Georg Macher
email: georg.macher@avl.com

Eric Armengaud
email: eric.armengaud@avl.com

Eugen Brenner
email: brenner@tugraz.at

Christian Kreiner
email: christian.kreiner@tugraz.at

A Lightweight Meta-Model to Support Automotive Systems and Software Engineering

Keywords: model-driven development, automotive systems, multi-core, architectural design, software engineering

Modern automotive systems exhibit an increased level of automation as well as an ever-tighter integration with other vehicles, traffic infrastructure and cloud services. Novel features, such as advanced driver assistance systems or automated driving functions, drive the need to master the increased complexity of these systems and ensure consistency of the development along the entire product life cycle. Model-based development (MBD) is still the most promising approach to tackle these issues and support development of system-wide features (such as safety and security). With MBD approaches, the model become the central role for analysis and construction of system under development and for information exchange between stakeholders. Unfortunately, many existing automotive meta-models are enormously complex and tedious to use in efficient manner. This is especially cumbersome in European R&D project cooperation, when different institutions with different field of expertise and diverse tool-and process-setups are required to work together. Therefore, this paper aims at improving the information interchange continuity of architectural designs from system development level to software development level with the elementary meta-model required to support systems and software engineering for embedded automotive systems. The presented UML model supports managing of development artifacts and seamless information interchange across tool boundaries to merge heterogeneous tools required for the development of automotive multi-core software.

I. INTRODUCTION

Already before the introduction of wireless connectivity and automated driving functionalities, embedded automotive systems played a central role in the automotive domain. In the automotive industry, embedded systems are responsible for an added value ranging to up to 75% while making up 25% of the vehicle costs [START_REF] Scuro | Automotive industry: Innovation driven by electronics[END_REF]. Current premium vehicles are characterized by several tens of distributed control units (more than 90 electronic control units with close to 1 Gigabyte software code [START_REF] Ebert | Embedded Software: Facts, Figures, and Future[END_REF]), with a complexity level of the E/E architecture significantly constraining vehicle performance improvements. This trend is even more pushed by the ongoing integration of external services and environmental information, as well as, the increased level of automation features.

In general, embedded system developers are confronted with more hardware and software resource constraints and need to comply with more rigorous dependability requirements and standards than desktop computer development [START_REF] Koong | Automatic testing environment for multi-core embedded softwareATEMES[END_REF]. The higher degree of integration and the criticality of the control application increases the system's complexity and raises new challenges.

To handle these issues, also in relation to rigorous automotive domain standards (such as ISO 26262), model-based development (MBD) is still the most promising approach. Model-based development supports the description of the system under development in a more structured way and enable different views for different stakeholders, different levels of abstraction, and central storage for information. With MBD approaches the model becomes the central role for analysis and construction of system under development and for information exchange between stakeholders. Due to this central role, many established automotive meta-models became enormously complex and tedious to use in an efficient manner. Especially in context of European R&D project cooperation, when different institutions with different field of expertise and diverse tooland process-setups are required to work together, complex meta-models can hamper the cooperation.

Consequently, this work focuses on improving the continuity of information interchange from system development level to software development level for embedded automotive systems. The contribution of this paper is a lean meta-model required to (a) manage development artifacts required for systems and software engineering of embedded multi-core systems and thus (b) bridge the existing gap between modeldriven system development tools and software engineering tools (both application software and basic software tools). The motivation is to provide an elementary meta-model required to support the work of systems and software engineering for embedded automotive systems in European R&D project constellation.

In the course of this document, a brief description of the state of the art and related work is given in Section II. In Section III, a description of the proposed approach and a detailed depiction of the contribution parts is provided. An implementation prototype and a brief evaluation of the approach is presented in Section IV. Finally, this work is concluded in Section V with an overview of the work presented.

II. RELATED WORK

Model-based development in general and the development of embedded automotive systems in particular are engineering domains and research topics aimed at moving the development process to a more automated work-flow, which improves in terms of consistency and tackles the complexity of the development process across expertise and domain boundaries.

An important topic to deal with in general terms is the gap between system architecture and software architecture. Broy et al. [START_REF] Broy | Seamless Model-based Development: from Isolated Tool to Integrated Model Engineering Environments[END_REF], already claimed model-based development to be the best approach to manage large complexity of modern embedded systems in 2008 and provide an overview of basic concepts and theories. The work also illustrated why seamless solutions have not been achieved so far. Frequently seamless solutions scupper due to problems arising from the use of an inadequate tool-chain (e.g. redundancy, inconsistency and lack of automation).

In European R&D context, the projects AMALTHEA1 , SAFE 2 , and MAENAD3 more recently also focus on modelbased development environments for automotive multi-core systems. The MAENAD project focused on design methodologies for electric vehicles based on EAST-ADL2 language and the AMALTHEA project on an open source tool platform for engineering embedded multi-and many-core software systems. The SAFE project focused more on the efficient development of safety features in cars and the traceability of safety requirements through the whole lifecycle. This works contribution was also affected by aspects of SPES XT 4 , the idea of an open safety meta model enabling a modular, cross-tool and cross-company safety certification, and the sub-goals of EM C 25 focusing on multicore technologies (SW, HW, tooling, analysis) in dynamic real-time environments. The fundamentals for this work are strongly related to CESAR project 6 and its successor CRYSTAL 7 , which provide interoperability concepts for an overall development tool chain. These technologies were used as a basis in order to derive specific concepts for the exchange of dependability information.

The work of Quadri and Sadovykh [START_REF] Rafiq | MADES: A SysML/MARTE high level methodology for real-time and embedded systems[END_REF] presents a modeldriven engineering approach aiming to develop novel modeldriven techniques and new tools supporting design, validation, and simulation. These authors defined profiles using a subset of UML and SysML for their approach and mentioned the usage of effective design tools and methodologies as crucial to be capable of managing complex real-time embedded systems.

The work of Holtmann et al. [START_REF] Holtmann | A Seamless Model-Based Development Process for Automotive Systems[END_REF] highlights process and tooling gaps between different modeling aspects of a modelbased development process. Often, different specialized models for specific aspects are used at different development stages with varying abstraction levels and traceability between these different models is commonly established via manual linking. Santos et al. [START_REF] Mauro | New approach of tools application for systems engineering in automotive software development[END_REF] outlines the model-based software engineering process in SysML (Systems Modeling Language) together with Simulink and compares the models for the amount of useful information, which can be transferred into software development phases. The approach addresses the V-Model through SysML and MBD in Matlab/Simulink. The AUTOSAR consortium [START_REF] Kreiner | AUTOSAR AUTomotive Open System ARchitecture[END_REF] and their AUTOSAR methodology was founded to provide standardized and clearly defined interfaces between different software components. The AUTOSAR approach features three different classes of implementation (ICC -implementation conformance class). AUTOSAR ICC1 approach clearly benefits on the time-saving in terms of no additional familiarization with usually very complex and time-consuming AUTOSAR tools, compared to full AUTOSAR approach (ICC3). The related tool framework ARTOP (AUTOSAR Tool Platform), presented in [START_REF] Voget | AUTOSAR and the Automotive Tool Chain[END_REF], is an infrastructure platform that provides features for the development of tools used for the configuration of AUTOSAR systems. These features are base functionalities that are required by different AUTOSAR tool implementations.

The new approach, AUTOSAR Adaptive Platform [START_REF]Adaptive Platform Release Overview[END_REF] implements a run-time environment for Adaptive Applications (ARA). The platform follows a Service-oriented Architecture (SOA) approach for future use for automated driving functionalities (ADF) and advanced driver assistance systems (ADAS). The initial version of AP R17-03 has been released as planned on March 31st 2017. It describes behavior of the software platform from application and network perspective but does not constrain the SW architecture of a platform implementation. In comparison, the AUTOSAR run-time environment (RTE) for the Adaptive Platform [START_REF] Kreiner | AUTOSAR AUTomotive Open System ARchitecture[END_REF] dynamically links services and clients during run-time. Nevertheless, the focus of the AUTOSAR approach is set only on the software development level and the related meta-models are enormously complex and tedious to use efficiently in European R&D project cooperation. Time, available expertise and license-cost constraints are frequently the limiting factors in such projects.

Safety standards, such as the road vehicles functional safety norm ISO 26262 [START_REF]ISO 26262 Road vehicles Functional Safety Part 1-10[END_REF] and its basic norm IEC 61508 [START_REF]Functional safety of electrical/ electronic / programmable electronic safety-related systems[END_REF], present requirements and guidance for safety-critical system development and also mention MBD as a preferred development approach, but specific MBD specifications are not given. In this context, Born et al. [START_REF] Born | Application of ISO DIS 26262 in Practice[END_REF] recommend a transition from a document-centric approach to a model-based approach. Their work mentions the problem that organizations already have their own safety processes in place and want to keep their existing document-centric processes and tool landscape, which mostly inherits fundamental flaws in terms of traceability, a key requirement in ISO 26262.

Lovric et. al [START_REF] Lovric | SysML as Backbone for Engineering and Safety -Practical Experience with TRW Braking ECU[END_REF] sees SysML and model-based development (MBD) as the backbone for development of complex safety critical systems as a key success factor. The integration of SysML models for the development of the ECU safety concept ensures efficient design changes, and immediate awareness of functional safety needs. The paper evaluates key success factors of MBD in comparison to legacy development processes in the field of safety-critical automotive systems.

III. AUTOMOTIVE SYSTEMS, SAFETY, AND SOFTWARE ENGINEERING MODEL

The methodical support of system architectural design and refinement of this design to software design often fell short of the mark. To handle this situation the AUTOSAR methodology [START_REF] Kreiner | AUTOSAR AUTomotive Open System ARchitecture[END_REF] provides standardized and clearly defined interfaces between different software components and development tools and also provides such tools for easing this process of architectural design refinement. Nevertheless, the enormously complex AUTOSAR model requires high amount of preliminary work and projects with limited resources often struggle to achieve adequate quality in budget (such as time or manpower) with this approach.

The model presented in this work has thus emerged from full AUTOSAR based approaches, SysML, or EAST-ADL 8 approaches and focuses on a lean MBD model to gather all required information in a central MBD database as a singlesource of information concept. The basis of our approach stems from the CESAR Project [START_REF] Rajan | CESAR -Cost-efficient Methods and Processes for Safety-relevant Embedded Systems[END_REF] to support continuous safety related system development according to ISO 26262 at concept phase and system development level and goes beyond these approaches to tackle also HW/SW development phases. The modeling tool in use is Enterprise Architect (EA) with special extension addin to constitute the central source of information. This database inherits all information of the involved engineering disciplines (system, software, and safety) in a structured way, and allows different engineers to do their job in their specific manner. Furthermore, it enables a reorganization from a document-centric development approach to a seamless model-based development approach. The presented model has been developed using profiles, which use a subset of the SysML language to define a system model particularly tailored to automotive engineering and safety engineering in context of ISO 26262. The system level concept of the approach was proposed by Mader [START_REF] Mader | Computer-Aided Model-Based Safety Engineering of Automotive Systems[END_REF] and is based on a specific tool-independent and language-independent methodology to support continuous safety analyses of system architecture development according to ISO 26262 at concept phase and system development level.

Within this work we describe the additional model enhancements to support also software development of basis 8 http://www.east-adl.info/ software functions (HW driver), operating system configuration and task allocation, and modeling of complex software architectures for function software development in the context of modern multi-core systems. The proposed meta-model was intended to support systems and software engineering for embedded automotive multi-core systems within European R&D projects. Therefore, the approach has to fulfill the following requirements: The main benefit of this proposed approach contributes to (a) closing the gap, also mentioned by Giese et al. [START_REF] Giese | Model Synchronization at Work: Keeping SysML and AUTOSAR Models Consistent[END_REF], Holtmann et al. [START_REF] Holtmann | A Seamless Model-Based Development Process for Automotive Systems[END_REF], and Sandmann and Seibt [START_REF] Sandmann | AUTOSAR-Compliant Development Workflows: From Architecture to Implementation -Tool Interoperability for Round-Trip Engineering and Verification & Validation[END_REF], between system-level development at abstract UML-like representations and software-level development and (b) a meta-model reduced to the very minimal requirements to support this bridging and comprise all development artifacts of embedded automotive multi-core development. This enables information transfer between system engineering tools and software engineering tools. Furthermore, the model minimizes redundant manual information exchange between tools and contributes to simplifying seamless safety argumentation according to ISO 26262 for the developed system. The benefits of this development approach are clearly visible in terms of re-engineering cycles, tool changes, and reworking of development artifacts with alternating dependencies, as also mentioned by Broy et al. [START_REF] Broy | Seamless Model-based Development: from Isolated Tool to Integrated Model Engineering Environments[END_REF]. Moreover, the presented model is, due to its simplicity and tailoring of the very fundamental needs of embedded automotive multi-core development, an optimal basis for education and training of young engineers and students. The following sections describe the key contribution parts of the model in more details.

A. System Engineering Model Part

To support the modeling approach on system level SysML 1.1 was modified using a meta model enhancement. This meta model is implemented as an UML profile for Enterprise Architect (EA) and requires only very little adaptations. For the item definition, the preliminary architecture of the item is annotated with non modified SysML 1.1 elements and specific connectors for information, material and energy flows (depicted in Figure 1). For this purpose a block definition diagram (BDD) and an internal block diagram (IBD) shall be created using SysML 1.1 and the proprietary elements defined.

The BDD represents the top or container element of the individual components as << block >> element. These element serves as container for all the other elements in the BDD before and also represents the system boundary. The IBD is used to model the dependencies between the components. To model the dependencies between the components, proprietary flowPorts are used, which represent physical connections between the components. To specify the type of the connection, different types of flowPorts are introduced as depicted in Figure 1 and should be chosen in respect of its principal purpose. Further, also the direction of the flow of every flowPort (can be either in, out or inout) and its SI unit must be specified. Defining the BDD and IBD is the basic procedure to model the structure of the system under development.

Describing the main functionality of the item is done by using SysML standard use case diagrams (UCD) and activity diagrams (ACT) and is subject to publications [START_REF] Mader | Computer-Aided Model-Based Safety Engineering of Automotive Systems[END_REF], [START_REF] Mader | A Computer-Aided Approach to Preliminary Hazard Analysis for Automotive Embedded Systems[END_REF].

B. Application Software Model Part

The first SW part is a specific UML model enabling software architecture design in AUTOSAR like representation. A specific SysML profile is used to limit the SysML possibilities, to the needs of software architecture development of safetycritical systems and enable software architecture design in AUTOSAR like representation within the system development tool (Enterprise Architect). This profile makes the SysML representation more manageable for the needs of the design of an automotive software architecture by taking advantage of an AUTOSAR aligned VFB abstraction layer. Additionally to the AUTOSAR VFB abstraction layer [START_REF]Virtual Functional Bus. online[END_REF], the profile enables an explicit definition of components, component interfaces, and connections between interfaces. This provides the possibility to define software architecture and ensures proper definition of the communication between the architecture artifacts, including interface specifications (e.g. upper limits, initial values, formulas). The SW architecture representation within EA can be linked to system development artifacts in the same tool and traces to requirements can be easily established. This further benefits in terms of constraints checking, traceability of development decisions (e.g. for safety case generation), reuse, and ensures the versatility to also enable AUTOSAR aligned development as proposed in [START_REF] Macher | Automated Generation of AUTOSAR Description File for Safety-Critical Software Architectures[END_REF]. Note that the proposed ASW model matches the classic AUTOSAR approach, but does not feature the more recent AUTOSAR adaptive approach with its adaptive service interfaces.

Figure 2 shows the representation profile of application software architecture artifacts. Note attributes starting with an underscore character (such as image, sizeX, and metatype) are solely for representative purposes within EA and do not directly belong to the proposed meta-model. The AUTOSAR-Component is used to design the SW architecture and represent the SW components. These components can be of 9 different kind (highlighted in lower left corner of Figure 2), representing AUTOSAR standard aligned component types, triggers, and BSW interfaces. Additionally, the AUTOSARComponent artifacts inherit an ASIL classification, as required for safetyrelated development according to ISO 26262 (also highlighted in the lower left corner of Figure 2).

The AUTOSARPort class is used to represent the SW interfaces (ports). These interface artifacts include the port direction (in, out, or inout), the respective data type (e.g. uint8) and AUTOSAR port type (highlighted in lower right corner of Figure 2). A summary of all information represented by the SW interface artifact can be found in Table II. The connector type is only used for visualization and automated constraint checking functionalities. As can be seen in the depiction, all artifacts required to model the SW architecture are represented and inherit the required information as tagged values. Note that some of the value and tag combinations might not be applicable (e.g. for AUTOSAR Client Server port configuration some tags will be ignored). However, this

C. Basic Software Model Part

The basic software (BSW) model extension allows the graphical visualization of OSEK OIL objects and representation in the MBD environment. This profile extension ensures the accumulation of additional information which enable the mapping of tasks to a specific core and clear arrangement of dependencies and shared resources in context of multi-core development. Figure 4 shows the additional profile elements and their accumulated element information. This part of the model offers an intuitive way for highlighting functionality of safety-related software tasks and resources. This also enables the possibility of a traceable automatic OIL file configuration generation instead of the typical manual definition, which inherits increasing significance in terms of safety-critical system development according ISO 26262. Consequently, the system description can be refined down to the operating system. Note that this model part is straightened for the OSEK-based specifications for embedded operating system, communications stack, and network management protocol for automotive embedded systems. For more information related to the OSEK support see [START_REF] Macher | A Model-Based Configuration Approach for Automotive Real-Time Operating Systems[END_REF] As mentioned previously, the BSW model part (depicted in Figure 4) includes timing information representation possibilities for tasks and OSEK OS related objects and attribute properties, such as: As depicted in Figure 4 the BSW profile is extended to additional include OSEK and timing information. The ability to specify timing constraints of software modules enables the ability to use the model to interlink scheduling and task allocation analysis tools. This enables the analysis and optimization of resource utilization, especially important for multi-core system development. This enrichment may only be highly required for development of multi-core systems, but, due to the increased amount of multi-core development in the automotive domain, is still not counted contradicting to the requirement of a minimal model.

D. Hardware Model Part

The AUTOSAR architectural approach ensures hardwareindependent development of application software modules until a very late development phase. The previously mentioned basic software (BSW) and the hardware representation are assigned to establish links to the underlying basic software and hardware layers. Therefore, the hardware profile of the approach, depicted in Figure 5, allows a graphical representation of hardware resources and connected peripherals which interact with the software. This enables an intuitive graphical means of establishing software and hardware dependencies and a hardware-software interface (HSI), as required by ISO 26262. Software signals of BSW modules can be linked to HW port pins via dedicated mappings (depicted as HwSwMapping in the center of Figure 5). Additionally, SW units can also be allocated to dedicated cores (also multi-core systems) and HW resources. This enables the modeling and mapping of HW specifics and SW signals, which establishes traceable links to port pin configurations (depicted as ConnectorPinSetting on the bottom of Figure 5). More details regarding the HSI definition can be found in [START_REF] Macher | Using Model-based Development for ISO26262 aligned HSI Definition[END_REF].

IV. APPLICATION AND EVALUATION OF THE PROPOSED MODEL

This section briefly demonstrates the usability of the model for development of automotive embedded systems. The presented model is the fundamental part of a bridging approach [START_REF] Macher | Bridging Automotive Systems, Safety and Software Engineering by a Seamless Tool Chain[END_REF] to seamlessly transfer system development and software development tools. For this evaluation a prototypical implementation of the approach has been made for Enterprise Architect 9 . An automotive use-case of a central control unit (CCU) of a battery management system (BMS) prototype for (hybrid) electric vehicle has been chosen for evaluation of the approach. This use-case is an illustrative material, reduced for internal training purpose and is not intended to be exhaustive or representing leading-edge technology.

The system model of the system under development consists of 1132 model artifacts in total and 2206 connections between these elements. 163 information flow ports and 103 energy flow ports (representing mechanical and electrical energy) are used to represent the dependencies between the different model artifacts on the high abstraction level. Details of these higher levels of abstraction are omitted due space constraints but are related to 144 system artifacts distributed over 170 packages, including 76 diagram representations. The depiction in Figure 6 constitutes a more concrete layer of system development. This figure shows the connections between the main module (CCU) and the various satellite modules of the INCOBAT battery. Information and energy exchange ports as well as an optional fan controller are depicted and the information ports of the HV interlock loop (HVIL) can be seen.

The definition of the software architecture is usually done by a software system architect within the software development tool (Matlab/Simulink). Using the presented approach this work package is also included in the system development tool. This does not hamper the work of the software system architect but enables the possibility to also link existing HSI mapping information to the SW architecture. This abstraction level, depicted in Figure 7, is not included in classical system development approaches but defines the start of parallel software and hardware architecture design. This abstraction level is therefore mostly only present in special purpose SW development tools or HW design tools rather than SysML based system development tools. With the presented modeling approach this tool breach and semantic gap can be bridged and SW architecture definition can be represented by the MBD tool.

The SW model consists of 15 ASW modules and 11 BSW modules with 19 interface definitions between ASW and BSW, 1 operating system instance per core which schedule 47 tasks and manage 23 HW resources (including among others,system counters, CPUs, and peripherals). Table IV provides an overview of the different modeling artifacts and the number of configurable attributes per element. Figure 7 depicts an excerpt of the SW architecture modeled within the system modeling tool. In the figure the HVIL management SW implementation is show with its interfaces and SW subcomponents. Also a highlighting of the assigned ASIL and a decomposition can be seen.

As can be seen in Table IV, 7 ASW/BSW input interfaces and 12 ASW/BSW output interfaces need to be defined. This definitions can be used for automatic generation of HW/SW interfaces and automatic transferring of SW architecture to the SW development tool. Furthermore, the managed amount of 85 operating system objects (OIL container) and relations between them can be used to automatically configure the operating system. This small example already indicates that relations between the elements increase quickly and become confusing. In terms of safety-critical development and reuse the presented model can serve as basis to support round-trip engineering for information transfer between separated tools and links to supporting safety-relevant information.

V. CONCLUSION

The challenge with modern embedded automotive multicore systems is to master the increased complexity of these systems and ensure consistency of the development along the entire product life cycle. Automotive standards, such as ISO 26262 safety standard provide a process framework which requires efficient and consistent product development and tool support. Model-based development (MBD) seems to be the most promising approach to tackle these issues and support development of system-wide features (such as safety and security). Nevertheless, various heterogeneous development tools in use hamper the efficiency and consistency of information flows and existing automotive meta-models are enormously complex and tedious to use in efficient manner. This work thus provided the minimal meta-model required to manage these development artifacts required for systems, safety, and software engineering of embedded multi-core systems. On basis of this model several heterogeneous tools required for development of automotive systems can be linked to support seamless interchange of information across tool boundaries [START_REF] Macher | Bridging Automotive Systems, Safety and Software Engineering by a Seamless Tool Chain[END_REF]. Additionally, the minimalistic meta-model can optimally be used for development trainings of embedded automotive multi-core systems for young engineers and students, due to its limited overheads and the resulting steep learning curve.

The applicability of the model has been demonstrated utilizing an automotive BMS use-case, which is also intended for training purposes for students and engineers and does not represent either an exhaustive or a commercially sensitive project. The main benefits of the presented model are: improved consistency and traceability from the initial design at the system level down to the software implementation. Further improvements of the approach include the progress in terms of reproducibility and traceability of design decisions.

 -light-weight meta-model which requires short training phase -open source approach, not requiring additional licenses -tool-independent applicability -support system engineering in safety-related context -bridge the existing gap between model-driven system development tools and software engineering tools (both application software and basic software tools) -support of specifics of multi-core system development -supporting HW-SW interface definitions Table I compares the proposed solution with other model approaches and indicates different improvement factors. These factors highlight benefits/supported features (indicated with +), drawbacks/not supported features (indicated with -), and un-affected/somehow supported aspects (indicated with o).

Fig. 1 .

 1 Fig. 1. Meta-model Definition of flowPorts

-Fig. 2 .Fig. 3 .Fig. 4 .

 234 Fig. 2. Representation of Application SW Artifacts

Fig. 5 .

 5 Fig. 5. Meta-Model Representation of HW Artifacts

Fig. 7 .

 7 Fig. 7. Excerpt of SW architecture of HVIL Management Software Implementation within the System Development Tool

TABLE I .

 I COMPARISON OF MODELING APPROACH FACTORS

	Indicators	Proposed	CESAR Ap-	AUTOSAR	SysML	EAST-ADL	AMALTHEA	SAFE Ap-	SPES XT
		Approach	proach	meta-model			Approach	proach	Approach
	System Engineering Support	+	+	o	+	+	o	+	+
	SW Engineering Support	+	-	+	o	o	+	o	+
	HW -SW Interface Support	+	-	+	-	-	o	o	o
	Timing Support	+	-	+	-	-	+	-	o
	Additional (safety) constraints (such	+	+	-	o	o	o	+	+
	as ASIL indicator, requirements)								
	Multi-core system support	+	o	+	o	o	+	o	o
	Model Complexity	+	o	-	-	-	o	o	o
	Licenses	+	o	-	+	+	+	o	+
	Tool-independent solution	+	o	o	+	+	+	o	+
	Training / Learning phase	+	o	-	o	o	o	o	o

TABLE II

 II

	.	ESSENTIAL HSI ATTRIBUTES REPRESENTED IN THE
			APPLICATION SW MODEL
	Artifact		Configurable Attribute
	SW signal name	signal identifier for ASW
	port type		AUTOSAR aligned port types
	signal direction		input or output
	ASIL		Automotive Safety Integrity Level
	SW data type		-
	scaling LSB scaling offset		fixed-point arithmetic scaling
	SW min range		-
	SW max range		-
	SW unit		physical unit representation
	default value		default value in case of invalid signal

TABLE III .

 III OVERVIEW OF THE EVALUATION USE-CASE, ELEMENT COUNTS, AND NUMBER OF CONFIGURABLE ATTRIBUTES PER ELEMENT

http://www.amalthea-project.org/

http://safe-project.eu/

http://maenad.eu/

http://spes2020.informatik.tu-muenchen.de/home.html

https://www.artemis-emc2.eu/

http://www.cesarproject.eu

http://www.crystal-artemis.eu/

http://www.sparxsystems.com/

ACKNOWLEDGMENTS

This work is supported by the DEIS project -Dependability Engineering Innovation for automotive CPS. This project has received funding from the European Unions Horizon 2020 research and innovation programme under grant agreement No 732242.