Romain Béguet

Clément Fumex

Yannick Moy

Lightweight Checkers in a New Light

Keywords: software quality, lightweight checkers, static analysis, formal methods

The value of lightweight checkers, aka linters, for finding bugs in C or C++ programs has long been recognized. Their value for strongly typed languages like Ada or OCaml has not been so evident, as the compiler for these languages typically rules out most classes of bugs that C/C++ linters find, either by issuing errors for non-compliance with language rules, or more precise warnings thanks to the additional information available to the compiler. In particular, the availability of deep static analysis tools for these languages makes it uncertain that linters can be of interest too, as the power of their analysis fits between compilers and deep static analysis tools. We have investigated this question for the language Ada, and we have found that linters can play an important role for such languages as well, which is more focused than the role they traditionally play for weaker languages. Our findings are based on the creation of a set of linters for Ada that we applied to multiple industrial active codebases that we maintain at AdaCore. The results of these experiments were eye opening on the value of linters for stronger languages. In this article, we also describe the technology that allows the easy development and deployment of linters, as well as our strategy for adapting linters to the analysis context.

Introduction

Lightweight checkers, aka linters, are a must-have in many programming language toolsets. The original lint analyzer for C programs gave its name to this category of development tools aimed at "detecting a number of bugs and obscurities" related to weaknesses in C regarding typing and portability, and more generally to "a number of wasteful, or error prone, constructions which nevertheless are, strictly speaking, legal." [LINT] The use of lightweight checkers for C programs has continued to increase in the 40 years since publication of the original lint article, even as some of their checking capabilities have been adopted in compilers (through warnings) and coding standard checkers (through rules, such as the MISRA C rules). The appeal of lightweight checkers is their versatility combined with their ease of use (including setup, speed and accuracy), which makes it possible for anyone to find settings fitting one's particular context at low cost.

The C programming language is probably the one for which the most lightweight checkers have been developed. This is due to its pervasive use, the huge quantity of legacy code in C, and its particular weaknesses (error-prone syntax, no memory safety, typing hazards). Beyond C, lightweight checkers have been developed for many mainstream languages, in particular C++ (e.g., Cppcheck, clang-tidy, Flawfinder, PC-Lint, PVS-Studio) and Java (e.g., FindBugs, PMD). Many commercial platforms also propose lightweight checkers for large sets of programming languages (e.g., Parasoft, SonarQube) and large companies have included them in their daily code review workflow (e.g., Google [TRICORDER], Facebook [INFER]).

For all the success of lightweight checkers in other languages, we haven't seen the need for these on Ada programs, until recently. Indeed, the Ada language makes it possible to avoid most of the "bugs and obscurities" that plague C programs, thanks precisely to the focus on correctness of implementation in the design of the Ada language. Many of these "bugs and obscurities" would simply not compile in Ada. Others are caught by the many compiler warnings, such as those implemented in the GNAT compiler. Both the culture of correctness in the Ada community and the strong specification features of Ada have made it possible to develop many compiler warnings that could not be added to a compiler for another language. Tools for style checking and coding standard checking complete the compiler warnings in terms of fast and local analysis and cover yet another part of the lightweight checkers found for other languages.

AdaCore has developed deep static analysis tools for Ada programs, with a strong focus on achieving high levels of assurance (based on abstract interpretation with CodePeer or on formal verification with SPARK) for many years. We have repeatedly recognized the benefits in combining these light and deep techniques as they focus on different problems, or on the same problems through different angles [TOKENEER]. We have also worked on integrating these multiple tools through common interfaces to facilitate their combined use. For example, our coding standard checker GNATcheck can also run the GNAT compiler to issue warnings and style check violations. However, it is only recently that we discovered a blind spot in our spectrum of static analysis tools. In this article, we explain how we made this discovery and the new tool that we are creating as a result.

Our contribution in this article is the description of how lightweight checkers can complete other static analyses for achieving high quality software, and how this can be integrated in an industrial tool suite for deep static analysis. To the best of our knowledge, lightweight checkers have never been presented in this light before.

Different Shades of Lightweight Checkers

There are many different categories of lightweight checkers used in practice. We can distinguish style checkers (related to code layout, naming conventions, preferred idioms) and coding standard checkers (related to feature use, code complexity, coding conventions) from checkers which aim to find bugs. It is this last category that we will focus on in this article.

The bug checkers can in turn be categorized depending on the depth of analysis that they require. The simplest checkers are syntactic -they only require access to the Abstract Syntax Tree (AST) without semantic information. Slightly more complex checkers are semantic -they require access to the AST and some semantic information, like the types of nodes and the declarations of entities. The two previous categories have a local view of the program, from a single expression to a single function. More complex checkers take a global view and propagate information across calls by traversing the Control Flow Graph of the program. The most complex checkers will compute summaries for individual functions that they can reuse at call site instead of reanalyzing the function.

Going beyond these single-pass lightweight checkers based on function summaries, deep static analysis really begins, typically with multiple passes that build on the previous ones to compute richer information on the program.

We mentioned previously that most of the "bugs and obscurities" would not compile in Ada. For this reason, there has never been any strong desire in the Ada community to have access to linter-like tools. To confirm our claim, we gathered a few well-known lightweight checkers and studied the kind of checks that they were operating. Prior to the study, we expected most of the checks to be covered either by the Ada language itself, the Ada compiler GNAT, or one of our deep static analysis tool such as CodePeer. We grouped the different checks into five different categories:

1. Language weaknesses : these checkers only apply to a specific language because its syntax is either too permissive (e.g. suspicious ';' after an if statement), its type system is too weak (e.g. it allows returning a pointer to a local variable), or the language specification is not precise enough (e.g. unspecified order of evaluation of side effects). 2. Run-time errors : these checkers try to catch errors that would happen at run-time, such as the use of a potentially uninitialized variable. 3. Library specific : these checkers are specific to a certain library (e.g. the C standard I/O library), to check that it is used correctly (e.g. warn against dangerous usage of strncat). 4. Useless code : these checkers discover unreachable code, redundant assignments, dead branches, etc. 5. Logic errors : these checkers discover nonsensical code, such as testing that a pointer is not null after having dereferenced it (a well-known case of "belief checker" [BELIEF]). 6. Style issues : these checkers detect violation of "good style" for a given language.

We obtained the following results on 5 well-known linters: The number in each cell corresponds to the number of atomic checks of the lightweight checker denoted by its row that fall in the category denoted by its column.

Categories ≻ Checkers ⋎ Language Run-
Our initial intuition was somewhat justified, as most of the checks target specific language flaws which don't exist in Ada. On the other hand, some of the checks sparked our interest because we didn't have any tool at our disposal that could mimic them. This concerns mostly the checkers in the "Logic errors" category, and some checkers in the "Useless code" category. We believe that other authors of linters for safe languages could also benefit from these findings, and we have started discussing this issue with some of them.

The Blind Spots in Deep Static Analyzers

Some of the checks are interesting because they detect suspicious excerpts of code that are not inherently erroneous but often hide a strong logic error. Such checks include testing twice the same condition in a chain of if-elsif, testing whether a pointer is not null although it is already dominated by a dereference, etc. These are not the typical code smells that are targeted by our deep static analyzers.

Moreover, one may be tempted to think that deep static analyzers strictly beat lightweight checkers when it comes to catching run-time errors (division by zero, buffer overflow) and dead code (conditions always true or false, unreachable code), which heavily depend on the analysis of values that expressions can have in the program. A deep static analyzer will compute these values with a greater precision than a lightweight checker, leading to more bugs found. This is mostly true, because it assumes that it is as easy to run a deep static analyzer as a lightweight checker, and to analyze their results. Which is not true in general. Deep static analysis requires having compilable code, including the dependences, compilation options and build environment. On the contrary, a syntactic lightweight checker may not need more than a single file. Then, the running time of a deep static analyzer can range from minutes to hours, while the running time of a lightweight checker typically ranges from seconds to minutes. Both types of tools may suffer from the same problem of false positives (aka false alarms) where the tool reports spurious bugs, although it is typically easier to aggressively remove false positives in a lightweight checker than in a deep static analyzer, thanks to its much simpler design.

Another area where lightweight checkers beat deep static analyzers is in the ease of adding a new checker for a specific need, or to modify an existing checker in a specific context. While it can take as little as a few hours to create a new lightweight checker, it may take days or months to extend a deep static analyzer with a new analysis. This explains the versatility of lightweight checkers, as there are few barriers when adding another type of checker to an existing tool.

Seeing the Light with Libadalang

Libadalang is an open-source library for doing fast semantic analysis of Ada programs. Its initial purpose was to replace the current technology used in our Ada IDEs, and thus was designed from the beginning to be as robust as possible and to extract the most out of the given input, be it compilable Ada code or not. It can work on syntactically incorrect code (by trying to recover a valid syntax tree), or semantically invalid code (by allowing to perform semantic analysis on the correct parts). That makes it the perfect tool for designing linters that can adapt their level of analysis to the amount of data that is available, and which can be run in real-time as the programmer types. The library is still in development, and so is not necessarily able to recover from all the incorrect states that you could expect from it right now. However, it was sufficient to develop a few proof-of-concept checkers.

Checkers can be written in Ada (directly binding with the library), in C or in Python (through C and Python bindings). Concretely, the implementation relies on Libadalang to: parse the given Ada source code, perform semantic analysis, retrieve the children of a syntactic node and query the semantic analyzer when needed. For the more complex checkers where we simulate data-flow analyses, we had to write a lot of boilerplate code in order to traverse the AST in the directions of interest (forward or backward). Also, because the semantic analysis at that time was mostly inexistent, we had to do it in a conservative, ad-hoc way, which again added to the boilerplate. Since then, the semantic analysis provided by Libadalang has greatly improved and we could easily have it replace our previous technique.

We have started developing a new framework for lightweight checkers on Ada programs, publicly available in the GitHub repository at https://github.com/AdaCore/lal-checkers. We expect to share in this framework all the boilerplate we had to develop in our earlier experiments. We expects that users will be able to get inspiration for their own checkers, and contribute some checkers too.

Our Codebase in the Spotlight

In order to investigate the benefit of lightweight checkers for finding bugs in Ada programs, we have developed 8 of them, taking checkers from the PVS-Studio tool as inspiration. As the underlying Libadalang technology used in these experiments was under early development at the time, we could only develop syntactic checkers that access the AST of an Ada program without semantic information. These checkers were developed in a couple of hours each, thanks to the Python API available with Libadalang. Here an overview of our 8 checkers:

1. Detects arguments of some arithmetic and comparison operators which are syntactically identical, in cases where this could be expressed with a constant instead (like "X -X" or "X <= X"). 2. Detects syntactically identical expressions which are chained together with logical operators, so that one of the two identical tests is useless (as in "A or B or A"). 3. Detects when a pointer that has been dereferenced is later tested against the null value. 4. Detects when a test that a pointer is null dominates a dereference of the same pointer. 5. Detects identical subexpressions being tested in a chain of if-elsif statements. 6. Detects expressions of the form "A /= B or A /= C" where B and C are different literals, which are always True. 7. Detects identical code in different branches of an if-statement or case-statement. 8. Detects useless assignment to a local variable, where the value is never read subsequently.

Except for checker 4, all checkers fit the category "Useless code" (checkers 7, 8) or "Logic errors" (checkers 1, 2, 3, 5, 6) seen in section 2. Checker 4 fits the category "Run-time errors".

Then we ran these checkers on the codebases in Ada from the tools we develop at AdaCore (including the compiler and static analyzers). Summing over the 8 checkers that we implemented, we found and fixed 23 errors and 91 code quality issues in our codebase. Some of these bugs could have been discovered earlier, had we run our deep static analyzers on these codebases. In fact, a few in the codebase of our GPS IDE had already been corrected when we reported the issue, after being discovered by a review of the messages reported by CodePeer on this codebase. But as we mentioned, the effort required to run deep static analyzers regularly on a codebase, and to review the messages issued by the tool to distinguish bugs from false positives, is more costly and has not yet been made on most of our codebases.

As an example, here is the error detected by checker 1 in the codebase of the GNAT Pro Studio IDE in file language-tree-database.adb:

if Get_Construct (Old_Obj).Attributes /= Get_Construct (New_Obj).Attributes or else Get_Construct (Old_Obj).Is_Declaration /= Get_Construct (New_Obj).Is_Declaration or else Get_Construct (Old_Obj).Visibility /= Get_Construct (Old_Obj).Visibility

The last reference to Old_Obj should really be New_Obj.

As another example, here is an error detected by checker 2 in the codebase of the CodePeer static analyzer in file utils-arithmetic-set_arithmetic.adb:

Result : constant Boolean := (not Is_Singleton_Set (Set1)) and then (not Is_Singleton_Set (Set1)) and then (Num_Range_Pairs (Set1, Set2) > Range_Pair_Limit);

The second occurrence of Set1 should really be Set2.

As yet another example, here is an error detected by checker 3 in the codebase of the tool GNATstack for computing stack usage in file dispatching_calls.adb:

if Static_Class.Derived.Contains (Explored_Method.Vtable_Entry.Class) and then Explored_Method /= null and then

The code was fixed here by checking for non-nullity before dereferencing Explored_Method.

For more details on our findings, see http://blog.adacore.com/many-more-low-hanging-bugs

Carrying the Torch with CodePeer

The findings mentioned in the previous section show that these kind of checkers fill a gap in our static analysis tools. We are in the process of integrating these and more in our static analyzer CodePeer for Ada programs where they will become a basis for simple and fast levels of analysis. The integration of the checkers in CodePeer will complement the recent integration of the GNAT compiler warnings and the upcoming integration of GNATcheck coding standard checker messages. Our goal is for CodePeer to provide a unified interface for running and dealing with messages from these different analyses.

More precisely, the user will be able to either run a selection of checkers alone for a quick analysis or run them in addition to the rest of CodePeer analysis. For a quick analysis the project file only needs to specify which files should be analysed, without requiring a fully compilable setup as it is the case for CodePeer regular analysis. As checker messages will be classified and stored in the CodePeer database (as it is the case for messages from the GNAT compiler and, in the future, GNATcheck), users will be able to see them, review them and filter them as any other CodePeer message.

We see three main use cases for this new capability in CodePeer: 1. Provide a lightning fast bug finding feature for use by developers, either on their machines during development, or as an immediate automatic feedback integrated in the Continuous Building environment (similar to the use of Tricorder at Google [TRICORDER] or Infer at Facebook [INFER]). Typically, the analyzer would be run only on files modified by a given commit. 2. Complete the portfolio of bug finding techniques in a rich static analyzer like CodePeer with a faster, more customizable technology, that aims for much lower levels of false positives. Thus, teams can adapt the level of analysis in their nightly runs of the static analyzer to their usage, accepting more or less false positives in the results depending on the benefits they get from deeper analysis.

3. Empower certification auditors who are only given partial archives of code, so that they can nonetheless perform some level of static analysis on code that cannot be compiled.

As we saw in section 4, users will be able to contribute to the collection of checkers using our framework, and those would then be easily integrated in CodePeer.

Our Work in the Light of Others

The benefits of lightweight checking have been emphasized in domains where software is not submitted to certification [TRICORDER]. The combination of analysis speed and very low rate of false positives is essential to integrate seamlessly static analysis in the everyday development processes, in domains where time-to-market is the driving factor and software is less critical [INFER].

As seen in section 2, many linters (most of them FOSS) document the checkers that they implement. These were important sources of inspiration for this work, as they allow one to compare sources of errors in different languages. In particular, the very detailed reports of errors found in FOSS software by the tool PVS-Studio were critical in getting us to question the interest of linters for stronger languages like Ada [PVS-STUDIO].

The capabilities of linters to detect deeper errors than they are usually used for (typically: one-line syntax improvements) has been demonstrated in various works. What makes them linters rather than static analyzers is their small size, so that many linters can be combined and individually selected or not. For example, the checkers of Engler et al. " range between 50 and 200 lines of code " [BELIEF], thanks to the use of the underlying metal infrastructure.

The benefits of linters compared to deep static analyzers have been described by Brown et al. [MICROGRAMMARS]. The authors of that work compare the results obtained with the commercial deep static analyzer for C/C++/Java that they develop, and their linters which required many orders of magnitude less effort to develop, and they find that "even though these checkers are small and easy to build, they still find real-world errors that matter to developers." Although linters cannot target all the properties that deep static analyzers target, there is much to gain from their combination: "When we check the same property as a state-of-the-art commercial tool and compare our results on the same code base, we find a roughly comparable number of bugs; we also find 190 bugs that the commercial tool misses. As a result, we think that our approach may be used as a safety net for more complex tools."

Conclusion

Currently, a dedicated framework for building lightweight checkers is being developed at AdaCore independently of any other static analysis tool, so as to ensure its lightweight nature and ease of use. The framework is based on the Libadalang technology and its goal is to be general enough to be able to express every checker presented in this article, but in a much more concise manner. This framework does not only target developers of checkers, but also API developers. Indeed, one of the mid-term goals is to provide a domain-specific language for API developers in order to allow them to write specifications targeting the entry-points of their libraries, such as preconditions on the arguments of a function. These API-specific checkers could then be run by users to check correct use of the API. Such specifications could also apply to pre-existing libraries such as the standard Ada I/O library, for example to provide a check that only an already opened file is written to or read from. As we have already seen, many existing checkers come with library-specific checkers (correct usage of strncpy, memset, etc.) because these libraries do not or cannot rely solely on the type system to prevent unexpected use cases, which also applies to Ada.

Our experience is that some categories of linters, targeting logic errors which could occur in any language, are precious complements to the strong type checking and deep static analyzers that are available for languages such as Ada. The experience of a customer of AdaCore who tried the checkers described in this article is eloquent: "I have found 5 bugs in 5 minutes, most of them of the vicious kind" (email communication). No doubt that the inclusion of such checkers inside a more general framework, as well as the extension to other relevant categories of checkers, will find other issues than the ones already detected. We look forward to providing such technology as part of our CodePeer static analyzer.