scheduling can be exercised for the concept in a static or dynamic system design. The primary focus of our investigation lies on online preemptive scheduling strategies such as Earliest-Deadline-First or Fixed-Priority which are preferred in the automotive industry. The impact of the scheduling strategies, in particular the preemption of tasks/voter, on the signature calculation of the encoding is evaluated during normal execution and recovery phase. Depending on the obtained results the coding, decoding, voting and signature handling is adjusted. Last, we investigate the integration of the approach into a system following the logical execution time (LET) approach, where communication is performed exclusively at the beginning and end of a predefined task execution time frame.

7) No Toolchain Requirements: Source level approaches utilizing arithmetic encoding require reliable/certified tool support to weave in the encoded operations and data. This necessity does not exist in case of task-level approaches due to the reduced complexity of the encoding.

C. Evaluation

ISO 26262 strongly recommends the use of fault injection as an assessment technique to verify that e.g. functional and technical safety mechanisms are implemented correctly and effectively. Therefore, we implement our concept on an Infineon AURIX TriBoard TC277 with Erika Enterprise 2.7.0 running and perform fault injection campaigns with an iSystem iC5000 On-chip analyzer. To simplify our fault injection analysis, the implemented software only consists of three computational tasks executed in parallel and followed by a voting task. As a restriction, no floating-point arithmetic is used inside the tasks and data is read from memory at the beginning and wrote back at the end of task execution. The tasks are scheduled by fixed priority non-preemptive scheduling policy and the code is executed from ROM. After fault injection analysis provides promising results, the concepts is transferred to a domain controller application.

Fault injection assessment is characterized by four main elements of the FARM model [START_REF] Arlat | Fault injection for dependability validation: A methodology and some applications[END_REF]. The Fault model describes the set of fault to be injected. Activation defines the system activities under which the faults are injected (e.g. read/write memory or specific task execution). Readouts describe the readout of the experiment results during the experiment and Measurements state the measures evaluated bases on the readout (e.g. metrics regarding detected, undetected, masked faults).

Currently we develop a fault-injection back-end for the hardware debugger which covers the four elements of the FARM model and allows us to conduct automated injection campaigns on an Infineon AURIX TriBoard TC27x and TC39x. The debugging hardware allows the injection of faults in registers and memory locations which can trigger error symptoms on the application level. AUTOSAR specifies five types of errors which have to be handled at applications level [START_REF] Consortium | Explanation of Error Handling on Application level[END_REF]:

• Data error: erroneous value of a parameter or variable • Program flow error: deviation of the expected program flow leading to missing, wrong or superfluous operations being carried out • Access: memory partitioning (access) violations • Timing: errors regarding the timing of execution • Asymmetric: different receiver receive different values from a common sender Through the injection of register and memory faults we aim to cover the described AUTOSAR error model except for asymmetric errors, which are in our scope. In order to implement the targeted error model our fault injection back-end provides features to generate and combine different characteristics of a fault model. In the context of fault injection experiments, a fault model is characterized by the fault location (where to inject), the fault type (what to inject) and fault timing (when to inject). We aim to provide injection capabilities for following characteristics:

• Fault Location:

CPU registers (e.g data, address, program counter, stack pointer), memory locations (e.g. stack, heap, operating system, global variables) • Fault Type:

Transient (e.g. n-bit-flips) and permanent (e.g. stuck-at) • Fault Time:

Injection on read/write of registers/memory locations or at dedicated program counter values as well as injection according to distributions e.g. uniform, normal In order to reduce the spanned fault-space of all possible injection points and fault model combinations we utilize the trace functionality of the on-chip debugger. We capture program execution traces and apply fault-space reduction algorithms to reduce the overall execution time of the conducted campaigns. Results of the fault campaign are recorded during the experiment and evaluated afterwards.

The developed fault injection platform is utilized to evaluate the following aspects of the proposed concept:

• Fault detection capabilities of the encoded voting algorithm regarding transient and permanent memory and register faults of encoding/decoding routines within the tasks • Single point of failure analysis of the implementation to identify gaps in the sphere of replication • Effectiveness of recovery and repair concepts during voter and task failures • Floating point support • Timing behaviour of the system in presence of task/voter failure (e.g. early, late,omission task scheduling) and during the recovery and repair phases.

D. Outlook

We propose a software-only fault tolerance approach which provides resilience against transient and permanent random hardware faults on application level. The proposed concept utilizes software-based triple modular redundancy and arithmetic encoding on task-level while taking in the advantage of the inherent spatial redundancy of shared memory multicore controller.

Currently we finalize, optimize and verify our fault injection back-end for the hardware debugger and implement further fault-space reduction approaches to reduce campaign duration which is crucial to our rapid prototyping approach. Our future steps will include the completion and verification of the spatial redundant task implementation. Additionally, the current state of our implementation is only capable of processing integer value in the voting algorithms, we plan on extending and evaluating floating-point arithmetic in the future.

 array<int,256> data = {}; receive(data); #pragma omp parallel for num_threads(3) for(int i = 0; i < 256; i++) { data[i] = process(data[i]); } send(data); ...

Fig. 1 .

 1 Fig. 1. Parallel processing of an array of values using OpenMP.

Fig. 2 .

 2 Fig. 2. Graphical representation of a parallel program consisting of five threads. Threads v 2 to v 4 have no dependencies to each other and thus can be executed in parallel.

Fig. 3 .

 3 Fig. 3. Sketch of Spatial Triple Modular Redundancy in combination with arithmetic coding