N

N
N

HAL

open science

Safe and Secure Autopilot Software for Drones

Amin Elmrabti, Valentin Brossard, Yannick Moy, Denis Gautherot, Frédéric
Pothon

» To cite this version:

Amin Elmrabti, Valentin Brossard, Yannick Moy, Denis Gautherot, Frédéric Pothon. Safe and Secure
Autopilot Software for Drones. ERTS 2018, Jan 2018, Toulouse, France. hal-02156141

HAL Id: hal-02156141
https://hal.science/hal-02156141

Submitted on 14 Jun 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-02156141
https://hal.archives-ouvertes.fr

Safe and Secure Autopilot Software for Drones

Amin Elmrabti, Valentin Brossard?, Yannick Moy?, Denis Gautherot?, Frédéric Pothon*
Sogilis, 4 Avenue Doyen Louis Weil, 38000 Grenoble, France.
2Hionos, 12 Avenue Des Prés, 78180 Montigny Le Bretonneux, France.
3AdaCore, 46 Rue d’Amsterdam, 75009 Paris France.

4ACG Solutions, 19 Chemin du triol, 34380 Viols Le Fort, France.

Abstract-- Weareinterested in the problem of providing safe and secure softwar e for dronesto makethem
as safe as airplanes. As thereisno certification standard for most commercial dronesthat exist today, we
have chosen thewell-known DO-178C/ED-12C avionicsstandard asaframework to define a suitable formal
development and verification process. Our processisbased on thisstandard and itsthree supplements. DO-
331/ED-218 (model based development), DO-332/ED-217 (object oriented technology) and DO-333/ED-216
(formal methods). Our processisan original adaptation of the usual V-cycle based avionics processesto an
iterative and incremental environment, where development and verification are performed in short
increments. In this paper, we describe how we achieve that in practice and discuss in more details the
integration of the formal methods supplement.

. Introduction

The rapid increase in the number of civilian drorfiesboth leisure and commercial use, poses sagmif threats

to the safety of the general public. The authasit@lution so far has been to impose severe céstis on the
use of drones. International committees have beendd to discuss the normalization of the dronesatjpns
(JARUS, Eurocae WG 105, GUTMA, EASEpnseil Pour Le Drone Civil in France). Current discussions lean
towards requesting a safety assessment fogibefic and theCertified categories, thus demanding that a few
development and verification activities are enfdcc&€oday, drones are classified based on operatisks
concerns (figure 1) [1]. In the open category, whigre level of risk is low, the required level efety will be
ensured through a set of requirements and fundii@sa In the Specific category, the safety wi# knsured
through a standard risk assessment process. Qettiied category, the risk is similar to curreminned aviation
operations, and safety is ensured with traditisaféty measures and processes (certification aedding).

ﬁ
) J §
- | oo | -

Figure 1. Drone classification

Autopilots that come from the world of model makingve been developed without a specific focus detysa
which leads to bugs and unexpected behaviors isdftevare. Because of their intended use, commiatoimes
need safe and flexible autopilots; we should be &bbrove a high level of safety and easily adaptdifferent
kinds of operations. The application of DO-178Cndrd suite for avionics certification in this damas a
promising option to develop software for dronesdusecertain types of applications, especially iban areas.
But the application of DO-178C is traditionally yerostly. Thus, we should provide an innovativerapphes to
DO-178C compliance to avoid unacceptable costs étspahile increasing the reliability of the droradterare.

We aim to achieve much higher levels of assuramoaii next generation of autopilots called Pulsaghf System
(PFS) [2] by using an efficient development procasd formal methods when possible. Our decisiorlpon

formal methods is partly related to the adoptiorthaf formal methods supplement in the latest varsibthe
avionics certification standard. This merely acktemges the fact that formal method technologiesxdst which
can ease the development of avionic software. Mopertant for us is that some formal methods antrielogies
like SPARK [3] have shown to lead to high assurasuféware.

In this paper, we will introduce the software lijete and some of the methods selected for dronepdot
software to achieve the applicable DO-178C/ED12{eailves at the most critical level (A). We will stxibe
how the software certification standard used iroaiis can be used in the drone software industactoeve a
high level of assurance through an innovative tdisheostandard and its supplements. We will dispastcularly
the ability to use formal methods on software.

The rest of the paper is organized as follows.i8edl reviews some related works in relation te trevelopment

of safe software for drones. In this section, wk pviesent also the technologies used in formahods such as
SPARK. Section Il introduces our proposed develeptand verification process and tools. In thigisacwe
detail how we’ve put into practice the three supmats: DO-331/ED-218 (model based development), DO-
332/ED-217 (object oriented technology) and DO-BEBR16 (formal methods). Section IV presents the
progress of our work and discusses the advantagktha disadvantages of this process, particularhglation
with the Formal method tools. Section V concludes paper and presents outlooks on future works.

II. Related Works

The Formal method techniques have been used etedopment of critical embedded software, in adiod],
railways [5], medical devices [6], etc. In [4], thethors describe how they used formal method tfwolsinit
proofs, WCET (Worst Case Execution Time) analyarg] for maximum stack usage computation of C code t
cover some DO-178B objectives. Frama-C [7] is dbmo framework that aims to analyze C programss It
extensible with plug-ins which implement a spec#italysis. Jessie [8] is an example of a plugirtlierFrama-

C environment, aimed at performing deductive veatiion of C programs.

SPARK [3] is a subset of Ada. It adds contracts g invariants as part of regular Ada code. SPARK
dedicated to real-time embedded software that regu high level of safety, security, and religpilSPARK
2014 is the last major version of SPARK, desigreihterpret Ada 2012 contracts. SPARK has been fmred
decades to achieve high assurance software in dersabject to certification, such as military angaics. As
a preparatory step for the CAP2018 project [9], @diee used SPARK to rewrite the code of a small cqmemce
leisure drone called Crazyflie [10], originally wen in C, to demonstrate absence of errors inedsoftware [11].

In [12] [13], a comparison is made between the fdrmethod techniques, particularly Frama-C and SRAFe
two technologies are quite similar in their codedtionality. Both of these technologies use consrand
assertions. In this project, we chose to use SPABtause the SPARK syntax is part of the Ada 20dguage.
There is no need to integrate a new notation. Tdi@ language allows us to create subtypes and SPARKtic
analysis will verify the subtypes outside range pral/e the overflow in the subtype’s values.

More recently, SPARK has been used by small tedras@w developers to develop high assurance soétwh
satellites [14] [15] and gliders [16], with an adehdevelopment and verification process more akiadile than
to DO-178. Other teams have adopted an agile apprmaavionics software development and verifigafb7].
Ways to combine agile methods and formal methods h#so been explored [18]. The CEOS project [189ka
at developing a reliable and secure system of aigpes for pieces of works using professional ndrone. CEOS
does not target certification, but rather buildgadety cases for the Specific category of drongdaamed in the
upcoming European regulation.

lll. An Agile and Certifiable Development Process

We built the software life cycle around an iteratand incremental process. The incremental appr@tdists of
developing and verifying progressively a limitedwher of features. This method allows us to progidienctional
subset for system integration, and thus to gepal fieedback on the realized features and earty eletection
and correction.

A. Agile Development and Verification Process

Our development process is organized around & siekets. Every artefact required by DO-178C cep@nds to
a ticket. Every code, test or requirement modiftaatorresponds to a ticket. We identified 9 typgtickets, each
of them representing a set of activities to perform

(1) Type 1: Processor System | mprovement: These tickets are used for every evolution ottification plans
or standards (coding standard, modelling standaréor)example, if we want to modify the way we @r@naging
the configuration of the software that will end impa modification of the SCMP (Software Configuoatiand
Management Plan). This modification will be tra¢leugh a Type 1 ticket. Any changes of systemirequents
are also tracked in Type 1 ticket. Any change &y#ed and any necessary child tickets are opendiement
it. (2) Type 2: Software Requirement: Type 2 tickets are gathering all activities neettedreate and review
Software Requirements. The activities here cormedpoostly to the writing of Software Requiremertsaitt
comply with System Requirements and the revievhe$¢ written requirements. At the same time, Soé&wasts
(Test cases used to verify Software Requirememngsyvatten.(3) Type 3: Architecture: An initial architecture
is defined in the scope of a first Type 3 tickegtséd on a first set of functions defined in sofeva@quirements.
Next Type 3 tickets are raised, based on new orifiraddsoftware requirements that will adapt andi@nthe
architecture. Type 3 ticket is used to define dyicamrchitecture (tasks, frequencies) and components
Components have inputs and outputs (not neceskealy box input / output) and are linked togethepéoform a
feature described by one or several Software Renquints(4) Type 4: Component Requirement: Thanks to
the architecture defined in Type 3, we can writgureements defining the behavior of components.séhare
Component Requirements. Component Tests are altemin this ticket(5) Type 5: Source Code: Activities
under this Type 5 ticket are Test Procedure andcgodode development. It includes the full verifica of the
components, including the development and executf@omponent tests proceduréd). Type 6: Integration:
Under this type of ticket, the Source Code is cdeaand Software Tests are run on the target canpantaining
the whole softwarg(7) Type 7: PDI Instance: PDI stands for Parameter Data Item, it represéhtieadata that
are used to configure the software. This tickeisisd to develop and verify a new instance of a BBucture and
attributes of PDI are developed in the scope ofeT¥picket.(8) Type 8: Problem Report: Every deviation from
the process must be recorded in a Type 8 ticketreeaf can be handled. Each Type 8 ticket is amalyand the
necessary changes are identified in one or segbildlticket.(9) Type 9: Delivery: Before a delivery, a Type 9
ticket representing all activities to perform shmlcreated. In the scope of this ticket, in agpion of continuous
integration, the complete set of test proceduresexperformed.

Planning Process

Iteration
Planning

Tickets
Implementation

Retrospective

Product
Backlog

Tickets
Development \

e TDD
Iteration e BDD
Planning e Continuous In(egratlon
Software delivery \\ Retrospective /

’ SAS sCi | | SW product

Figure 2. Agile Development Process

For a single feature at System Level, we will usuase one Type 2, one of Type 3, one of Type 6saweral of
Types 4 and 5 tickets. When the Type 2 ticket isedahe Type 3 ticket can be created and so orsaridrth:
There are dependencies between tickets. Moreaw#gpendence is required for several activities ByI¥8C.
For example, if a person performs all the actisitid a Type 4 ticket, she shall not perform adagsitunder the
corresponding Type 5 ticket.

A classical iteration is composed of several tisk#tdifferent types, representing enough worklierwhole team
for the duration of an iteration. These tickets eh@sen by the team according to priorities duitegation

planning. At the end of the iteration, a consistéard verified) set of features is added, and amiion

retrospective is conducted with quality assurance.

In addition to this iterative and incremental pregewe also use a couple of agile best practikesTniDD (Test
Driven Development), BDD (Behavior Driven Developrtjeand continuous deployment. TDD and BDD are
interesting by the fact that tests (Component TasTDD and Software Test for BDD) are written befdhe

code, so that the code architecture and developanemtot impacting test development. Tests argemrin Type

2 and Type 4 tickets (respectively, Software Testd Component Tests) whereas Source Code is written
afterwards, in Type 5 tickets. Continuous deployiradiows us to be sure that at every time, allstéisat have
been previously developed pass. Each time a madtliic is done, the software is built, loaded on tirget
computer, tests are performed and source codeagwés checked.

Our development process uses the 3 supplement®df13C. It takes place in Type 4 and 5 tickets tfaat be
developed using three different methods. The chofitke method is made at the component level. Apmment
is developed using a single development method.

Natural Language: In that case, Component Requirements are writtém métural language and implemented
in Ada 2012 using object oriented technologies.néthbilities mentioned in the DO-332/ED-217 suppatrare
addressed.

Model Based: Tickets can also be implemented using Simulink Medestead of Component Requirements,
then the Source Code will be generated automatioalhg the QGen code generator. QGen will be fedlas a
TQL-1 tool according to DO-178C classification, wiiallows us to trust the code generation. The Opkement

to be applied in this case is the DO-331/ED-218.

Formal Methods. The last solution to develop Type 4 tickets is FairMethods using the SPARK language and
prover. Component Requirements are written usingR3® Contracts, then Source Code is developed aed th
prover verifies the consistency between the Cotdraed the source code. The formal analysis is tsegplace
component tests. The corresponding supplement iSBRIED-216.

For the next two sections, we will focus on a sfiegart of the process. We will present the maitivities for
component specification and implementation (Ticketnd 5).

B. Natural Language Requirements Process

The component requirements (equivalent to LLR afk.aw Level Requirements)) are written as texhatural
language with a tool called RMTool. A textual regment template is defined in the requirement stedgland
describes the structure of a requirement withl@, #t set of inputs, outputs and a body which tethe behavior
of the requirement and how we compute the inputgetwerate the outputs.

Purpose: Check Rc_Neutral Position Computation Automatic Code generation
REQ => CPR-REMOTE_CONTROL-0000

Background: _—

Given Remote_Control component is initialized use XReqLib.General:

Test Case Template: Check Rc_Neutral Position Computation package step_definitions is

Given Rc_Status is <rc_status> -- dgiven “Remote_Control component is initialized$

And Re_Ratios are <rc_ratios> procedure Given Remote_Control component is_initialized (Args : in out Arg_Type)

When neutral position is computed -- @given “Rc_Status is (Operational|Failure)$

Then Rc_Neutral Position is <rc_neutral position> procedure Given Rc_Status_is (Args : in out Arg_Type);
-- @given “Rc_Ratios are \(?([+-]12\d+(2:\.)2\d*%), ([+-]12\d+(2:\.)2\d*), ([+-]2\a+("
Test Case Data: procedure Given Rc_Ratios_are (Args : in out Arg_Type);

| xc_status rc_ratios rc_neutral _position - iduhan “semo ta wontrod: Bailuse is computed$ -

Operational False

Operational
Operational
Operational
Operational

| [
| (5.00,50.00,50.00,50.00) |
| (4.99,50.00,50.00,50.00) |
| (0.00,50.00,50.00,50.00) |
| (3.00,45.00,50.00,50.00) |
| (3.00,50.00,45.00,50.00) |
Operational | (3.00,50.00,50.00,45.00) | True
Operational | (3.00,44.99,50.00,50.00) | False
Operational | (3.00,50.00,44.99,50.00) | False

| [

| 1

| 1

1 [

1 1

| 1

1 [

| 1

! procedure When_remote_control failure is_computed (Args : in out Arg_Type) ;
I

I

I

1

1

1

1

| Operational (3.00,50.00,50.00,44.99) False
1

1

I

1

[

[

|

True dwhen “neutral position is computed$

Zeue procedure When_neutral position is_computed (Args : in out Arg_Type) ;
True -~ Gthen *Rc_Failure is (True|False)$

procedure Then Rc_Failure is (Args : in out Arg_Type);

-- (@then “Rc_Neutral Position is (True|False)$

procedure Then Rc_Neutral Position_is (Args : in out Arg_Type);
-- G@when “Remote Control is updated$

True

procedure When Remote_Control is updated (Args : in out Arg_Type);
-- @then “Rc_Throttle is ([+-]1?\d+(?:\.)?\d*)%$
procedure Then Rc_Throttle is_T (Args : in out Arg_Type) ;

Operational (3.00,55.00,50.00,50.00)
Operational

True
(3.00,50.00,55.00,50.00) True
(3.00,50.00,50.00,55.00)
(3.00,55.01,50.00,50.00)
(3.00,50.00,55.01,50.00)
(3.00,50.00,50.00,55.01)
(5.00,50.00,50.00,50.00)

Operational True
Operational
Operational
Operational
Failure

False

False end step_definitions;

False

Tests step_definitions

False

XReq Tests

Figure 3. Test cases and step definitions code generation with XReq

RMTool maintains the traceability links and tracgadbetween LLR and HLR (High Level Requirementspoe
side and between the LLR and the associated testhe other side. Once the requirement is writtemfests are
then described, before the code, since the TDDaaghr is applied in our development process. Fosethe
components the code is manually implemented inZad2/ /or its subset SPARK 2014. The tests ardemritvith
the XReq test framework, which allows us to wriet$ using a language close to natural languageqXso
allows us to automatically generate test code (@), particularly tests skeletons and steps.deéwelopment of
the component requirement in a natural and texheale is realized in a ticket of Type 4. The implataéion is
performed manually and the code is written in A@a22in a ticket of Type 5. The test steps previpgsinerated

with XReq are completed and executed. The compiariche source code to the coding standards iskele
This verification is automatically performed witiN@Tcheck and then completed with a custom cheakethfe
rules that are not verified by the tool.

C. Formal Methods Techniques and Development Process

The SPARK development and verification environnfemin AdaCore has been chosen for creating the obde
the autopilot, as well as for expressing some eflthR. This choice is based on its successful hysito high-
integrity domains, combined with the recent evalns to democratize the use of formal methods WRARBK
2014. A major roadblock preventing the adoptioiooial program verification for avionics certifigan is the
absence of a general consensus on how to apply I30<espite significant dissemination efforts frome
committee that developed it. We have defined ailéetarocess for the use of SPARK to satisfy thedfives of
DO-333 as a replacement for certain forms of tgstind reviews, with a focus on checking that thee® code
is consistent, accurate and complies with low-legglLirements.

SPARK code is unambiguous, so the consistencyeo$dlirce code can be analyzed automatically to shatwt
is free from reads of uninitialized data, arithroetiverflows, other runtime errors and unused coatfrs
(variables, statements, etc.). This covers objecéivof table FM.A-5 from DO-333. We are completitigit
analysis with focused reviews. One of the main benef SPARK is that it automatically shows thaiste code
complies with LLR expressed as function contrattés covers objective 1 of table FM.A-5 from DO-3%r
the modules which we will choose to express LLR@stracts, we will skip testing if the code implertsethe
LLR. Function contracts can also express data dbprezies and the SPARK toolset can automaticallyvshat
source code complies with this part of the softwanghitecture. SPARK code is verifiable and conferim a
(programming language) standard by design. Theceooode of a function is implicitly traced to th&R.
expressed in the function contract. Altogetherséheover objectives 1 to 6 of table FM.A-5 from B3GB.

Software

HLR A
Requirement

Software Requirement

Ticket Type 2
RMTool
Com_ponent Contracts
Requirement
LLR ; Pre/Post conditions
Component Requirement
Ticket Type 4 XReq
Test cases definition

Ada PARK & A

Code & Tests : Code
Code Implementation t
Ticket Type 5 '
Complete & Run Tests H GnatProver
Test Coverage verification ' Runtime Error checks
SPARK : Runtime Error checks
Text and Natural Language Flow Formal Methods Flow

Figure 4. Code Development Process

The objectives of compliance and robustness of EEX@cutable Object Code) with respect to LLR (obyes

3 and 4 of table FM.A-6 from DO-333) can be addrdsby relying on the source’s code’s corresponding
objectives, assuming that one also provides a dsiraiion of property preservation between souraecnd
EOC. One way to show property preservation wouldddemonstrate with reasonable confidence thailin
possible cases the compiler preserves the semanftimograms from source code to EOC. Unfortunatety
reasonable approach seems to be able to provideahfidence. Instead, we run integration tests inode where
contracts are executed in SPARK, to gain confidém¢ke compiler properly preserving the semanticsource
code in EOC; if it doesn't, the contracts provedhihividual functions will (with very high probaliiy) fail during
integration tests. By running integration testshbwith and without contracts being executed, aretkimg that

the outputs are identical, we can be confident ¢batpilation of contracts does not impact complatdf code
because otherwise, the outputs would most proldabljifferent in some tests.

In our process, in the tickets of Type 4, the congrd requirements are written as a SPARK contpsetification
and no tests are written. The contracts are writté¢he specification files “.ads” (it is the eqalent of the header
files “.h” in C language) which are part of the smicode. The tractability between the softwarairegnents and
the corresponding component requirements, whickvetien as SPARK contracts, is described in thes®code
(the .ads), with the contracts as a set of comments

In ticket of Type 5, the code is written manuallydathe GNATprove tool is used to detect all cashere the
contracts are not satisfied. The analysis inclubesverification that subprogram overriding respabt Liskov
Substitution Principle (contract of the overridisgbprogram describes sub-behaviors of the conuohthe
overridden subprogram). It also includes checkoglie absence of runtime errors. SPARK could bsaosed
for checking absence of runtime errors in the dgwelent flow based on natural language requirements.

IV. Implementation and Results

In this section, we present our advancement insieeof the formal process that we have definedljdineg formal
methods with SPARK, in the development of the RuRmht System, which is a reliable autopilot gymstfor
drones, compliant with the DO-178C aeronauticatdéad. We intend to use it for drones in placesre/isafety

is critical. We present how we use formal methadsur process with a case study about the “Batidanager”
component of Pulsar Fight System for which the itecture has been defined during the Ticket Typet®/ities,

as shown in the figure 5. Functionally this compgnmust be able to recover from an abstractionrlaye
“Battery_Interface” the current level of the bajteas well as its operational status, in order tckemthis
information available to the “State_Machine” compotfor further processing.

HAL (Input)

Q

Battery |nterface

Battery (all data)

Application

Battery_Manager

§
1
(Battery_Failure ;Battery_LeveI_Suf‘ﬁcient_For_FIight

T State_Machine

Figure 5. Ticket Type 3: Software architecture definition

A. Component Requirement: Type 4 Ticket Activities

As described in section Ill, the main goal of Typdicket is to write the component requirements &sls
descriptions. To put into practice formal methogishhiques, we used SPARK contracts (otherwise krasvn
"SPARK Functional Specifications") to describe tisenponent requirements. This activity consistsitializing
the component’s package source code and writin§RARK 2014 / Ada 2012 code and contracts. Corsraet
written using pre/post conditions notation:

(1) The pre-condition is a predicate which expressamatraint on the imported variables of the subgaog(e.g.
that a scalar import is in a certain range, tharaay is ordered, or perhaps some more complexepties).

(2) The post-condition is a predicate which expressesdation between the initial values of importediables
and the final values of exported variables of thigpgsogram (when a variable is both imported ancbeegl,
we use some notation to distinguish its initial &indl state in the post-condition.)

Currently, the SPARK subset does not allow pointBrghe coding standards that we defined, we detid
instantiate all the software components from tlaet <if the application. Then we access all thesepoments
through pointers (“Access Type” in Ada). This allbwhe allocation of the memory once at the stadiuthe
application, then no memory will be allocated omltlcated. This technical choice allows us to assirie

dynamic memory management vulnerability mentionedhe DO-332/ED-217 supplement (Object Oriented
Techniques Supplement). Considering this, we haéyoattention to the internal component architec&uind how
it will be integrated in the overall Pulsar Flighystem application.

In this work, and in order to guarantee complianith SPARK implementation, we have set aside "dabjec
oriented" concepts for this component and wentdtassic "Abstract Data Types" implementation. Triternal
data of the components was handled as SPARK “Atist&tate”. The state abstraction of a package feee
mapping between abstract names and concrete glaliables defined in the package. State abstraetiows
the definition of Subprogram Contracts at an abstlavel that does not depend on a particular ehat
implementation, which is better both for mainter&(mo need to change contracts) and scalabilignafysis.

with Hal.Battery; use type Hal.Battery.T Ratio; -- import types only
use all type Hal.Battery.T Hardware Status; -- pour avoir les valeur de 1l'enumeration

package Pulsar.Battery Manager with SPARK Mode => On,

Abstract_State => Battery Manager_State, }
Initializes => Battery Manager_ State 3
is .

Low_Battery Level : constant := 10.0;

Low_Battery_Confirm_Duration : constant := 1.0;

function Is_In_Failure return Boolean;

function Is_Battery Level Sufficient For Flight return Boolean;

function Is_Battery Level Low More Than Confirm Duration return Boolean with Ghost;

14 + procedure Update \ Ghost Code
Specification

private
+ type T Battery Manager is

Battery Manager : T Battery Manager := T Battery Manager' (Battery Failure => False,

Battery Level Sufficient For Flight => False,
with Part Of => Battery Manager State; Abstract State
end Pulsar.Battery Manager;

Current Cycles_Under_ Low_Level => 0)
with Pulsar.Constants;

package body Pulsar.Battery Manager with SPARK Mode => On,
Refined State => (Battery Manager State => Battery Manager) Abstract State

is

-= Number Of Cycles_For_ 1 Second: number of times the update function will be called

Number Of Cycles For_ 1 Second : constant := Natural (Pulsar.Constants.Fast_Loop Frequency * 1);

-- Number Of Cycle For Confirmation: number of times the update function will be called
Number Of Cycle_For Confirmation : constant := Natural (Number Of Cycles For_ 1 Second * Low_Battery Confirm Duration) + 1;

+ function Is_Battery Level Sufficient For_ Flight return Boolean is
(Battery Manager.Battery Level Sufficient_ For_ Flight);

+ procedure Update is

function Is_Battery Level Low_More Than Confirm Duration return Boolean is Ghost Code
(Battery Manager.Current Cycles_Under_ Low_Level >= Number Of Cycle For_ Confirmation) ;

Implementation

end Pulsar.Battery Manager;

Figure 6. Ticket Type 4: Abstract State & Ghost Code

We noticed that it's difficult to write clean andrcise SPARK contracts without the need to writeesdGhost
code” in order to make SPARK contracts more readadbhost code is additional code useful for theifipation
and verification of intended properties of a progradentified with the aspect Ghost, discarded rdyri
compilation, and has no effect on the functionalhawéor of the program. The Ghost method
“Is_Battery Level Low_More_Than_Confirm_Duratios’declared in the specification file (see .adsgare 6,
line 12) and implemented in the package body fike(.adb in the figure 6, line 27). This Ghost metis called
on the contract definition.

After having written the SPARK contracts (see feggyuf from line 18 to line 35, which correspond tootw
component requirements), we realized that the pensding the specifications is forced to write eoflads for
specifications and .adb for body code). To writdesathe same person needs to take a look at théemtore
defined in Ticket 3. Thereby, persons responsili@fiting specifications need to have multipldiskifunctional,
coding, technical architectural ...). Figure 7 sed8PARK contracts specification code.Traceabilityard the
HLR (Software Requirement) is done with Ada commaeht figure 7, an example is illustrated:

* Atline 23 we created a post-condition with a feenjunct which refers t8WR-FAULT-0000 andSWR-
FAULT-0001 software requirements.

e At line 29 we added to the post-condition a newjwaet which refers to th&WR-MANUAL-0000
software requirement.

function Is_Battery_Level_Low_More_Than_Confirm_Duration return Boolean with Ghost;

procedure Update
En
Global => (Input => (Hal.Battery.Battery Status, Hal.Battery.Battery Level), — 7

In_Out => Battery Manager_ State),

Post =>

-- Statement covering SWR-FAULT-0000, SWR-FAULT-0001

(if Hal.Battery.Get_Status = Hal.Battery.Failure ox Is_Battery Level Low More Than_Confirm Duration then
Is_In Failure = True

e : Tracability with Software
Is_In_Failure = False) 3
Requirements

and

-- Statement covering SWR-MANUAL-0000

(if Hal.Battery.Get_Status = Hal.Battery.Operational and
Hal.Battery.Get Level Ratio > Low_Battery Level then
Is_Battery Level Sufficient For Flight = True

else
Is_Battery Level Sufficient For_ Flight = False

uonesynadg
S}BeIUO) HYVCS

Figure 7. Ticket Type 4: SPARK Contracts specification

These two component requirements have been platedne post-condition with the use of “if...thegise”
expressions. Finally, the definition of the contddhow_Battery Level” and “Low_Battery Confirm_Dation”,
which could only be put in the component’s bodykaaye (as they are internal to this component), tbale
moved into the component’s specification packagkraade public so that they could be used in SPARKracts.
The review activity was done based on this Ada pgekspecification and the corresponding Type 2etick

requirement.
B. Component Implementation: Type 5 Ticket Activities

In this activity, we completed the implementatidrilee component’s package body, as illustratedgiaré 8.

function Is_In_Failure return Boolean is
(Battery Manager.Battery Failure)

function Is_Battery Level sufficient For Flight return Boolean is
(Battery Manager.Battery Level Sufficient For_Flight); '

procedure Update is

-- Check for Battery Level Ratio
if Hal.Battery.Get_Level Ratio <= Low_Battery Level then
if Battery Manager.Current_Cycles_Under_Low_Level < Number_ Of Cycle_ For_Confirmation then
Battery_Manager.Current_Cycles_Under_Low_Level := Battery Manager.Current_Cycles_Under_Low_Level +
end if;
2 else
Battery Manager.Current_Cycles Under_Low_Level :=

end if;

-- Set the Battery Level state

Battery Manager.Battery Level sSufficient For_Flight := (Hal.Battery.Get_Level Ratio > Low_Battery Level) and
(Hal.Battery.Get_status = Operational);

-- Set the Battery Failure state

Battery Manager.Battery Failure := (Hal.Battery.Get_status = Failure) or
(Battery Manager.Current_ Cycles_Under_ Low_Level >= Number Of Cycle_ For_Confirmation);
end Update;

function Is_Battery Level Low_More_Than Confirm Duration return Boolean is
(Battery Manager.Current_ Cycles_Under_Low_Level >= Number_ Of Cycle_For_Confirmation);

Figure 8. Ticket Type 5: Component implementation

Once the implementation is complete, code anabgisbe performed using the GNATprove too to demmatest
the compliance of the implemented code with thegmmment requirements and also to prove the absdmaatone
error (no buffer overflows, no division by zerog gt

In our case, during the first run of GNATprove, detected a possible overflow in an intermediate puatation
that we fixed with simple refactoring. It must beted that this possible overflow might not haverbdetected
with conventional XReq tests as these tests aralynfricused on features. Figure 9 illustrates #st &xecution
report of the GNATProve tool on the “Battery_Mangiggomponent, showing that all properties of intrare
proved.

gnatprove -P/home/dev/CAP20818/pulsar-software/implementation/pulsar/battery manager/battery manager impl.gpr -j@ -XPR] _PLATFORM=hw-stub -XPR] RUNTIME=ravenscar-T
ress-bar -u pulsar-battery manager.ads --report=all --level=4

Phase 1 of 2: generation of Global contracts ...

Phase 2 of 2: flow analysis and proef ...

pulsar-battery manager.adb:23:118: info: overflow check proved

pulsar-battery_manager.ads:24:86: info: postcondition proved

pulsar-battery_manager.ads:50:84: info: initialization of "Battery Manager.Battery Failure" constituent of "Battery Manager State"” proved

pulsar-battery _manager.ads:50:84: info: initialization of "Battery Manager.Battery Level Sufficient_For Flight" constituent of "Battery_Manager State" proved
pulsar-battery manager.ads:50:84: info: initialization of “"Battery Manager.Current Cycles Under Low Level" constituent of "Battery Manager State" proved
Summary Llogged in /home/dev/CAP2018/pulsar-software/implementation/pulsar/battery manager/obj/gnatprove/gnatprove.out

[2017-16-31 16:01:11] process terminated successfully, elapsed time: 01.28s

Figure 9. Type 5 Ticket: GNATprove Report

Using formal methods techniques at this level aflas to completely skip writing and running XRest$e The
GNATprove tool takes about 30 seconds to analyse thattery_manager”, ‘remote_control”,
“notification_manager” and “inital_platform” packeg These packages include 12 component requirenmfgnt
this level, we must also take into account the semey time to correct the errors reported by GNAVpr This
time is variable depending on the complexity obesr

Figure 10 shows the number of requirements (systeftware and component) we implemented compar#teto
number of test cases. The figure also shows thénamber of the produced tickets and their distidn by type.

Requirements vs Tests
Closed Tickets Distribution : 71 closed tickets 125 o
Type 1
11.3
TVPe 8 Type 2 *
26.8 5 6%
Type3 || ”
. 50
Type 6
1.4 25
10 8
Type 5
]_ZR /e Type 4 ¢ System C C
e 32.4 Requirements Requirements Tests Requirements Tests
Source Lines Of Code : ~3500 lines

Figure 10. Development Advancement in Pulsar Flight System
C. Assessment of the Use of Formal Methods with SPARK

Using formal methods with SPARK in the developmehtPulsar Flight System allowed us to derive useful
insights, both at the technical and at the devetpgrprocess levels.

At the technical level, the major point to takepiaiccount is that, since the SPARK code to be aadlynust not
contain pointers, it can be necessary and quiteresipe to modify the software architecture of thgpacted
component in order to comply with this constraifttanks to the possibility to selectively activatedeactivate
analysis on portions of the code, it is possiblege SPARK on isolated and specific code. In outlysive had
set aside the object-oriented concept for the corapb(in favor of an "Abstract Data Type" implenaitn

concept), but we found during subsequent studigsitlis possible to use object orientation withARK, at the

cost of some adjustments.

At the development process level, it is more difidnitially to write SPARK contracts than to weithatural
language requirements for functional profiles, eifemriting some ghost functions helps with thedahility of
SPARK. Writing such contracts requires a knowledfighe Ada / SPARK language that is not necessarily
acquired by the person in charge of writing speatfons. The advantage of using SPARK is that tieene need

to write tests manually (with XReq), a task thatinse-consuming and during which it can sometimesliffficult

to choose suitable test cases that cover the gaimh. The consistency verification of the codthwhe contract
is ensured by formal verification, but the contiaadssumed to be correct, which is difficult teexs at first sight.

V. Conclusion and Future Works

In conclusion, we found out that writing SPARK a@ats does not allow us to write specificationslgais the
context of our development process. Indeed, duatiiyities related to Type 4 tickets, writing SPARKntracts
leads to writing code, which can be quite complexl aequires from the editor, some knowledge of Ada
2012/SPARK 2014, knowledge not really necessaryrwhigting requirements, even if they are LLR typée
traceability of such requirements is based on Adiamroents mechanism, in the SPARK contract code. The
verification of such contracts is relatively difiit, because if we are able to tell that the wnittede verifies the
pre/post conditions with GNATprove tool, it becomesre difficult to say by reading the contract isicompliant
with the HLR requirements written during the adies of the Type 2 ticket. Finally, we realizedtthaen SPARK
contracts were set up, we have almost finally emitthe component code. In that way, we have metiged
activities of tickets of Types 4 and 5, which comguhto our development process cannot be relekaning no
more independence between the person writing t@rements and the tests specifications and thénoclearge

of implementing them. Nevertheless, the use of SRARd formal methods allowed us to see potentialime
errors that we would not necessarily have detegitfdconventional XReq tests.

To better take advantages of the use of SPARK cépein terms of saving time related to writingdavalidating
XReq tests, we think that we could adjust our pssde allow a more practical use of SPARK. Durimgdctivities
of the Type 4 tickets, the explicit writing in natililanguage, via RMTool of the component requiretsés saved,
without writing any test. Then, the component regiient is translated into a SPARK contract, in baoactivity.

VI. References

[1] « Concept of Operations for Drones: A risk based [10] Ccrazyflie drone: https://www.bitcraze.io/crazyfiié-
approach to regulation on unmanned aircraft »: [11] Certiflie : https://github.com/AdaCore/Certyflie

https://www.easa.europa.eu/document-library/general-
publications/concept-operations-drones [12] Nikolai Kosmatov, Claude Marché, Yannick Moy, Julien

. . _ . Signoles. « Static versus Dynamic Verification in y®hFrama-
[2] Pulsar Flight System: https://www.hionos.com/#pulsarc ~ and SPARK 2014”. In Proc. of the 7th International

[3] SPARK: https://www.adacore.com/sparkpro Symposium On Leveraging Applications of Formal Metfo

Verification and Validation (ISOLA 2016), Corfu, Gregc
[4] J. Souyris, V. Wiels, D. Delmas, and H. Delseny. Forn@dtober 2016, LNCS, vol. 9952, pages 461-478. Springe
verification of avionics software products. In Sie¢h) . .
International Symposium of Formal Methods, FM 200¢3] Johannes Kanig, « A Comparison of SPARK with MISRA
volume 5850 of Lecture Notes in Computer Sciencgepac and Frama-C.” http://www.adacore.com/uploads/tedhnlc
532-546, Eindhoven, The Netherlands, Nov. 2009. §prin Papers/2016-10-SPARK-MisraC-FramaC.pdf

Verlag. [14] Carl Brandon and Peter Chapin, “A SPARK/Ada CubeSat
[5] Thierry Lecomte, Thierry Servat, and Guilhem Powzan Control Program”, Ada Europe 2013

Formal Methods in Safety-Critical Railway Systenms10th [15] Carl Brandon and Peter Chapin, “The Use of SPARK in
Brasilian Symposium on Formal Methods, 2007. Complex Spacecraft”, HILT 2016

[6] R. Jetley, S. P. lyer, and P. L. Jones, "A FOrmatidds |16] \jartin Becker, Emanuel Regnath, and Samarjit Ctadty,
Approach to Medical Device Review,” [EEE Computer,.voheyelopment and Verification of a Flight Stack forHigh-
39, pp. 61-67, 2006 Altitude Glider in Ada/SPARK 2014”, SAFECOMP 2017

[7] F. Kirchner, N. Kosmatov, V. Prevosto, J. Signo®®l [17] Emmanuel Chenu, “Agile & Lean software development f
B. Yakobowski. “Frama-C: A software analysi§yionic software” ERTS 2012

perspective ». Formal Asp. Comput., 27(3):573-60252

3)) . [18] Sue Black, Paul P. Boca, Jonathan P. Bowen, Jasona@o
[8] Claude Marché and Yannick Moy, “The Jessie plugin by Mike Hinchey, “Formal Versus Agile: Survival ofeth
Deductive Verification in Frama-C.” http://krakativifr/ Fittest”, Volume 42, Issue 9, Sept. 2009.

jessie.html, mars 2015. Consulté en juin 2015.

[19] CEOS project - https://www.ceos-systems.com/en/CEOS-

[9] CAP2018 - http://cap2018.minalogic.net/ Project-For-Pieces-Of-Work-Inspection-By Drones.html

10

