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Introduction 

Advanced driver-assistance systems (ADAS) are a class of cyber-physical systems (CPS) that increase car safety 

and driving comfort. ADAS represent a collection of key technologies for future self-driving vehicles. As a class 

of CPS, ADAS design is a complex task that naturally involves teams of engineers with different specialties such 

as requirements modeling, control design, software/hardware development, etc. 

With the increasing adoption of ADAS towards truly autonomous vehicles, this task is made even more complex 

by the importance of taking into account domain-specific requirements and concerns, such as rules and laws, 

which can be seen as functional and legal requirements for the technology to be put in operation. This includes 

demonstrating conformance to standards (e.g., safety), considering cultural differences across regions in terms 

of, e.g., infrastructures and driver behavior, etc. On this last point in particular, Lindgren et al. [1] state that not 

taking these differences into account when designing ADAS increases the risk of ending up with a product that is 

not only unusable but also potentially dangerous. 

As the complexity of ADAS design increases, a holistic methodology is required that is underpinned by formal 

modeling for all domain-specific concerns and encompasses the whole design process at system level. Systemic 

modeling naturally accounts for multiple viewpoints, as represented in Figure 1. The system engineering 

approach based on formal models allows accurate evaluation of multiple candidate designs according to many 

facets, such as system performance, safety, reliability, autonomy, energy consumption, etc. This, in turn, brings 

crucial competitive advantage for adopters, since it enables early-stage evaluation of design choices, keeps the 

development costs low and the time-to-market short. 

In the context of the joint laboratory Sherpa@LIST, the company Sherpa Engineering1 is developing in 

partnership with the CEA’s lab LISE a systemic modeling tool, named PhiSystem, which aims at supporting 

such a holistic methodology. PhiSystem leverages modeling and simulation to implement a top-down approach 

for the design of CPS. PhiSystem is based on the SysML standard and the Papyrus2 technology. It accounts for 

multiple viewpoints to enable the definition of requirement, system mission, test, as well as architecture 

(functional and physical) models. This allows the designer to link the real system with the system objectives and 

its functions. Fast transition between system definition and simulation models —e.g., Simulink— enables the 

verification of system performances against requirements, along the overall design phase, and improves 

consistency and traceability of simulation models with respect to system definitions. It also provides support for 

system definition itself by anticipating simulation in early phases. 

In this paper, we present the application of PhiSystem to ADAS design and verification, with a focus on its 

modeling and simulation capabilities and the link with Simulink. In the sections that follow, we describe the top-

down methodological workflow behind PhiSystem, as well as companion tools and frameworks that support it. 

Next, we outline an application to design and simulation-based verification of a set of functions for self-driving 

cars. We then position our work with respect to the state of the art. Finally, we summarize our major results. 

Methodology for ADAS design and verification 
Our methodology complies with the “System Design” sub-clause of EIA 632 [2] standard for system 

engineering. It fosters a collaborative workflow between system and simulation engineers, who work together 

but use different modeling and development tools. The methodological workflow as applied to ADAS design 

and verification is represented in Figure 2. 

                                                           
1 http://www.sherpa-eng.com  
2 http://www.eclipse.org/papyrus/  

http://www.sherpa-eng.com/
http://www.eclipse.org/papyrus/


 

Figure 1 Holistic methodology enables thorough assessment of multiple ADAS design criteria 

 

Figure 2 Methodological workflow for ADAS design and verification by simulation 

The first step concerns the modeling of requirements and vehicle end-missions. At this stage, the customer 

specifies the requirements for what concerns safety, performance and quality aspects. The system engineers use 

SysML and PhiSystem to define the stakeholders and the associated requirements for each stakeholder. 

Examples of such requirements are conformance to civil code and traffic laws, and to ISO26262 standard for 

road vehicles functional safety. The main vehicle’s capabilities are identified as well, such as mobility, 

navigability and livability. Models of vehicle’s end-missions are conceived and the stakeholder requirements are 

allocated to the end-missions. 

In the second step, system engineers model the vehicle’s key functions in the so-called Logical Solution 

Definition. The system’s functional architecture is represented at a high level of abstraction as a set of 

interconnected functional units. Examples of such functional units are motion and navigation, which are made of 

sub-units such as perception, localization and vehicle guidance. Other examples include energy management and 

thermal comfort. Test scenarios are defined as well, according to required use cases. Automated tools process the 

high-level functional and test scenario (SysML) models and generate a Simulink model which is used by 

simulation engineers to prototype and validate control strategies and algorithm ideas at the early phases of design 

process. Unsatisfactory performances from simulation verdicts may trigger design iterations, where, e.g., end-

mission requirements or their allocation to vehicle’s key functions are refined. At this stage, models can even 

evolve concurrently: model refinements, such as changes to interfaces of functional units, connections re-

routings, etc., can occur on both sides—at system level and/or simulation level. To address model 

synchronization issues, PhiSystem features round-trip engineering capabilities to automatically maintain 

consistency between models, by incrementally updating one model to reflect changes made to the other model. 



Once the functional architecture and the (prototype) control logics have been validated at a high-level of 

abstraction, the system engineers refine the model to achieve the so-called Technological Solution Definition. It 

represents the system’s physical architecture as interconnected physical units, including, e.g., cameras, lidar, 

electronic and software architectures, batteries. The (SysML) models of physical units explicate the low-level 

realization choices for the vehicle’s key functions. At this stage, functional requirements are allocated to physical 

units and test scenarios models are defined as well. As in the previous stage, a Simulink model enables 

simulation engineers to validate the performance of controlled system against requirements and design iterations 

are performed if requirements are not met.  

Tools supporting the methodological workflow 
Apart from PhiSystem, other tools and frameworks support our top-down methodology. PhiSim is a Simulink-

based package developed by Sherpa Engineering, which allows building complex CPS using sets of reusable 

library elements, including ADAS models for drivers, cars and their environment. PhiSystem provides a SysML 

model library of components to represent the functional and physical units at system level. It uses the UML 

profile mechanism to extend SysML to model concepts in the CPS domain. Through specific stereotype 

attributes, every component is linked to the corresponding PhiSim executable model, which is a Simulink block 

in the PhiSim blockset at simulation level. Additionally, every component instance in the models can be 

configured through a set of exposed properties. 

The Massif framework3 is used as the bridge connecting PhiSystem and PhiSim. Massif supports the 

representation of Simulink models and libraries (such as PhiSim) in the Eclipse Modeling Framework (EMF). It 

also features a dedicated API that enables Java RMI-based communication with a running Matlab instance. 

Automated tools transform PhiSystem models into Simulink/PhiSim models in two sequential steps. First, a 

model-to-model (M2M) transformation processes the PhiSystem model and produces an intermediate (Massif) 

model representing the Simulink/PhiSim equivalent model in EMF format. Second, the intermediate model is 

processed by a model-to-text (M2T) transformation that produces a set of Matlab scripts with construction 

commands. Once executed, these scripts create the .slx model which simulation engineers work with. Scripts’ 

execution is automatically performed via the Java RMI framework at the end of the generation process, which is 

perceived by designers as a single-step. It is referred to as batch generation because the code in the Matlab 

scripts (and hence the .slx model) is generated from scratch, i.e., any existing code is overwritten by the newly 

generated code. Note that, simulation engineers implement the control logics as blocks in Simulink libraries, 

which are automatically linked to the generated model. This mechanism prevents control logics to be overwritten 

by subsequent batch generations. 

Consistency between SysML (/PhiSystem) and Simulink (/PhiSim) models which evolve concurrently is 

achieved through the process depicted in Figure 3. After batch generation at time t=t°, Simulink and SysML 

models are modified concurrently. Modifications to the two models produce models slx¹ and sysml², respectively 

                                                           
3 https://github.com/FTSRG/massif  
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Figure 3 Incremental on-demand model synchronization capabilities featured by PhiSystem 

https://github.com/FTSRG/massif


at times t=t¹ and t=t². To synchronize them, models are transformed to the intermediate Massif format (green 

rectangles with blue borders), which represents the common semantic domain where Simulink and SysML 

models can be compared. Models massif, massif¹ and massif² act as synchronization artifacts in a 3-way 

comparison, which operates on top of the EMF-Compare4 framework. In this phase, the detected differences are 

displayed to the user, who may need to resolve conflicts manually. Finally, the differences are propagated 

(merged) to the models slx¹ and sysml² to produce slx³ and sysml³. 

Application to design and verification of autonomous driving functions 
We now outline an application of our tooled methodology to design and simulation-based verification of a set of 

functions for self-driving cars. We consider autonomous cars driving onto tracks according to given paths and 

specific profiles. Driving profiles can conform to the traffic laws or be representative of, e.g., firefighter vehicles 

driving in mission mode (i.e., as fast as possible). Tracks include zones with (different) speed limitations, zones 

where overtaking is permitted (or not), pedestrian crossing signs and traffic lights. 

The initial step consists in modeling a vehicle’s end-missions as a set of capabilities that realize each mission. As 

an example, mobility is one of the fundamental capabilities that realize the autonomous driving mission and 

represents the ability of the vehicle system to move on the track. At this stage, the key functions which 

implement it are not yet defined. First, a set of stakeholders must be identified and requirements must be 

associated to each stakeholder (Figure 4(a)). Mission requirements are expressed at high level, whereas derived 

requirements correspond to requirements at the level of the system capabilities. 

Derived requirements may indicate, e.g., that the vehicle control system shall ensure a maximum consumption 

for a NEDC5 equal to 3.3 l/100km. Or that the vehicle dynamics (sizing) shall ensure a maximum speed of 

180km/h and a maximum acceleration —from 0 to 100 km/h— of 11s. Or, again, that turn into a road bend (with 

no traffic) shall perform (i) smooth release of acceleration pedal, (ii) smooth increase of steering angle during 

the turning maneuver and (iii) smooth decrease of the same quantity to come back to straight motion —where 

smooth actions on pedal and steering wheel are formally defined by appropriate mathematical functions. Derived 

requirements provide quantitative descriptions of the desired system performance: generally, they are not 

expressed just as simple text, but are encoded in a computer-processable form and reflect constraints which are 

later evaluated against simulation results to verify requirements’ satisfaction. 

The next level is that of Logical Solution Definition. The transition between the two levels consists in a copy of 

the structure hierarchy of elements in the source domain to the target domain. UML Realization artifacts with 

a «Map» stereotype applied are created between elements in the two domains, to enable the propagation of 

requirements from the Stakeholder and Mission Definition to the Logical Solution Definition level (Figure 4(b)). 

                                                           
4 https://www.eclipse.org/emf/compare/ 
5 https://en.wikipedia.org/wiki/New_European_Driving_Cycle  

Figure 4 (a) Portion of requirements for mobility. (b) Tool-assisted domain change from Mission Definition to 

Logical Solution Definition, to enable cross-domain propagation of requirements 

https://www.eclipse.org/emf/compare/
https://en.wikipedia.org/wiki/New_European_Driving_Cycle


The whole process is tool-assisted to provide the designers with a robust yet simple-to-use mechanism for cross-

domain propagation of requirements. 

The Logical Solution Definition describes the system as a set of interacting functional units that realize the 

vehicle’s capabilities. As an example, the PowerGeneration unit, contributes to the realization of a vehicle’s 

mobility. It is made of reusable components from domain-specific PhiSystem libraries, as shown in Figure 5(a). 

We validate a prototype implementation of energy management system at this level, the functional architecture 

level. 

Each component is mapped to the corresponding PhiSim implementation through specific stereotype attributes. 

Figure 5(b) shows how the mapping mechanism between PhiSystem and PhiSim reusable blocks works for a 

library element that models a car’s braking system. The libQualifier and libBlockName attributes of 

Figure 5 (a) Definition of functional architecture and of energy management sub-unit. (b) Mapping between the 

PhiSystem’s model of braking system component and its PhiSim realization, with properties configuration. 



Supplier stereotype applied to BrakingSystem (red box) are combined to provide a unique reference to the 

corresponding PhiSim model that provides the executable (Simulink) behavior. 

A similar approach enables the mapping between *_Control blocks and their Simulink implementation. The 

control logics is encoded in dedicated blocks distributed by simulation engineers as Simulink model libraries, 

which are referenced by the libQualifier and libBlockName attributes of Supervisor stereotype applied to 

*_Control blocks. Batch generation automatically links those blocks to the generated Simulink model, without 

overwrite them. 

Figure 5(b) also shows the set of properties exposed by BrakingSystem (blue box), namely the maximum 

braking torque by wheel (Cmax), wheel radius (R) and number of wheels (N). Every component instance in 

PhiSystem can be configured. The automated tools process those values and initialize the mask of the generated 

PhiSim component accordingly. 

The described mechanism realizes a smooth integration in the Simulink environment of models of functional 

architecture and supervision logics. Design iterations are triggered in case simulation verdicts result in 

unsatisfactory performances. Refinements may include concurrent adjustments to architectural design and 

control strategy models. Consistency between models is maintained by the round-trip engineering capabilities 

featured by PhiSystem. 

When requirements are met at the level of Logical Solution Definition, we move down to the next level of 

abstraction, that of Technological Solution Definition. Again, domain change is tool-assisted and allows for the 

propagation of requirements from functional to physical architecture domain (Figure 6(a)). Integration in the 

Simulink environment of (physical) architecture and control models (Figure 6(b)) enables us to validate the 

performance against requirements. As in the previous stage, design iterations are performed if performances are 

unsatisfactory. 

The Technological Solution Definition is the lowest level of abstraction, where the low-level realization choices 

for the vehicle’s key functions are explicated. We validate perception, localization and guidance at this level. 

These functions, that realize mobility and navigation capabilities, must comply with traffic and driving 

regulations. We assume that a number of traffic law requirements have been modeled, e.g., as a refinement of 

model of Figure 4(a). 

Figure 7 and Figure 8 show simulation verdicts of 4 scenarios considering different conditions of traffic flow (no 

traffic, number of cars, etc.), driving profiles, number and position of traffic lights, unexpected situations (e.g., 

Figure 6 (a) Tool-assisted domain change from Logical to Technological Solution Definition, to enable cross-

domain propagation of requirements (focus on a subset of key-functions that realize mobility). (b) Simulink 

model of physical architecture. 



stopped car in the middle of the road). Verdicts are in form of 3D visualization and time series of monitored 

variables that are representative of requirements to be met in those conditions (e.g., the smooth actions on pedal 

and steering wheel mentioned above). 

The first scenario is that of a car driving in a free road, i.e., with no traffic or with other cars far from its current 

position. Figure 7(a) shows an autonomous vehicle that meets the requirements in this scenario. It performs 

correct longitudinal motion while moving within its own lane. It also does not cross the dashed line in the middle 

of the road and perform smooth actions while decreasing the velocity and actuating the steering wheel to execute 

the turn. Nevertheless, Figure 7(b) shows a vehicle in the same scenario that exhibits an unexpected behavior —

line change— in proximity of a road bend. This may indicate a flaw in the realization of functions featuring 

mobility and navigation capabilities. Therefore, additional design iterations are required to meet the 

requirements. 

Figure 7(c) and Figure 7(d) represent mission executions in the second and third scenario, respectively. In these 

scenarios, a self-driving car identifies a stopped vehicle (obstacle) and must take appropriate decisions and 

Figure 7 3D visualization of self-driving cars’ behaviors for 4 test scenarios. For every row (a)—(e), the 

sequence of frames reads from left to right. (a) A vehicle drives correctly in a free-road scenario. (b) Still in a 

free-road scenario, unexpected lane change in proximity of a road bend. (c) A vehicle takes appropriate actions 

when a stopped vehicle at a red-state traffic light is detected. (d) A vehicle identifies a stopped vehicle in the 

middle of the road and takes appropriate actions. (e) Correct vehicle overtaking in a bend of a two-lane road. 



actions. In Figure 7(c), the car’s perception unit detects the presence of a red-state traffic light. According to 

traffic regulations, the guidance unit stops the car without attempting an overtaking maneuver, even though the 

2-lane road could permit it. In Figure 7(d), the perceived stopped vehicle stands still in the middle of the road 

and the car correctly avoids it—the car performs lane-change, goes straight, leaves reasonable space to pass and 

moves back into the original lane. 

Finally, the fourth scenario concerns the verification of correct overtaking maneuver in a bend of a two-lane 

road. Figure 7(e) shows that the faster self-driving car approaches the slower vehicle in a bend and overtakes it 

in conformance with driving rules. 

Positioning with regard to the state of the art  
The automotive industry is investing significant resources to develop and commercialize ADAS technology, but 

the definition of an engineering process that supports collaborative multi-domain modeling and enables early 

stage verification of requirements and system performance is still a challenge. 

Electronic Design Automation (EDA) companies focus on hardware aspects, such as design and verification of 

systems on chips and processor IP. As an example, Cadence [3] adopts a holistic design approach to optimize 

performance and meet safety standards in ADAS applications. This kind of approach addresses implementation 

concerns to support the realization of final system and can complement the PhiSystem approach. 

Other tools address ADAS design needs only partially and do not provide support for a holistic approach similar 

the one implemented by PhiSystem. Rhapsody [4], Enterprise Architect [5] and Reqtify [6] focus on MBSE. 

These tools provide functionalities similar to PhiSystem regarding high-level system modelling and requirement 

engineering, but have limited simulation capabilities. The dSPACE platform for ADAS [7] features rapid control 

prototyping, and hardware-in-the-loop (HIL) simulation. However, it does not support collaborative modeling 

with MBSE tools. Similar considerations hold for other tools that focus on simulation, such as CarSim [8] and 

Amesim [9]. 

ADAS are a class of CPS that is cross-cutting in nature, i.e., they combine many concerns and relate to several 

levels of abstractions. This makes their design a complex task, where the adoption of concern-specific tools 

alone —e.g., Rhapsody (or equivalent), Simulink (or equivalent) and Reqtify (or equivalent)— is not sufficient, 

and automated and systematic integration of heterogeneous models plays a key-role. In a sound, collaborative, 

model-based flow, automated and systematic model integration improves the efficiency and also guarantees that 

no errors are introduced in a manual (integration) stage. This motivates the work we do on PhiSystem to provide 

fast (bi-directional) transition between system definition and simulation models. Of course, this brings additional 

complexity to the deployment of the methodology, which involves all the stakeholders in the design process. To 

overcome this issue, a support process must be created, with training —a good estimate being 3 days— and, in 

some companies, with continuous modeling assistance provided by a specialized team. 

A number of tools started adopting the FMI standard to support a collaborative MBSE flow. However, this 

support [10] is still often incomplete and/or compatible with old versions of the standard, or it comes via 

Figure 8 Time series of monitored variables from experiments of Figure 7. (a) Smooth speed decrease and 

action on the steering angle of vehicle of Figure 7(a). (b) Lane shift of vehicle of Figure 7(b). (c) Actions on 

acceleration and brake pedals of vehicle of Figure 7(c), and consequent smooth decrease of vehicle speed. 



expensive add-ons. We develop tool-support for FMI in PhiSystem in the context of the ITEA3 research project 

OpenCPS [11]. 

Conclusions and future work 
In this paper, we present PhiSystem and the EIA 632-compliant methodological approach behind it as applied to 

the development of ADAS —a class of CPS that are complex to design because of their cross-cutting nature. 

PhiSystem leverages modeling and simulation to support a holistic, model-based system engineering process. 

PhiSystem integrates with Simulink to enable collaborative workflow between system and simulation engineers. 

Systemic modeling and simulation allow early assessment of aspects such as performance, safety, reliability, 

etc., and represent key capabilities when dealing with the design of ADAS. Early-stage evaluation of candidate 

designs is crucial in such a class of systems/applications, because it reduces design iterations and eliminates 

costly and time-consuming re-design cycles. 

PhiSystem includes models and libraries of components that are suitable for ADAS applications. We outline an 

application of PhiSystem to design and simulation-based verification of a set of functions for self-driving cars. 

The focus is on its modeling capabilities—vehicles' end-missions, stakeholders and associated requirements; 

interconnected functional units representing the functional architecture; interconnected physical units defining 

the physical architecture; tool-assisted transition between levels enabling cross-domain propagation of 

requirements— and the link with Simulink. We outline how the performance of supervisory logics of perception, 

localization and guidance key-functions is evaluated against traffic law requirements in a number of different 

scenarios. 

Performance validation, though, is just one facet of multi-viewpoints approach that PhiSystem aims at 

supporting (Figure 1). We are currently working on enabling full support of models and techniques that allow for 

thorough assessment of safety —ISO26262— concerns conjointly with those of (control) performances. This 

includes analysis such as HARA, FME(C)A/FME(D)A and FTA. 

Another ongoing work is on the use of monitoring tools such as ARTiMon [12] to achieve fully-automate 

comparison of simulation traces against computer-processable specification of requirements. This work paves 

the way towards the implementation of a “decisional cockpit” that uses optimization procedures to assist the 

designers during the whole design process. 
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