Jan Steffen Becker

Vincent Bertram

Tom Bienmüller

Udo Brockmeyer

Heiko Dörr

Thomas Peikenkamp

Tino Teige

Interoperable Toolchain for Requirements-Driven Model-Based Development

Keywords: Requirements Formalization, Verification, Traceability, Interoperability, Consistency Analysis, Model Complexity, Model Quality

published or not. The documents may come

I. INTRODUCTION

The requirement-driven design of large systems usually follows a hierarchical approach: The process starts with an initial description of the system that is broken down to functional (and non-functional) requirements. In parallel, the system is broken down into components and sub-components which leads to models of different granularity including design and implementation models. During the development process different challenges have to be solved. In this paper we present an integrated toolchain that covers a major part of this process involving natural language requirements, formal requirements and executable models. The toolchain tackles the following keypoints that are not only considered good practice in software development, but also required by various standards for safety critical systems such as ISO 26262 [START_REF]Road vehicles -Functional safety -Part 8: Supporting processes[END_REF] and IEC 61508 [START_REF]Functional safety of electrical/electronic/programmable electronic safety-related systems -Part 3: Software requirements[END_REF].

a) Completeness, Correctness and Consistency: For high development quality, completeness, correctness, and consistency [START_REF] Zowghi | On the interplay between consistency, completeness, and correctness in requirements evolution[END_REF] must be ensured between all levels of the design The work has been partially funded by the German Ministry for Education and Research (BMBF) under the funding ID 01IS15031H (ASSUME).

process and within the artifacts on each level. Requirements on one level of the design hierarchy must be consistent with each other and complete with respect to the requirements on higher levels.

Following the design flow, the design and implementation models must be complete and correct with respect to the requirements, and the implementation must be complete and correct with respect to the models.

As correctness and completeness are transitive relations, ensuring them between consecutive levels in the design hierarchy implies a correct and complete implementation with respect to the textual specification.

b) Traceability: Quality assurance needs traceability on system level and implementation level. The presented toolchain provides traceability between natural language requirements, their formal representation, model elements and test cases.

c) Model quality: The (non-functional) quality of design and implementation models is essential for effective and high quality development. In order to achieve understandable and maintainable models, model complexity and guideline compliance must be tracked.

d) Overall quality monitoring: Since the development process is accompanied with a quality process, quality monitoring for the complete product development is required. Concise and comprehensive information about the status of development and product quality must be available at any time. For effective quality assurance, a centralized view on quality data is necessary that includes measurements for completeness, correctness and consistency of requirements, design and implementation as described above.

A. Toolchain needs

Functional requirements are checked using different tools and technologies such as model in the loop (MIL), software in the loop (SIL), static analysis, or tests. How a functional requirement is checked depends on the complexity of this requirement and the amount of the tools used. While the collaboration of "specialized tools" instead of one "universal tool" leads to more effective and efficient analysis results as each tool can show its strength on the other hand an deep integration of tools is necessary.

In order to enable validation of completeness, correctness and consistency we propose to use formal methods in the design process. For an effective, maintainable, and highquality use of formal methods, a simple, but yet powerful, formalism together with a methodology to formalize the textual requirements is needed. Formal requirements have unambiguous, machine-consumable semantics and thereby allow formal reasoning.

The check procedure is getting more expensive the more human interaction and the more specialized software products are used. The input formats to specify functional requirements and verification procedures differ significantly between tools and used technologies. Therefore, it is expensive or even practically impossible to move a check procedure for one requirement from one tool or technology to another even if this would save effort in the verification phase. To tackle this problem, it is necessary to have an interoperable toolchain for formalization of functional requirements, formal verification, evaluation and model quality. From our view, the main aspect of interoperability is that requirements and models have the same semantics among all the tools in a chain. Because translating between different notations is error-prone, the same set of formal requirements and the same model files shall be used for the different verification, validation and generation tasks. For the same reason, results must be exchanged between tools without manual editing.

To show a comprehensive quality trend for the whole project, quality metrics are required. The tools need to export quantitative measurements that abstract from the detailed results of verification and validation. Also the status of validation activities, such as test coverage, must be reflected.

B. Achievements in this work

In this paper we present a sample toolchain that provides solutions for ensuring consistency, correctness, model quality, centralized quality monitoring, and partially traceability. We present each tool in the chain and the interplay between the tools based on a running example from automotive industry. The running example is initially developed in the SPES XT [START_REF]SPES XT -Software Plattform Embedded Systems XT[END_REF] project and is now extended with code generation to fit the needs of the ASSUME [START_REF]ASSUME -Affordable Safe & Secure Mobility Evolution[END_REF] project in which the collaborative toolchain was developed. Although the running example has low safety critically, the methods for analysis and test demonstrated in the toolchain are usually applied to safety critical systems. They are recommended in ISO 26262 for any element that needs compliance with the standard [START_REF]Road vehicles -Functional safety -Part 8: Supporting processes[END_REF].

II. RUNNING EXAMPLE: CORNERING LIGHT

The running example represents an automotive adaptive light system (AL) which contains functionality like adaptive high and low beam, turn signaling, cornering lightning and ambient lightning. The functionality which is chosen to elaborate the interoperable toolchain is the cornering light. Cornering light is illuminating the area ahead and to the side of the vehicle to take a look around the bend. This functionality is activated when the indicator or turn the steering wheel is operated during night-time driving. For more details see [START_REF] Techcenter | [END_REF]. In general, the functionality represented by the running example is highly distributed on various ECUs (Electronic Control Units) that communicate via the car's vehicle busses, such as CAN, LIN, and Automotive-Ethernet in an AUTOSAR environment. The running example abstracts this environment, as in context of the interoperable toolchain, the textual (informal) requirements and model representation are in focus. Containing 113 selected functional and non-functional requirements it is still big enough to show up realistic challanges. The implementation is done using the model-based development tools Simulink R and TargetLink R where TargetLink R is used to generate ANSI-C source code. The following excerpt introduces three requirements describing the cornering light functionality as part of the adaptive light system and will be used to examplify the interoperable toolchain in the next sections.

AL-43 If the low beam headlights are activated, direction blinking is requested and when the vehicle drives slower than 10 km/h the cornering light is activated. 10 seconds after passing the corner (i.e. the direction blinking is not active any more for 10 seconds), the cornering light is faded out in a duration of 1 second. AL-122 With subvoltage the cornering light is not available. AL-139 With activated darkness switch (only armored vehicles) the cornering light is not activated. According to textual requirement AL-122 a subvoltage is present if the voltage in the vehicles electrical system is less than 8.5V. The darkness switch mentioned in textual requirement AL-139 disables additional adaptive light functiionality with the push of a button.

III. COLLABORATIVE TOOLCHAIN FOR IMPROVED V&V

An overview of the collaborative toolchain is provided in Figure 1. The workflow starts with textual requirements describing the cornering light. Implementation (Simulink R) and build information to generate ANSI-C code are initially present in our running example. In a real-world workflow, design-and environment models would be used as well. In the Fig. 2: Interfaces between the tools example we start directly with an implementation model. Since the example system has little interaction with the environment, we include the most important environment constraints (e.g. value ranges) in the specification but do not model the environment's behavior. As we do not present design and implementation models here, they have been greyedout in the figure. The textual requirements are formalized within BTC EmbeddedPlatform R (BTC EP) by using the graphical specification language simplified universal pattern (SUP, cf. Figure 3 in subsection III-B) [START_REF] Teige | Universal pattern: Formalization, testing, coverage, verification, and test case generation for safety-critical requirements[END_REF]. Then the formal requirements are checked for consistency, and afterwards the implementation is verified against them using requirementsbased testing of BTC EP. Since we omit a design model in our example, we run MIL and SIL tests directly against the implementation model. The inputs of the system are fully defined in the testcases, therefor we can run the tests without implementing an environment model. Using generated testcases, these are correct by construction with respect to the formal requirements. In a complete workflow, the correctness of design-models could be proven by the formal verification feature of BTC EP.

Besides checking correctness and consistency, we evaluate the model quality using guidelines and metrics in MES Model Examiner R and MES M-XRAY R . Results from all steps are collected and displayed with the help of the MES Quality Commander R which tracks quality over all revisions of the development cycles. The different tools used in the collaborative toolchain are integrated so that they exchange their information for a better analysis and presentation of test results.

The component diagram [START_REF] Rumbaugh | The Unified Modeling Language reference manual[END_REF] in Figure 2 shows which tools have interfaces to each other. The data between tools is exchanged as XML files as depicted by the lollypop notation in the diagram: The consistency analysis consumes XML files from BTC EP; MES Quality Commander R consumes XML files from all the other tools in the chain. This reduces the overall manual effort of data maintainance to a one-click file export and import. Formal specification and requirement based testing are part of one tool, BTC EP, and hence share the same database. The BTC EP integrates with Simulink/TargetLink via a plugin in the MATLAB environment-the communication between BTC EP and MATLAB is fully automated and hidden from the user. There is no need for an interface between BTC EP and MES MXAM/M-XRAY R since the model quality analysis is independent from formal testing.

A. Model Quality Analysis

Today a mature set of metrics is used to evaluate the nonfunctional quality of a software system. These metrics measure various complexities, guideline conformances and anti-pattern occurrences on code level in order to rate the maturity and maintainability of a (future) product. The increasing use of model based development tools and code generators moves the non-functional quality concerns from code to model level. The used metric set has to follow the shift and also provide comparable statements about maintainability and maturity on model level. Overall quality statements for products with model based development and without shall be comparable.

The static analysis tools used in the collaborative toolchain provide mechanisms to measure complexity metrics, guideline conformances and anti-pattern occurrences for models from Simulink R , Stateflow R and TargetLink R as well as mechanisms to derive aggregated metrics which indicate maturity and maintainability of a complete set of models for a product.

During the design flow, the OFFIS consistency analysis and the requirement-based testing feature of BTC Embed-dedPlatform R evaluate and export quantitative measurements for completeness, correctness and consistency. Particularly these are consistency status, test status, formal requirement status, and formal requirement coverage. These values abstract from the actual results of consistency analysis, test generation, MIL, and SIL testing and yield a comprehensive and comparable view on the project status: A consistency status of 100% means that no inconsistencies have been detected. High values for test status and formal requirement status together with a high formal requirement coverage ensure correctness and completeness of the design model with respect to the requirements.

B. Formal Specification with BTC EmbeddedPlatform R

The formal specification feature of BTC Embed-dedPlatform R (BTC EP) deals with creating and managing semi-formal and formal requirements for safety-critical projects. While a semi-formal and formal notation of requirements is recommended in standards like ISO 26262-8:2011 [START_REF]Road vehicles -Functional safety -Part 8: Supporting processes[END_REF] and IEC 61508-3:2010 [START_REF]Functional safety of electrical/electronic/programmable electronic safety-related systems -Part 3: Software requirements[END_REF], most formal notation languages require a high level of expert knowledge to both read and write them. Instead of having to create formal requirements from scratch, BTC EP provides an intuitive method to derive comprehensible formal requirements from natural language without expert knowledge. As natural language typically leaves some room for interpretation, the one important benefit of a semi-formal or formal notation is that informal requirements can be transformed into a clear, unambiguous, and machine-readable representation, thus Fig. 3: Formal specification of natural-language requirement AL-43 using the SUP editor of BTC EmbeddedPlatform R .

improving their quality and making them much more valuable for the following steps in the development workflow.

There are mainly two primary reasons why formal notations have not yet gained more acceptance in embedded development projects. Formal languages like LTL or CTL [START_REF] Van Leeuwen | Handbook of Theoretical Computer Science[END_REF] are often considered to be too difficult and do not provide enough traceability towards existing informal requirements. To address both issues efficiently, BTC EP provides an intuitive and graphical specification formalism called simplified universal pattern (SUP), cf. Figure 3. An SUP exploits the intrinsic nature of functional requirements by directly specifying a trigger/action relation and thus reflects explicitly the essential artifacts of the natural-language requirement.

A typical formalization workflow starts with identifying these textual artifacts of the informal requirement as so called macros. For an example, consider the identified macros in the first sentence of the textual requirement AL-43 as shown in Figure 3 where, e.g., the textual artifact "low beam headlights are activated" is identified as macro $lowBeamHeadlightActivated. Thereafter, these macros are structured to define their relationship and timing behavior by using the graphical SUP editor, and moreover serve for traceability as it establishes a connection between the textual and formal requirement. Concerning requirement AL-43, the SUP formalization and in particular the definition of the trigger and action part can be easily derived from the (well-written) textual description. More details about the expressiveness of the SUP language and its semantics can be found in [START_REF] Teige | Universal pattern: Formalization, testing, coverage, verification, and test case generation for safety-critical requirements[END_REF], [START_REF] Bienmüller | Modeling requirements for quantitative consistency analysis and automatic test case generation[END_REF]. Regarding usability, the SUP editor initially shows a very simple structure, i.e. not all SUP artifacts are visible, while more artifacts can be activated on demand. That means, the SUP is kept as simple as possible and as complex as needed and thus facilitates understandability, documentation, and reviewing. After having achieved such a semi-formal representation of the requirement, it remains to map all macros to real interface objects of the system under test such that the requirement becomes formal and machine-readable. This action further improves tracebility as the informal and formal requirements are additionally linked to the corresponding interface objects of the system under test. The finalization of the formalization process then allows for further and fully automatic use cases like formal testing, requirement-based coverage measurement & test case generation, formal verification [START_REF] Teige | Universal pattern: Formalization, testing, coverage, verification, and test case generation for safety-critical requirements[END_REF] as well as consistency analysis, as being explained in subsection III-C, establishing the added value of formalizing requirements.

C. Consistency Analysis by OFFIS

The consistency analysis tool is a research prototype developed by OFFIS. It demonstrates the use of formal methods in order to verify that a set of requirements is free of contradictions. This is named internal and external consistency in ISO 26262-8:2011 [START_REF]Road vehicles -Functional safety -Part 8: Supporting processes[END_REF] and is a required property for any set of requirements.

The tool validates consistency by symbolic execution of formal requirements. The basic idea is to find an execution trace for the system -a sequence of steps where a concrete value is assigned to each macro -that contains a complete observation of every requirement. This is called existential consistency and explained in detail in [START_REF] Ellen | Detecting consistencies and inconsistencies of pattern-based functional requirements[END_REF]. If the tool finds a satisfying trace it is displayed to the user. If no trace is found, the analysis tries to find either a maximum consistent or minimum inconsistent subset of requirements which helps the user to locate faulty requirements. However, existential consistency is not sufficient to find all cases of inconsistency. For example, the contradiction between requirements AL-43 and AL-139 as introduced in Section II is not found: Requirement AL-43 states that direction blinking activates the cornering light but AL-139 prohibits activation of the cornering light with activated darkness switch. If the driver uses direction blinking with activated darkness switch, the requirements contradict. However, AL-43 and AL-139 are existential consistent. In a satisfying trace, the darkness switch could be activated after the cornering light fades out. Therefor the tool supports another consistency notion called partial consistency: Here, all subsets of the requirements are checked for existential consistency under the additional assumption that their triggers occur synchronously (provided that the triggers do not contradict). Now the tool checks exactly for the described case -direction blinking with activated darkness switchand displays the inconsistency. Figure 4 In the current workflow, the user exports the formalization from the BTC EP in an exchange format and imports the file into the analysis tool. Although the migration is a manual step, the tools are integrated in our sense: The user never touches the file contents, so he/she will not corrupt data during the process. Furthermore both tools use the SUP and names of requirements and macros are the same. The export of consistency metrics for visualization in MQC works the same as from BTC EP. The exported metrics from the consistency analysis and BTC EP use the same IDs to identify components so the data in MQC gets related.

After finding the inconsistency, the user returns to the BTC EP and modifies the formalization of AL-43. For our running example we add an exception to $F_CorneringLightOffRight that honors an activated darkness switch. The process is repeated until all inconsistencies have been removed. D. Requirements-Based Testing with BTC Embed-dedPlatform R BTC EmbeddedPlatform R supports manual and automated requirements-based testing facilities. In requirements-based testing, the correct implementation of functional requirements can be verified using dedicated test cases, namely against the model implemented in Simulink R and the production code generated using TargetLink R . This process can be performed in a traditional way, in which functional test cases are manually linked to informal requirements and specified using dedicated test specification techniques.

Besides the traditional approach, BTC EP offers to automate this traditional manual process by taking advantage of formalized requirements using the SUP language as described in subsection III-B. The SUP formalism comes along with an intuitive requirement coverage notion, cf. [10, Section 2.2] for more details. This means that using formalized requirements, achieved detailed coverage of test cases wrt functional requirements can be automatically measured. Additionally, by having this measurable coverage notion available, automatic test case generation for functional requirements can be applied [10, Section 3.2] Figure 5 gives an impression of how these requirementsbased test results are integrated into BTC EP: while the yaxis corresponds to the concrete architecture of the system under test, e.g. model in the loop (MIL) and software in the loop (SIL), the x-axis shows results for the different test metrics based on the available (manually created or automatically generated) test cases. The test status reflects the traditional requirements-based test where the simulated test cases are compared to their expectations given, e.g., by some test verdict functions like absolute or relative tolerances. The formal requirement status shows the relative number of formal requirements which are definitely satisfied by some test cases. Using color coding and additional textual information, it is immediately indicated whether requirement violations were revealed during test execution. The column formal requirement coverage measures the number of covered formal requirements. A requirement is classified as covered if its actual coverage exceeds some user-defined threshold. For coverage metrics of single requirements, we refer the reader to [10, Section 2.2].

In early stages of the development process, the system under test may not have sufficient quality as, e.g., indicated in Figure 5 where some requirements are not fully covered or, even worse, some requirements are actually violated. To support the system engineer in enhancing the test quality or in understanding and eliminating the malfunction of the system under test, BTC EP provides very detailed debugging possibilities. For instance, the uncovered parts of a formal requirement are revealed or system executions violating a formal requirement are illustrated in a very lucid and comprehensible way, linking each execution step to the current status of the SUP as shown in Figure 6. BTC EP additionally provides the possibility of exporting test environments of the system under test, given as Simulink R or TargetLink R model or as production code, which then allows for simulating and debugging the abnormal system behavior for the corresponding critical scenarios.

To track the progress of such iterations in a development project wrt requirements-based test status in tools like MES Quality Commander R , as described in subsection III-G, a dedicated plugin was developed to export the current status of the requirements-based test, cf. the button "MQC Export" in the screenshot of Figure 5.

E. Analysis on best modelling practices with MES Model Examiner R (MXAM)

Models which are used as source for the generation of code shall follow best practices for such kind of models. Otherwise, code generation may lead to insufficient results or even fail. Similar to the well-known MISRA-C [START_REF] Mira | Guidelines for the Use of the C Language in Critical Systems[END_REF] guidelines, there is a comprehensive set of guidelines on good modeling practice, which facilitate the creation of models being source for the generation of code. One of the earliest set of guidelines has been defined by the Mathworks Automotive Advisory Board (MAAB) targeting at readability of models which is an essential precondition to successful maintenance of models and team work [START_REF]Control Algorithm Modeling Guidelines Using MATLAB, Simulink, and Stateflow[END_REF]. MISRA has also compiled a set of guidelines dedicated to the creation of robust models [START_REF] Mira | Modelling design and style guidelines for the application of Simulink and Stateflow[END_REF]. Additional sets of guidelines are supporting the use of code generators to produce code from the Simulink model. As for many compilation steps, also the generation of code is not feasible for arbitrary models. The supported language subset must be checked in order to achieve a successful generation of code [START_REF]dSPACE Modeling Guidelines for TargetLink[END_REF]. Furthermore, problems known from user experience with code generators are regularly collected by the provider of the generator in order to inform the user community about potential risks in generation of code. The existence of those scenarios can also be automatically checked, and the developer will be able to create a robust model, suited for generation of code. In each run of MXAM, a predefined or customized set of guidelines is defined a scope of analysis for a single or multiple models. The MES Model Examiner R analysis the model(s) and determines violations of the guidelines which may occur at any part of a model. In general, several findings with individual criticality are reported. The developer or quality engineer can assess the report and decide on the treatment of findings. All decisions are covered in the analysis report. For the running example, a number of guidelines have been selected and applied to the model using the provided automatic analysis. The findings have been assessed and a report showing the analysis results has been created. Based on the findings, the developer is guided to modify the model in order to improve the generation of code from the model. As the result also provides information on the quality of the model under development, the MES Model Examiner R has also been incorporated into the interoperable toolchain. The integration is realized by a particular adapter which is able to parse the proprietary report file structure used for persistent storage of results of the analysis. Whenever an analysis has been executed, the respective report is going to be generated and captured by the toolchain.

F. Complexity Analysis with MES M-XRAY R

The assessment of complexity of a development artifact is an important means to manage a development project and to achieve a sustainable product. Firstly, from the complexity of a model, one can e.g. estimate the amount of expected review or validation efforts improving the accuracy of resource planning. Secondly, detailed information on the complexity distribution within a model gives a valuable indication on the quality of the model: unequally balanced model structure may lead to overhead in the management of software units. MES M-XRAY R has been applied to the running example and the distribution of complexity has been reported. Highly complex parts of the model have been identified and should be factored in order to improve the overall quality of the model. Again, similar to the integration of MES Model Examiner R , a particular adapter captures the results of the analysis by parsing the result file.

G. Quality Monitoring with the MES Quality Commander R

The interoperable toolchain provides a comprehensive set of analysis tools all contributing to a better understanding of the quality of development artifacts. The large number of analysis tools however has the risk that important information get lost and will not be recognized early enough. Project management must be able to react immediately in order to avoid delays of development due to late observation of issues. Therefore, during development, it is mandatory to track the evolution of quality over time based on the analyses executed. That information on quality can mandate immediate action whenever the risk of missing quality reaches certain thresholds. Because the data exported by the tools contains raw quantitative data (e.g. Keeping track with the quality during development is the key feature of the MES Quality Commander R . It collects any results from quality assurance activities and serves as a single source for quality data over time. Since the number of date easily exceeds tractable size, great importance has been laid onto methods for data aggregation. A highly configurable quality model allows structuring the information on quality in a hierarchical manner. At the top level, the quality of the whole development project is shown, being decomposed into various aspects like requirements quality, model quality, or code quality, down to individual analyses. A second aggregation hierarchy is established based on the composition structure of the product. Consequently, root causes on missing quality can easily be determined and an early warning system is available. For the running example, the result data of the analyses have been collected and the type of information has been gathered in a quality model. The example in Figure 7 shows that Local Complexity Metric has not been changed significantly, the compliance to modeling guidelines has been achieved over time and that the "Test Status" has been heavily improved in line with "Formal Requirements Coverage" and "Consistency Status".

IV. OVERALL RESULTS AND FUTURE WORK

In the following we show some results from applying the toolchain to the running example. Detailed quantitative measurements on process improvements are future work to be done in the ASSUME project.

The textual requirements AL-43 and AL-139 describing the cornering light functionality (explained in Section I) are implemented as a total of 11 formal requirements using the provided SUP pattern. In addition to the formal requirements created, the running example consists of 13 environmental assumptions that are used for the definition of e.g. the ignition key, light switch or engine status. Environmental assumptions contain general conditions that are mentioned by multiple textual requirements. Therfore they are also assigned to more than one formal requirement. This feature helps to keep the individual SUP small and understandable as it is focused on its individual feature mentioned in the textual requirement.

For a successful testcase generation additional four formal requirements were generated to realize the rotary light switch and turn signaling which are needed as precondition for the cornering light functionality. Two formal requirements address subvoltage and darkness switch which are mentioned in textual requirements AL-122 and AL-139.

The running example contains five model calibration values. They are used to enable or disable specific model functionality depending on the vehicle configuration. Therefor the functionalities "cornering light" and "darkness switch" have to be parameterized as they are an optional feature inside the adaptive light system. This is covered by the SUP. A total of 44 individual macros were defined. These are specific textual artifacts of the informal requirements (see Section III-B). Like the environmental assumptions they can be used in more than one formalized requirement for an easier formalization process. The formalized requirements use 26 inports and 25 outports of the corresponding components.

In model revision 6 (see Figure 7) 13 successful generated testcases (see Figure 8) exists, which were executed in MIL and SIL using BTC EP.

We found three scaling incompatibilities during SIL concerning the scaling settings of the running example which were not found during MIL tests. The effort required to set up and employ an analysis using formalized requirements are reduced as the formalization step using the SUP pattern is much easier to understand for the developer compared to a direct specification using LTL or CTL. Automated testcase generation is an additional important feature during the development process.

The consistency analysis by OFFIS can handle a new error classes, the detection of "Partial Inconsistency of Requirements" and the BTC EmbeddedPlatform R reports now "Missing Requirements Coverage". As the consistency analysis explicitly shows inconsistency this helps the developer to find inaccurate requirements at an early stage. This results in efficiency gains for requirements engineering and testing in the development process (see Section III-C). One requirement inconsistency was found inside the running example (between AL-43 and AL-139).

From the diagram shown in the left section of Figure 7 one can determine that the quality of the model has significantly improved with respect to the adherence of modeling guidelines. From an initial level of around 20% of quality, modifications and improvements of the model have achieved a compliance of nearly 90%. In addition, one can derive from the trend information on local complexity measured by MES M-XRAY R that the modifications to the model have not been that significant. The quality aspect of local complexity has not dropped below 90%. Both trend information indicate, that the fixes of findings found by modelling guidelines had been mostly of local and small impact.

The definition, application and visualization of consistent quality assessment over time ensures that the developed functionality is on the right way (cf. Figure 7). The aggregation of individual results and the precision of the reported results helps to identify concrete sources of actual problems. The requirement coverage can be measured with greater precision. The integrated quality dashboard with its iterative data collection and trend representation of: requirements, coverage data, guideline conformance and complexity metrics helps to identify problems in an early development stage. An improved quality assessment including project history is given by evalu-Fig. 8: Testcases created by BTC EmbeddedPlatform R . ating the joined data inside MES Quality Commander R . The measurements done are able to handle the six revisions of the running example, but scale for more revisions.

During our evaluation, we developed new ideas for the consistency analysis and data integration. A variety of different definitions exist that describe if a set of requirements is consistent (see Section V). It turned out that partial consistency finds more practical relevant inconsistencies than existential consistency that was applied to pattern-based requirements with similar semantic in previous work (see [START_REF] Ellen | Detecting consistencies and inconsistencies of pattern-based functional requirements[END_REF]). However, there are still intuitive inconsistencies that are not found because the interactions between requirements may be more complex. Though the trigger/action scheme in the SUP is used for defining and analyzing partial consistency, ongoing and future work tries to use more information from the SUP to form an even more complete but efficient consistency analysis. The consistency analysis tool is currently a research prototype only. If it is adopted as a feature in a commercial tool, i.e. the BTC EmbeddedPlatform R , in future, it will be qualified according to a safety standard.

Though the SUP specification language received very positive feedback from industrial users1 , in particular due to its intuitive and graphical nature, and though a vast majority of real-world (safety-critical) requirements can be formalized as SUP, there recently is a rising industrial need of enhancing the expressiveness of SUP, which will be addressed in future work. By way of example, some requirements involve a whole series of trigger and action phases, e.g. to describe signal curves. Another request deals with user-defined timers within the specification, e.g. to directly limit the duration between starting the trigger and finishing the action. Another very expressive feature would be to support user-defined functions within the specification in order to use very complex computations in an easy way.

The static analysis of compliance to modelling guidelines is well established and mature, so is the computation of complexity. For both cases, though, repair guidance and support is highly required. In particular for large models of high complexity, proposals for refactoring steps are needed in order to reduce the complexity to a acceptable limit. At present, the impact and benefit of a particular refactoring, e.g. by means of restructuring single subsystems or by replacing structural elements, cannot be anticipated prior to the modification. To the contrary, developers have to use a trial-and-error approach to find appropriate refactorings. In future, therefore, more effort has to be spent on patterns and refactoring operations which lead to tangible results.

The power of the collection and aggregation of quality measures highly depends on the availability of data. For that purpose, additional adapters have to be provided such that further analysis tools will be connected to MES Quality Commander R . In order to facilitate the integration of result data, a generic XML schema has been defined. That schema can now serve for several modes of interaction, depending on the core technology used to establish a tool chain. The simplest mode of interaction may be exchange of files, i.e. an XML-file will be generated by the analysis tool and imported into MES Quality Commander R . In case a tool chain is using OSLC as interaction technology, the XML schema will serve for the definition of an OSLC domain. One particular quality analysis will be of additional importance for MES Quality Commander R . Since the tool already accesses numerous analysis tools, it will be of high value to also assess the quality of traces between the various tools and the artifacts being processed by the tools. However, quality of traces has not been fully assessed, but the mere trace management is still challenging. Once, a single source of trace information has become operational, additional effort will have to be spent for the quality analysis of trace information. The results of that analysis will become valuable input to MES Quality Commander R being an overall platform for integration and visualization of the overall quality state of a development.

At present, the integration of analysis results provides an important benefit to developers and project managers. These main stakeholders are able to 1) investigate into the current stage of quality, 2) retrieve information on the past, and 3) extrapolate into the future. In order to further improve the benefits from collecting the results of an analysis, counter actions shall be determined for findings of an analysis. Based on the detailed findings, developers as well as project managers may derive a list of actions from the present state of quality. Furthermore weighted requirements could improve the representation of the actual project status.

V. RELATED WORK

Concerning formal specification, in the past, several graphical formalization languages have been proposed. Symbolic timing diagrams [START_REF] Schlör | Specification and verification of system-level hardware designs using timing diagrams[END_REF], [START_REF] Wittke | An environment for compositional specification verification of complex embedded systems[END_REF] or life sequence charts (LSCs) [START_REF] Damm | LSCs: Breathing life into message sequence charts[END_REF] are prominent examples. Such formalisms offer tremendous expressiveness but this expressiveness comes along with needed expert knowledge to apply them. Approaches like those presented in [START_REF] Bienmüller | The STATEMATE verification environment -making it real[END_REF] (graphical pattern templates) or [START_REF] Dwyer | Patterns in property specifications for finite-state verification[END_REF] (textual pattern templates) limit expressiveness to gain better readability, but also benefit from reduced complexity for tableaux generation for formal verification. Though the latter two approaches use terms and notions to better understand the formalism, none of them inherently bases on the nature of an informal functional requirement which impose another hurdle to requirement engineers.

The SUP language [START_REF] Teige | Universal pattern: Formalization, testing, coverage, verification, and test case generation for safety-critical requirements[END_REF] used in this paper instead directly relates the formalism to the intrinsic composition of informal functional requirements by using a simple trigger/action relation. Furthermore, end users are not overwhelmed with exorbitant expressiveness, which will also lead to better performance when reusing the artifacts later within formal techniques such as formal verification or consistency analysis.

Besides the informal definitions that a set of requirements is consistent if it is free of contradictions [START_REF]Road vehicles -Functional safety -Part 8: Supporting processes[END_REF], or if there exists an implementation [START_REF] Benveniste | Contracts for system design[END_REF], formal definitions of consistency vary.

For example, in [START_REF] Benveniste | Contracts for system design[END_REF] the formal definition of consistency depends on the underlying formalism of the requirements. In [START_REF] Ellen | Detecting consistencies and inconsistencies of pattern-based functional requirements[END_REF], [START_REF] Aichernig | Require, test and trace IT[END_REF], [START_REF] Post | rt-inconsistency: A new property for real-time requirements[END_REF] consistency is based on the existence of satisfying traces. While rt-consistency [START_REF] Post | rt-inconsistency: A new property for real-time requirements[END_REF] requires that every valid finite trace can be extended to an infinite one, Aichernig et al. [START_REF] Aichernig | Require, test and trace IT[END_REF] define consistency as the feasibility to produce a valid output to every input. The partial consistency introduced as new consistency notion in this toolchain circumvents both the distinction between inputs and outputs as required by [START_REF] Aichernig | Require, test and trace IT[END_REF] and the computational complexity in [START_REF] Aichernig | Require, test and trace IT[END_REF] and [START_REF] Post | rt-inconsistency: A new property for real-time requirements[END_REF]. It is based on existing work [START_REF] Ellen | Detecting consistencies and inconsistencies of pattern-based functional requirements[END_REF]. Because a simple analysis setup without environment information or design models is a strength of the tool, no explicit distinction between inputs and outputs is made. On the other hand, partial consistency does not guarantee liveness as in [START_REF] Aichernig | Require, test and trace IT[END_REF] and [START_REF] Post | rt-inconsistency: A new property for real-time requirements[END_REF], wherefore we check bounded triggered existential consistency [START_REF] Ellen | Detecting consistencies and inconsistencies of pattern-based functional requirements[END_REF] separately.

Data integration has been a long lasting topic in tool chain optimization. Model repositories like [START_REF]ModelBus R Tool Integration Framework[END_REF] tend to collect relevant engineering data in a single data base which becomes the master source of information. Analysis tools will have to adapt to that central data source. Since analysis tools strongly make use of efficient representation of model information, the capabilities of centralized data source will not suffice, but the analysis tools will have to replicate the centralized data and enrich it for analysis purposes. This leads to multiplication of sources leading to the well-known issues of redundancy and consistency in tool chains.

OSLC [START_REF] Biehl | Model-based service discovery and orchestration for oslc services in tool chains[END_REF] overcomes this challenge of centralized data storage, but provides a standardized interface to distributed engineering data. So, an intermediate access layer is provided which implements a distributed storage of engineering data. Any analysis tool may retrieve model data via the OSLC access layer. Still -and similar to the centralized data storage -, the analysis tools have to extend the model information by dedicated supplementary information facilitating the execution of analysis. In future, InterOperability Specifications (IOS) may be defined on top of the model interchange formats in order to enable the reuse of enriched information between analysis tools.

The ToolNet framework has been an earlier approach to the implementation of a traceability middleware which focused on the decentralized distribution of engineering data [START_REF] Altheide | Requirements to a framework for sustainable integration of system development tools[END_REF], [START_REF] Freude | Tool integration with consistency relations and their visualisation[END_REF]. Similar to OSLC, data were addressable by URLs. By means of a centralized trace repository, navigation between and remote presentation of engineering data were realized. [START_REF] Ridderhof | Establishing evidence for safety cases in automotive systems -a case study[END_REF] used the framework in order to collect data for the creation of safety cases.

The SQaRE family of standards (see ISO / IEC 250xx [START_REF]Systems and Software Quality Requirements and Evaluation (SQuaRE)[END_REF]) on Software Product Quality provides a comprehensive framework for the systematic collection and compilation of quality properties. Individual results of analysis, like the consistency analysis on requirements serve as basic measurements. These measurements require an interpretation in order to derive a statement on quality. The MES Quality Commander adopts and implements the methodology given by ISO / IEC 250xx.

In [START_REF] Aichernig | Integration of requirements engineering and test-case generation via oslc[END_REF], [START_REF] Armengaud | Integrated tool-chain for improving traceability during the development of automotive systems[END_REF] integrated toolchains have been presented that cover tracing of requirements to model elements and test case generation. The integration of result data of analysis tools for quality monitoring, as presented in this contribution, has not been covered in any related toolchain known to the authors. Instead data integration has been in the focus. The toolchain in this paper currently relies on file-based data exchange instead of OSLC resp. ModelBus which is used in related work [START_REF] Aichernig | Integration of requirements engineering and test-case generation via oslc[END_REF], [START_REF] Armengaud | Integrated tool-chain for improving traceability during the development of automotive systems[END_REF]. Future versions of the toolchain will integrate the consistency analysis as a plugin to the BTC Embed-dedPlatform R2 and may replace the XML file exchange to MES Quality Commander R by some middleware technology. This will further tighten the integration and traceability.

Fig. 1 :

 1 Fig. 1: Overview Interoperable Toolchain for Requirements-Driven Model-Based Development

Fig. 4 :

 4 Fig. 4: Screenshot of the consistency analysis.

Fig. 5 :

 5 Fig. 5: Requirements-based testing with BTC Embed-dedPlatform R .

Fig. 6 :

 6 Fig. 6: Tabular representation of a system execution violating a formal requirement.

Fig. 7 :

 7 Fig. 7: Quality Monitoring with the MES Quality Commander R

There are some hundred industrial users of BTC EP employing formal methods like formal specification and formal verification in industrial projects. For some success stories confer https://www.btc-es.de/en/company/references. html

This has been presented in[START_REF] Ellen | Detecting consistencies and inconsistencies of pattern-based functional requirements[END_REF] for previous versions of the tools.